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Abstract


I consider the problem of learning an optimal path graphical model from data and show


the problem to be NP-hard for the maximum likelihood and minimum description length


approaches and a Bayesian approach. This hardness result holds despite the fact that the


problem is a restriction of the polynomially solvable problem of �nding the optimal tree


graphical model.


1. Introduction


The problem of learning graphical models has received much attention within the Arti�-


cial Intelligence community. Graphical models are used to represent and approximate joint


distributions over sets of variables where the graphical structure of a graphical model rep-
resents the dependencies among the set of variables. The goal of learning a graphical model


is to learn both the graphical structure and the parameters of the approximate joint dis-


tribution from data. In this note, I present a negative hardness result on learning optimal


path graphical models.


Path graphical models are an interesting class of graphical models with respect to learn-


ing. This is due the fact that, in many situations, restricting attention to the class of path


models is justi�ed on the basis of physical constraints or temporal relationships among the


variables. One example of this is the problem of identifying the relative positions of loci on


a segment of DNA (e.g., Boehnke, Lange & Cox, 1991). In addition, one might be interested


in obtaining a total order over a set of variables for other purposes such as visualization
(e.g., Ma & Hellerstein, 1999).


The main positive results on the hardness of learning graphical models are for learning


tree graphical models. These have been presented for maximum likelihood (ML) criterion


(Edmonds, 1967; Chow & Liu, 1968) and adapted to a Bayesian criterion by Heckerman,


Geiger, & Chickering (1995). Two NP-hardness results for learning graphical models have


appeared in the literature. Those are the NP-hardness of �nding the optimal Bayesian


network structure with in-degree greater than or equal to two using a Bayesian optimality


criterion (Chickering, 1996) and the problem of �nding the ML optimal polytree (Dasgupta,


1999).


In this note, I present a proof of the hardness of �nding an optimal path graphical
models for the maximum likelihood (ML) criterion, the minimum description length (MDL)


criterion, and a Bayesian scoring criterion. Unlike the ML hardness result of Dasgupta, I


provide an explicit construction of a polynomial sized data set for the reduction and, unlike


the Bayesian hardness result of Chickering (1996), I use a common \uninformative" prior.
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2. Optimal Graphical Models


One of the primary goals when learning a graphical model is to obtain an approximate joint


distribution over a set of variables from data. In this note, I focus on directed graphical


models for a set of discrete variables fX1; : : : ;Xng. One component of a directed graphical


model is its directed graphical structure that describes dependencies between the variables.


A directed graphical model represents a family of distributions that factor according to the


graphical structure G of the directed graphical model, more speci�cally,


PG(X1; : : : ;Xn) =
nY


i=1


P (XijpaG(Xi))


where paG(Xi) denotes the possibly empty set of parents of vertex Xi in graph G. The
subscript G is omitted when it is clear from context. The most common methods guiding


the choice of a distribution from a family of distributions are maximum likelihood estimation


and Bayesian estimation. Given a graphical structure and a set of cases for the variables


(also a prior distribution over the distributions in the case of the Bayesian approach), these


methods provide an approximate joint distribution. For more details on graphical models


and estimation see Heckerman (1998).


This leaves open the question of how one should choose the appropriate graphical struc-


ture. In the remainder of this section, I present the maximum likelihood (ML) criterion, the


minimum discrimination length (MDL) criterion, and a Bayesian criterion for evaluating


directed graphical models given a set of cases D. A value of the variable Xi is denoted by


xi and a value of the set of variables pa(Xi) is denoted by pa(xi). The number of cases in
D in which Xi = xi and pa(Xi) = pa(xi) is denoted by N(xi; pa(xi)) and the total number


of cases in D is denoted by N .


One important property common to these scoring criteria is that the scores factor ac-


cording to the graphical structure of the model. That is, the score for a graph G and data


set D can be written as a sum of local scores for each of the variables


Score(G;D) =
X


i


LocalScore(Xi; pa(Xi)):


The local score for a variable Xi is only a function of the counts for Xi and pa(Xi) in the


data set D and the number of possible assignments to the variables Xi and pa(Xi). Thus


the structure of the graphical model determines which particular variables and counts are


needed in the computation of the local score for a variable.


The log maximum likelihood scoring criterion for a graphical model is


ScoreML(G;D) =
X


i


LocalScoreML(Xi; pa(Xi))


LocalScoreML(Xi; pa(Xi)) = N �HD(Xijpa(Xi)) (1)


where HD(Xijpa(Xi)) is the empirical conditional entropy of Xi given its parents, and is
equal to


�
X


Xi;pa(Xi)


N(xi; pa(xi))


N
log


N(xi; pa(xi))


N(pa(xi))
:
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One practical shortcoming of the ML score is that in comparing two models with graphical
structure G and G0 where G contains a proper subset of the edges of G0 the ML score will


never favor G. Thus, when using an ML score to choose among models without restricting


the class of graphical structures, a fully connected structure is guaranteed to have a maximal


score. This is problematic due to the potential for poor generalization error when using the


resulting approximation. This problem is often called over�tting. When using this principle


it is best to restrict the class of alternative structures under consideration in some suitable


manner.


The minimum description length score can be viewed as a penalized version of the ML


score


ScoreMDL(G;D) = ScoreML(G;D)�
d logN


2


=
X


i


LocalScoreMDL(G;D)


LocalScoreMDL(Xi; pa(Xi)) =


LocalScoreML �
#(pa(Xi))� (#(Xi)� 1)� logN


2
(2)


where d =
P


i(#(pa(Xi))� (#(Xi)�1)) and #(Y ) is used to denote the number of possible


distinct assignments for a set of variables Y and the number of assignments for the empty


set of variables is #(;) = 1. The penalty term leads to more parsimonious models, thus,


alleviating the over�tting problem described above.


Finally, a Bayesian score requires a prior over the alternative models and, for each model,


a prior over the distributions. A commonly used family of priors for directed graphical mod-


els is described by Cooper & Herskovits (1992). In their approach, one assumes a uniform


prior on alternative graphs, P (G) / 1, and an \uninformative" prior over distributions.


These assumptions lead to the following scoring function;


ScoreBayes(G;D) = logP (DjG) + logP (G)


/
X


i


LocalScoreBayes(Xi; pa(Xi))


LocalScoreBayes(Xi; pa(Xi)) =


log
Y


pa(xi)


(#(Xi)� 1)!


(#(Xi)� 1) +N(pa(xi)))!


Y


xi


N(xi; pa(xi))! (3)


Although not as apparent as in the MDL score, the Bayesian score also has a built-in


tendency for parsimony that alleviates the problems of over�tting. The hardness results


presented below can be extended to a variety of alternative types of priors including the


BDe prior with an empty prior model (see Heckerman et al. 1995).


The problem of �nding the optimal directed graphical model for a given class of struc-


tures G and dataD is the problem of �nding the structureG 2 G that maximizes Score(G;D).
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3. NP-Hardness of Finding Optimal Paths


In this section, I consider the problem of �nding the optimal directed graphical model


when the class of structures is restricted to be paths. A directed graphical structure is a


path if there is one vertex with in-degree zero and all other vertices have in-degree one. I


show that the problem of �nding the optimal path directed graphical model is NP-hard for


the commonly used scoring functions described Section 2. To demonstrate the hardness


of �nding optimal paths the problem needs to be formulated as a decision problem. The


decision problem version of �nding the optimal path directed graphical model is as follows


The optimal path (OP) decision problem: Is there a path graphical model with


score greater than or equal to k for data set D?


In this section I prove the following theorem.


Theorem 1 The optimal path problem is NP-Hard for the maximum likelihood score, the


minimum description length score and a Bayesian score.


To prove this, I reduce the Hamiltonian Path (HP) decision problem to the OP decision
problem.


The Hamiltonian path (HP) decision problem: Is there a Hamiltonian path in


an undirected graph G?


A Hamiltonian path for an undirected graph G is a non-repeating sequence of vertices


such that each vertex in G occurs on the path and for each pair of adjacent vertices in
the sequence there is an edge in G. Let the undirected graph G = hV;Ei have vertex set


V = fX1; : : : ; Xng and edge set E.


The HP decision problem is NP-complete. Loosely speaking, this means that the HP


decision problem is as computationally diÆcult as a variety of problems for which no known


algorithm exists that runs in time that is a polynomial function of the size of the input.


Theorem 1 indicates that the OP decision problem is at least as diÆcult as any NP-complete


problem. For more information about the HP decision problem and NP-completeness see


Garey & Johnson (1979).


I reduce the HP decision problem for G to the OP decision problem by constructing a


set of cases D with the following properties;


#(Xi) = #(Xj) (i)


LocalScore(Xi; ;) = LocalScore(Xj ; ;) =  (ii)


LocalScore(Xi; fXjg) 2 f�; �g � < � (iii)


LocalScore(Xj ; fXig) = LocalScore(Xi; fXjg) (iv)


LocalScore(Xi; fXjg) = � i� fXi; Xjg 2 E (v)
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For such a data set, the problem of the existence of a Hamiltonian path is equivalent
to the existence of a path graphical model with score equal to k =  + (jV j � 1) � �


where jV j = n is the number of vertices in the undirected graph G. Thus, to reduce the


HP problem to the OP problem one needs to eÆciently construct a polynomial sized data


set with these properties. In other words, by such a construction, a general HP decision


problem can be transformed into an OP decision problem. Because the size of the input


to the OP problem is a polynomial function of the size of the input for the HP problem, if


one can �nd an algorithm solve the OP problem in polynomial time then all NP-complete


problems can be solved in polynomial time.


I construct a data set for graph G assuming that each variable is ternary to satisfy


condition (i). For each pair of vertices Xi and Xj (i < j) for which there is an edge in G,
add the following 8 cases in which every variable Xk (k 6= i; j) is zero.


X1 : : : Xi�1 Xi Xi+1 : : : Xj�1 Xj Xj+1 : : : Xn


0 : : : 0 1 0 : : : 0 1 0 : : : 0


0 : : : 0 1 0 : : : 0 1 0 : : : 0


0 : : : 0 1 0 : : : 0 1 0 : : : 0


0 : : : 0 1 0 : : : 0 2 0 : : : 0
0 : : : 0 2 0 : : : 0 1 0 : : : 0


0 : : : 0 2 0 : : : 0 2 0 : : : 0


0 : : : 0 2 0 : : : 0 2 0 : : : 0


0 : : : 0 2 0 : : : 0 2 0 : : : 0


For each pair of vertices Xi and Xj (i < j) for which there is not an edge in G, add the


following 8 cases.


X1 : : : Xi�1 Xi Xi+1 : : : Xj�1 Xj Xj+1 : : : Xn


0 : : : 0 1 0 : : : 0 1 0 : : : 0


0 : : : 0 1 0 : : : 0 1 0 : : : 0


0 : : : 0 1 0 : : : 0 2 0 : : : 0


0 : : : 0 1 0 : : : 0 2 0 : : : 0


0 : : : 0 2 0 : : : 0 1 0 : : : 0
0 : : : 0 2 0 : : : 0 1 0 : : : 0


0 : : : 0 2 0 : : : 0 2 0 : : : 0


0 : : : 0 2 0 : : : 0 2 0 : : : 0


For a set of cases constructed as described above, the pairwise counts for a pair of variables


Xi and Xj connected by an edge in G are


Xi


Xj


0 1 2


0 4(n2 � 5n+ 6) 4(n� 2) 4(n� 2)


1 4(n� 2) 3 1


2 4(n� 2) 1 3
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The pairwise counts for a pair of variables Xi and Xj not connected by an edge in G are


Xi


Xj


0 1 2


0 4(n2 � 5n+ 6) 4(n� 2) 4(n� 2)


1 4(n� 2) 2 2


2 4(n� 2) 2 2


Condition (ii) is satis�ed because the marginal counts for each variable are identical. There
are two types of pairwise count tables, thus, there are at most two values for a given type


of pairwise LocalScore. By using the two pairwise count tables and Equations 1, 2, and 3,


one can easily verify that the local scores for the two tables satisfy condition (iii). It follows


from the symmetry in the two types of pairwise tables and condition (ii) that condition (iv)


is satis�ed. It follows from the construction that condition (v) is satis�ed. Furthermore,


the set of cases is eÆciently constructed and has a size which is polynomially bounded by


the size of the graph G proving the result.


4. Conclusion


In this note, I show that the problem of �nding the optimal path graphical models is NP-


hard for a variety of common learning approaches. The negative result for learning optimal


path graphical models stands in contrast to the positive result on learning tree graphical


models. This hardness result highlights one potential source of the hardness. That is,


one can make an easy problem diÆcult by choosing an inappropriate subclass of models.


Perhaps, by carefully choosing a broader class of models than tree graphical models one can


identify interesting classes of graphical models for which the problem of �nding an optimal
model is tractable.


Another interesting class of graphical models not described in this note is the class of


undirected graphical models (e.g., Lauritzen, 1996). The methods for learning undirected


graphical models are closely related to the methods described in Section 2. In fact, for the


case of undirected path models, the scoring formulas described in Section 2 are identical


for each of the common approaches. Therefore, the NP-hardness result for directed path


models presented in this note also applies to problem of learning undirected path models.


Finally, it is important to note that good heuristics exist for the problem of �nding


weighted Hamiltonian paths (Karp & Held, 1971). These heuristics can be used to identify


good quality path models and rely on the fact that the optimal tree model can be easily


found and will have a score at least as large as any path model.
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