

RESOURCE-CONSTRAINED ON-DEVICE LEARNING BY DYNAMIC AVERAGING

Lukas Heppe, Michael Kamp, Linara Adilova, Danny Heinrich, Nico Piatkowski, Katharina Morik

Competence Center Machine Learning Rhine-Ruhr, TU Dortmund University lukas.heppe@tu-dortmund.de

Workshop on Parallel, Distributed and Federated Learning - ECML PKDD 2020

Motivation

- Data is generated by IOT devices
- Data contains valuable information
- Traditional setting does not scale

[1] Statista - Number of connected IoT Devices

technische universität dortmund

Motivation - Problems with traditional machine learning

Storage

Bandwidth

Privacy

 High energy consumption

[2] https://findikaattori.fi/en/125

Motivation - Problems with traditional machine learning

Motivation - Problems with traditional machine learning

Motivation - Challenges in Resource-Constrained-Systems

- Limited processing power / instruction sets
- Battery powered
- Network limitations

Goal: Energy- and communication efficient algorithm

Exponential Family Models¹

- Model distribution \mathbb{P} of *p*-dimensional discrete random vector \mathbf{X}
- Exploit independencies between X_i 's for compact representation

¹Martin Wainwright and Michael Jordan, Graphical Models, Exponential Families, and Variational Inference, 2008

Exponential Family Models ¹

- Model distribution \mathbb{P} of *p*-dimensional discrete random vector \mathbf{X}
- Exploit independencies between X_i's for compact representation

$$\mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{X} = \boldsymbol{x}) = \frac{\exp(\langle \phi(\boldsymbol{x}), \, \boldsymbol{\theta} \rangle)}{Z(\boldsymbol{\theta})}$$

- \blacktriangleright $oldsymbol{ heta} \in \mathbb{R}^d$ is our parameter vector
- $\phi(\boldsymbol{x}): \mathcal{X} \mapsto \{0,1\}^d$ sufficient statistic
- $Z(\theta)$ is the normalizer

¹Martin Wainwright and Michael Jordan, Graphical Models, Exponential Families, and Variational Inference, 2008

Integer Exponential Family¹

- ▶ Restrict $\theta \subseteq \{p \mid p \in \mathbb{N} \land p \le k\}^d = \mathbb{N}^d_{\le k}$
- Change base from exp to 2
- Store probabilities as fraction a/b

$$\mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{X} = \boldsymbol{x}) = \frac{2^{\langle \phi(\boldsymbol{x}), \boldsymbol{\theta} \rangle}}{Z(\boldsymbol{\theta})}$$

Esp 8266

¹Nico Piatkowski, Exponential families on resource-constrained systems, 2018

Integer Exponential Family - Learning

- Given a dataset $\mathcal{D} = \{ {m{x}}^{(1)}, \ldots, {m{x}}^{(n)} \}$
- Estimate θ using maximum-likelihood-estimation

▶ Denote
$$\widehat{\mu} = rac{1}{n} \sum_{m{x} \in \mathcal{D}} \phi(m{x})$$
 and solve

$$\boldsymbol{\theta}^* = \operatorname*{argmin}_{\boldsymbol{\theta}} = \log Z(\boldsymbol{\theta}) - \langle \boldsymbol{\theta}, \widehat{\boldsymbol{\mu}} \rangle$$

Iterative Learning:

- Update $\hat{\mu}_t$ as running average
- Solve problem for $\widehat{\mu}_t$

Distributed machine learning

Setting

- Set of m learners connected to coordinator
- Data-generating-distribution $\mathcal{Q}(\mathcal{X}, \mathcal{Y})$
- Online round-based learning process

Distributed machine learning

Setting

- Set of m learners connected to coordinator
- Data-generating-distribution $\mathcal{Q}(\mathcal{X}, \mathcal{Y})$
- Online round-based learning process

Questions?

- What do we communicate?
- When do we communicate?
- How to merge information?

What do we communicate?

Protocol	Centralized	Naïve	Privacy
Send	$ $ μ_i	$ \{ \boldsymbol{\mu}_i, \boldsymbol{\theta}_i \}$	$ \boldsymbol{ heta}_i$
Receive	θ	$ \{ \widehat{\mu}, \widehat{\theta} \}$	$ \hat{\theta}$

What do we communicate?

Protocol	Centralized	Naïve	Privacy
Send	$oldsymbol{\mu}_i$	$ \{ \boldsymbol{\mu}_i, \boldsymbol{ heta}_i \}$	$ \theta_i$
Receive	θ	$\left {\left\{ {{\widehat {oldsymbol{\mu }}},{\widehat {oldsymbol{ heta }}} ight\}} ight.$	$ \hat{\theta}$

> Assuming 16 learners, problem dimension 1000, 32 bit per parameter, 3 bit for integer

(bytes)	Centralized	Naïve	Privacy
Regular Integer	1.152.000 456.000	2.304.000 912.000	1.536.000 144.000
Reduction	2.5	2.5	10

When do we communicate?

Periodic synchronization

- Transmit changes on data arrival
- **Control frequency via parameter** *b*
- Transmit if:
- $t \mod b = 0$

When do we communicate?

Periodic synchronization

- \blacktriangleright Transmit changes on data arrival igsquire Define reference-vector $m{r} \in \mathbb{N}^d$
- \blacktriangleright Control frequency via parameter $b_1^{\dagger} \blacktriangleright$ Define divergence-threshold
- Transmit if:

$$t \mod b = 0$$

Dynamic synchronization

- Define reference-vector $r \in \mathbb{N}^d$ Define divergence-threshold $\Delta \in \mathbb{N}$
- Transmit if:

$$\|\boldsymbol{\theta}^i - \boldsymbol{r}\|_2^2 \geq \Delta$$

Model aggregation

How to combine the data?

Focus on simple average

$$\widehat{\boldsymbol{\theta}} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{\theta}^{i}$$

Floored average can be calculated using integer only

$$\overline{\boldsymbol{\theta}} = \left\lfloor \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{\theta}^{i} \right\rfloor = \left(\sum_{i=1}^{m} \boldsymbol{\theta}^{i} \right) >> \log_{2}(m)$$

Hierarchical reduction to prevent overflows

$$\left\lfloor \frac{a+b}{2} \right\rfloor = (a \land b) + ((a \oplus b) >> 1)$$

Theoretical guarantees

Bound approximation errors:

- Integer exponential family models are not arbitrary worse Error = e⁻¹
- Error of dynamic avg. is bounded over periodic error ²
- Distance between averages is bounded by dimension: $\|\widehat{\theta} \overline{\theta}\|_2^2 \le \sqrt{d}$

¹Nico Piatkowski, Exponential families on resource-constrained systems, 2018 ²Michael Kamp, Black-Box Parallelization for Machine Learning, 2019

Theoretical guarantees

Bound approximation errors:

- Integer exponential family models are not arbitrary worse Error = ε¹
- Error of dynamic avg. is bounded over periodic error ²
- Distance between averages is bounded by dimension: $\|\widehat{\theta} \overline{\theta}\|_2^2 \le \sqrt{d}$

Combined error is bounded!

¹Nico Piatkowski, Exponential families on resource-constrained systems, 2018 ²Michael Kamp, Black-Box Parallelization for Machine Learning, 2019

Experimental Evaluation

Questions

- Periodic vs. Dynamic averaging?
- Regular vs. integer exponential family?
- Different communication schemes?

Criteria

- Model quality?
- Bandwidth savings?
- Energy savings?

Experimental Evaluation - General setup

- Distributed learning environment with 16 clients
- Estimation of graph structure on holdout dataset
- ▶ Integer learner parameter space $\mathbb{N}_{\leq 8}$
- Horizontal partition of data
- Evaluation of system performance via cumulative 0/1 loss:

$$\frac{1}{Tm} \sum_{t=1}^{T} \sum_{i=1}^{m} \frac{1}{|S_i^t|} \sum_{(\boldsymbol{x}, y) \in S_i^t} \ell(\boldsymbol{x}, y | \boldsymbol{\theta}_i^t)$$

Experimental Setup - Procedure and paramters

Online round-based procedure:

- Receive a batch of data (bs = 10)
- Predict labels for batch, compute performance
- Update $\hat{\mu}$ and run optimization for a given budget (i = 10)
- Communicate depending on protocol

Privacy-aware averaging retains performance while using less bandwidth

Privacy-aware averaging retains performance while using less bandwidth

Privacy-aware averaging retains performance while using less bandwidth

Privacy-aware averaging retains performance while using less bandwidth

Result - Privacy Preserving Averaging - Covertype

Future work

- Scale number of learners
- Communication vs. Rounding impact
- Methods to select optimal hyperparameters
- Modular parameter updates
- Adaptation to non i.i.d / time-variant data

Conclusion

- Distributed integer-only learning is possible
- Energy vs. Performance-Tradeoff
- ▶ Bandwidth reduction of 193×
- \blacktriangleright Estimated energy reduction of $67 \times$

Backup

Exponential Family Models - Sufficient statistic

- Assume binary variables ($\forall i \mathcal{X}_i = \{0, 1\}$)
- ▶ Let $x = [0, 1, 0, 0, 1]^{\top}$
- $\phi(\boldsymbol{x}) = [\phi_{x_1x_3}(\boldsymbol{x}), \phi_{x_2x_3}(\boldsymbol{x}), \phi_{x_3x_4}(\boldsymbol{x}), \phi_{x_3x_5}(\boldsymbol{x})]^\top$

$$\phi_{x_1x_3}(\boldsymbol{x}) = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \ \phi_{x_2x_3}(\boldsymbol{x}) = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \ \phi_{x_3x_4}(\boldsymbol{x}) = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \ \phi_{x_3x_5}(\boldsymbol{x}) = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

$$\blacktriangleright d = \sum_{(s,t)\in E} \mathcal{X}_s \cdot \mathcal{X}_t = 4 \cdot 2^2$$

• Assuming 10 states per variable, we store $4 \cdot 10^2$ instead of 10^5