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Abstract


We present a probabilistic generative model for timing deviations in expressive mu-
sic performance. The structure of the proposed model is equivalent to a switching state
space model. The switch variables correspond to discrete note locations as in a musical
score. The continuous hidden variables denote the tempo. We formulate two well known
music recognition problems, namely tempo tracking and automatic transcription (rhythm
quantization) as �ltering and maximum a posteriori (MAP) state estimation tasks. Ex-
act computation of posterior features such as the MAP state is intractable in this model
class, so we introduce Monte Carlo methods for integration and optimization. We compare
Markov Chain Monte Carlo (MCMC) methods (such as Gibbs sampling, simulated anneal-
ing and iterative improvement) and sequential Monte Carlo methods (particle �lters). Our
simulation results suggest better results with sequential methods. The methods can be
applied in both online and batch scenarios such as tempo tracking and transcription and
are thus potentially useful in a number of music applications such as adaptive automatic
accompaniment, score typesetting and music information retrieval.


1. Introduction


Automatic music transcription refers to extraction of a human readable and interpretable
description from a recording of a musical performance. Traditional music notation is such
a description that lists the pitch levels (notes) and corresponding timestamps.


Ideally, one would like to recover a score directly from the audio signal. Such a represen-
tation of the surface structure of music would be very useful in music information retrieval
(Music-IR) and content description of musical material in large audio databases. However,
when operating on sampled audio data from polyphonic acoustical signals, extraction of a
score-like description is a very challenging auditory scene analysis task (Vercoe, Gardner,
& Scheirer, 1998).


In this paper, we focus on a subproblem in music-ir, where we assume that exact timing
information of notes is available, for example as a stream of MIDI1 events from a digital
keyboard.


A model for tempo tracking and transcription from a MIDI-like music representation
is useful in a broad spectrum of applications. One example is automatic score typesetting,


1. Musical Instruments Digital Interface. A standard communication protocol especially designed for digital
instruments such as keyboards. Each time a key is pressed, a MIDI keyboard generates a short message
containing pitch and key velocity. A computer can tag each received message by a timestamp for real-time
processing and/or recording into a �le.
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the musical analog of word processing. Almost all score typesetting applications provide a
means of automatic generation of a conventional music notation from MIDI data.


In conventional music notation, the onset time of each note is implicitly represented by
the cumulative sum of durations of previous notes. Durations are encoded by simple rational
numbers (e.g., quarter note, eighth note), consequently all events in music are placed on
a discrete grid. So the basic task in MIDI transcription is to associate onset times with
discrete grid locations, i.e., quantization.


However, unless the music is performed with mechanical precision, identi�cation of the
correct association becomes diÆcult. This is due to the fact that musicians introduce
intentional (and unintentional) deviations from a mechanical prescription. For example
timing of events can be deliberately delayed or pushed. Moreover, the tempo can uctuate
by slowing down or accelerating. In fact, such deviations are natural aspects of expressive
performance; in the absence of these, music tends to sound rather dull and mechanical.
On the other hand, if these deviations are not accounted for during transcription, resulting
scores have often very poor quality.


Robust and fast quantization and tempo tracking is also an important requirement for
interactive performance systems; applications that \listen" to a performer for generating an
accompaniment or improvisation in real time (Raphael, 2001b; Thom, 2000). At last, such
models are also useful in musicology for systematic study and characterization of expressive
timing by principled analysis of existing performance data.


From a theoretical perspective, simultaneous quantization and tempo tracking is a
\chicken-and-egg" problem: the quantization depends upon the intended tempo interpre-
tation and the tempo interpretation depends upon the quantization. Apparently, human
listeners can resolve this ambiguity (in most cases) without any e�ort. Even persons without
any musical training are able to determine the beat and the tempo very rapidly. However,
it is still unclear what precisely constitutes tempo and how it relates to the perception of
the beat, rhythmical structure, pitch, style of music etc. Tempo is a perceptual construct
and cannot directly be measured in a performance.


The goal of understanding tempo perception has stimulated a signi�cant body of re-
search on the psychological and computational modeling aspects of tempo tracking and
beat induction, e.g., see (Desain & Honing, 1994; Large & Jones, 1999; Toiviainen, 1999).
These papers assume that events are presented as an onset list. Attempts are also made
to deal directly with the audio signal (Goto & Muraoka, 1998; Scheirer, 1998; Dixon &
Cambouropoulos, 2000).


Another class of tempo tracking models are developed in the context of interactive
performance systems and score following. These models make use of prior knowledge in the
form of an annotated score (Dannenberg, 1984; Vercoe & Puckette, 1985). More recently,
Raphael (2001b) has demonstrated an interactive real-time system that follows a solo player
and schedules accompaniment events according to the player's tempo interpretation.


Tempo tracking is crucial for quantization, since one can not uniquely quantize onsets
without having an estimate of tempo and the beat. The converse, that quantization can
help in identi�cation of the correct tempo interpretation has already been noted by Desain
and Honing (1991). Here, one de�nes correct tempo as the one that results in a simpler
quantization. However, such a schema has never been fully implemented in practice due
to computational complexity of obtaining a perceptually plausible quantization. Hence
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quantization methods proposed in the literature either estimate the tempo using simple
heuristics (Longuet-Higgins, 1987; Pressing & Lawrence, 1993; Agon, Assayag, Fineberg,
& Rueda, 1994) or assume that the tempo is known or constant (Desain & Honing, 1991;
Cambouropoulos, 2000; Hamanaka, Goto, Asoh, & Otsu, 2001).


Our approach to transcription and tempo tracking is from a probabilistic, i.e., Bayesian
modeling perspective. In Cemgil et al. (2000), we introduced a probabilistic approach to
perceptually realistic quantization. This work also assumed that the tempo was known or
was estimated by an external procedure. For tempo tracking, we introduced a Kalman �lter
model (Cemgil, Kappen, Desain, & Honing, 2001). In this approach, we modeled the tempo
as a smoothly varying hidden state variable of a stochastic dynamical system.


In the current paper, we integrate quantization and tempo tracking. Basically, our
model balances score complexity versus smoothness in tempo deviations. The correct tempo
interpretation results in a simple quantization and the correct quantization results in a
smooth tempo uctuation. An essentially similar model is proposed recently also by Raphael
(2001a). However, Raphael uses an inference technique that only applies for small models;
namely when the continuous hidden state is one dimensional. This severely restricts the
models one can consider. In the current paper, we survey general and widely used state-of-
the-art techniques for inference.


The outline of the paper is as follows: In Section 2, we propose a probabilistic model for
timing deviations in expressive music performance. Given the model, we will de�ne tempo
tracking and quantization as inference of posterior quantities. It will turn out that our model
is a switching state space model in which computation of exact probabilities becomes in-
tractable. In Section 3, we will introduce approximation techniques based on simulation,
namely Markov Chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) (Doucet,
de Freitas, & Gordon, 2001; Andrieu, de Freitas, Doucet, & Jordan, 2002). Both approaches
provide exible and powerful inference methods that have been successfully applied in di-
verse �elds of applied sciences such as robotics (Fox, Burgard, & Thrun, 1999), aircraft
tracking (Gordon, Salmond, & Smith, 1993), computer vision (Isard & Blake, 1996), econo-
metrics (Tanizaki, 2001). Finally we will present simulation results and conclusions.


2. Model


Assume that a pianist is improvising and we are recording the exact onset times of each key
she presses during the performance. We denote these observed onset times by y0; y1; y2 : : :
yk : : : yK or more compactly by y0:K . We neither have access to a musical notation of the
piece nor know the initial tempo she has started her performance with. Moreover, the
pianist is allowed to freely change the tempo or introduce expression. Given only onset
time information y0:K , we wish to �nd a score 1:K and track her tempo uctuations z0:K .
We will re�ne the meaning of  and z later.


This problem is apparently ill-posed. If the pianist is allowed to change the tempo
arbitrarily it is not possible to assign a \correct" score to a given performance. In other
words any performance y0:K can be represented by using a suitable combination of an
arbitrary score with an arbitrary tempo trajectory. Fortunately, the Bayes theorem provides
an elegant and principled guideline to formulate the problem. Given the onsets y0:K , the
best score 1:K and tempo trajectory z0:K can be derived from the posterior distribution
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that is given by


p(1:K ; z0:K jy0:K) =
1


p(y0:K)
p(y0:K j1:K ; z0:K)p(1:K ; z0:K)


a quantity, that is proportional to the product of the likelihood term p(y0:K j1:K ; z0:K) and
the prior term p(1:K ; z0:K).


In rhythm transcription and tempo tracking, the prior encodes our background knowl-
edge about the nature of musical scores and tempo deviations. For example, we can con-
struct a prior that prefers \simple" scores and smooth tempo variations.


The likelihood term relates the tempo and the score to actual observed onset times. In
this respect, the likelihood is a model for short time expressive timing deviations and motor
errors that are introduced by the performer.
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Figure 1: Graphical Model. Square and oval nodes correspond to discrete and continuous
variables respectively. In the text, we sometimes refer to the continuous hidden
variables (�k;�k) by zk. The dependence between  and c is deterministic. All
c,  , � and � are hidden; only onsets y are observed.


2.1 Score prior


To de�ne a score 1:K , we �rst introduce a sequence of quantization locations c0:K . A
quantization location ck speci�es the score time of the k'th onset. We let k denote the
interval between quantization locations of two consecutive onsets


k = ck � ck�1 (1)


For example consider the conventional music notation � � � which encodes the score 1:3 =
[1 0:5 0:5]. Corresponding quantization locations are c0:3 = [0 1 1:5 2].


One simple way of de�ning a prior distribution on quantization locations p(ck) is speci-
fying a table of probabilities for ck mod 1 (the fraction of ck). For example if we wish to
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allow for scores that have sixteenth notes and triplets, we de�ne a table of probabilities for
the states c mod 1 = f0; 0:25; 0:5; 0:75g[f0; 0:33; 0:67g. Technically, the resulting prior
p(ck) is periodic and improper (since ck are in principle unbounded so we can not normalize
the distribution).


However, if the number of states of ck mod 1 is large, it may be diÆcult to estimate the
parameters of the prior reliably. For such situations we propose a \generic" prior as follows:
We de�ne the probability, that the k'th onset gets quantized at location ck, by p(ck) /
exp(��d(ck)) where d(ck) is the number of signi�cant digits in the binary expansion of ck
mod 1. For example d(1) = 0, d(1:5) = 1, d(7 + 9=32) = 5 etc. The positive parameter � is
used to penalize quantization locations that require more bits to be represented. Assuming
that quantization locations of onsets are independent a-priori, (besides being increasing in
k, i.e., ck � ck�1), the prior probability of a sequence of quantization locations is given by
p(c0:K) / exp(��


PK
k=0 d(ck)). We further assume that c0 2 [0; 1). One can check that


such a prior prefers simpler notations, e.g., p( �� �
6


�� �
6


� ) < p( � � � ). We can generalize this
prior to other subdivisions such triplets and quintiplets in Appendix A.


Formally, given a distribution on c0:K , the prior of a score 1:K is given by


p(1:K) =
X
c0:K


p(1:K jc0:K)p(c0:K) (2)


Since the relationship between c0:K and 1:K is deterministic, p(1:K jc0:K) is degenerate for
any given c0:K , so we have


p(1:K) / exp


 
��


KX
k=1


d(


kX
k0=1


k0)


!
(3)


One might be tempted to specify a prior directly on 1:K and get rid of c0:K entirely.
However, with this simpler approach it is not easy to devise realistic priors. For example,
consider a sequence of note durations [1 1=16 1 1 1 : : : ]. Assuming a factorized prior on
 that penalizes short note durations, this rhythm would have relatively high probability
whereas it is quite uncommon in conventional music.


2.2 Tempo prior


We represent the tempo in terms of its inverse, i.e., the period, and denote it with �. For
example a tempo of 120 beats per minute (bpm) corresponds to � = 60=120 = 0:5 seconds.
At each onset the tempo changes by an unknown amount ��k


. We assume the change ��k


is iid with N (0; Q�).
2 We assume a �rst order Gauss-Markov process for the tempo


�k = �k�1 + ��k
(4)


Eq. 4 de�nes a distribution over tempo sequences �0:K . Given a tempo sequence, the
\ideal" or \intended" time �k of the next onset is given by


�k = �k�1 + k�k�1 + ��k (5)


2. We denote a (scalar or multivariate) Gaussian distribution p(x) with mean vector � and covariance


matrix P by N (�; P )=̂j2�P j�
1


2 exp(� 1


2
(x� �)TP�1(x� �)).
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The noise term ��k denotes the amount of accentuation (that is deliberately playing a
note ahead or back in time) without causing the tempo to be changed. We assume ��k �
N (0; Q� ). Ideal onsets and actually observed \noisy" onsets are related by


yk = �k + �k (6)


The noise term �k models small scale expressive deviations or motor errors in timing of indi-
vidual notes. In this paper we will assume that �k has a Gaussian distribution parameterized
by N (0; R).


The initial tempo distribution p(�0) speci�es a range of reasonable tempi and is given
by a Gaussian with a broad variance. We assume an uninformative (at) prior on �0. The
conditional independence structure is given by the graphical model in Figure 1. Table 1
shows a possible realization from the model.


We note that our model is a particular instance of the well known switching state space
model (also known as conditionally linear dynamical system, jump Markov linear system,
switching Kalman �lter) (See, e.g., Bar-Shalom & Li, 1993; Doucet & Andrieu, 2001;
Murphy, 2002).


k 0 1 2 3


k (� � (� . . .


ck 0 1/2 3/2 2 . . .
�k 0.5 0.6 0.7 . . . . . .
�k 0 0.25 0.85 1.20 . . .


yk 0 0.23 0.88 1.24 . . .


Table 1: A possible realization from the model: a ritardando. For clarity we assume �� = 0.


In the following sections, we will sometimes refer use zk = (�k;�k)
T and refer to z0:K


as a tempo trajectory. Given this de�nition, we can compactly represent Eq. 4 and Eq. 5 by


zk =


�
1 k
0 1


�
zk�1 + �k (7)


where �k = (��k ; ��k
).


2.3 Extensions


There are several possible extensions to this basic parameterization. For example, one could
represent the period � in the logarithmic scale. This warping ensures positivity and seems
to be perceptually more plausible since it promotes equal relative changes in tempo rather
than on an absolute scale (Grubb, 1998; Cemgil et al., 2001). Although the resulting model
becomes nonlinear, it can be approximated fairly well by an extended Kalman �lter (Bar-
Shalom & Li, 1993).


A simple random walk model for tempo uctuations such as in Eq. 7 seems not to be
very realistic. We would expect the tempo deviations to be more structured and smoother.
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In our dynamical system framework such smooth deviations can be modeled by increasing
the dimensionality of z to include higher order \inertia" variables (Cemgil et al., 2001). For
example consider the following model,


0
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We choose this particular parameterization because we wish to interpret �1 as the slowly
varying \average" tempo and �2 as a temporary change in the tempo. Such a model is useful
for situations where the performer uctuates around an almost constant tempo; a random
walk model is not suÆcient in this case because it forgets the initial values. Additional state
variables �3; : : : ;�D�1 act like additional \memory" elements. By choosing the parameter
matrix A and noise covariance matrix Q, one can model a rich range of temporal structures
in expressive timing deviations.


The score prior can be improved by using a richer model. For example to allow for
di�erent time signatures and alternative rhythmic subdivisions, one can introduce additional
hidden variables (See Cemgil et al. (2000) or Appendix A) or use a Markov chain (Raphael,
2001a). Potentially, such extensions make it easier to capture additional structure in musical
rhythm (such as \weak" positions are followed more likely by \strong" positions). On the
other hand, the number of model parameters rapidly increases and one has to be more
cautious in order to avoid over�tting.


For score typesetting, we need to quantize note durations as well, i.e., associate note
o�sets with quantization locations. A simple way of accomplishing this is to de�ne an
indicator sequence u0:K that identi�es whether yk is an onset (uk = 1) or an o�set (uk =
0). Given uk, we can rede�ne the observation model as p(ykj�k; uk) = ukN (0; R) + (1 �
uk)N (0; Ro�) where Ro� is the observation noise associated with o�sets. A typical model
would have Ro� � R. For Ro� !1, the o�sets would have no e�ect on the tempo process.
Moreover, since uk are always observed, this extension requires just a simple lookup.


In principle, one must allow for arbitrary long intervals between onsets, hence k are
drawn from an in�nite (but discrete) set. In our subsequent derivations, we assume that the
number of possible intervals is �xed a-priori. Given an estimate of zk�1 and observation yk,
almost all of the virtually in�nite number of choices for k will have almost zero probability
and it is easy to identify candidates that would have signi�cant probability mass.


Conceptually, all of the above listed extensions are easy to incorporate into the model
and none of them introduces a fundamental computational diÆculty to the basic problems
of quantization and tempo tracking.
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2.4 Problem De�nition


Given the model, we de�ne rhythm transcription, i.e., quantization as a MAP state estima-
tion problem


�1:K = argmax
1:K


p(1:K jy0:K) (9)


p(1:K jy0:K) =


Z
dz0:Kp(1:K ; z0:K jy0:K)


and tempo tracking as a �ltering problem


z�k = argmax
zk


X
1:k


p(1:k; zkjy0:k) (10)


The quantization problem is a smoothing problem: we wish to �nd the most likely score
�1:K given all the onsets in the performance. This is useful in \o�ine" applications such as
score typesetting.


For real-time interaction, we need to have an online estimate of the tempo/beat zk.
This information is carried forth by the �ltering density p(1:k; zkjy0:k) in Eq.10. Our
de�nition of the best tempo z�k as the maximum is somewhat arbitrary. Depending upon
the requirements of an application, one can make use of other features of the �ltering
density. For example, the variance of


P
1:k


p(1:k; zkjy0:k) can be used to estimate \amount
of con�dence" in tempo interpretation or argmaxzk;1:k p(1:k; zkjy0:k) to estimate most
likely score-tempo pair so far.


Unfortunately, the quantities in Eq. 9 and Eq. 10 are intractable due to the explosion in
the number of mixture components required to represent the exact posterior at each step k
(See Figure 2). For example, to calculate the exact posterior in Eq. 9 we need to evaluate
the following expression:


p(1:K jy0:K) =
1


Z


Z
dz0:Kp(y0:Kjz0:K ; 1:K)p(z0:K j1:K)p(1:K) (11)


=
1


Z
p(y0:K j1:K)p(1:K) (12)


where the normalization constant is given by Z = p(y0:K) =
P


1:K
p(y0:Kj1:K)p(1:K). For


each trajectory 1:K , the integral over z0:K can be computed stepwise in k by the Kalman
�lter (See appendix B.1). However, to �nd the MAP state of Eq. 11, we need to evaluate
p(y0:K j1:K) independently for each of the exponentially many trajectories. Consequently,
the quantization problem in Eq. 9 can only be solved approximately.


For accurate approximation, we wish to exploit any inherent independence structure of
the exact posterior. Unfortunately, since z and c are integrated over, all k become coupled
and in general p(1:K jy0:K) does not possess any conditional independence structure (e.g.,
a Markov chain) that would facilitate eÆcient calculation. Consequently, we will resort to
numerical approximation techniques.


3. Monte Carlo Simulation


Consider a high dimensional probability distribution


p(x) =
1


Z
p�(x) (13)
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Figure 2: Example demonstrating the explosion of the number of components to represent the
exact posterior. Ellipses denote the conditional marginals p(�k; !kjc0:k; y0:k). (We show
the period in logarithmic scale where !k = log2�k). In this toy example, we assume


that a score consists only of notes of length (� and � , i.e., k can be either 1=2 or 1.
(a) We start with a unimodal posterior p(�0; !0jc0; y0), e.g., a Gaussian centered at
(�; !) = (0; 0). Since we assume that a score can only consist of eight- and quarter
notes, i.e., k 2 f1=2; 1g. the predictive distribution p(�1; !1jc0:1; y0) is bimodal where
the modes are centered at (0:5; 0) and (1; 0) respectively (shown with a dashed contour
line). Once the next observation y1 is observed (shown with a dashed vertical line around
� = 0:5), the predictive distribution is updated to yield p(�1; !1jc0:1; y0:1). The numbers
denote the respective log-posterior weight of each mixture component. (b) The predictive
distribution p(�2; !2jc0:1; y0:1) at step k = 2 has now 4 modes, two for each component
of p(�1; !1jc0:1; y0:1). (c) The number of components grows exponentially with k.
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where the normalization constant Z =
R
dxp�(x) is not known but p�(x) can be evaluated


at any particular x. Suppose we want to estimate the expectation of a function f(x) under
the distribution p(x) denoted as


hf(x)ip(x) =


Z
dxf(x)p(x)


e.g., the mean of x under p(x) is given by hxi. The intractable integration can be approxi-
mated by an average if we can �nd N points x(i), i = 1 : : : N from p(x)


hf(x)ip(x) �
1


N


NX
i=1


f(x(i)) (14)


When x(i) are generated by independently sampling from p(x), it can be shown that as N
approaches in�nity, the approximation becomes exact.


However, generating independent samples from p(x) is a diÆcult task in high dimen-
sions but it is usually easier to generate dependent samples, that is we generate x(i+1) by
making use of x(i). It is somewhat surprising, that even if x(i) and x(i+1) are correlated
(and provided ergodicity conditions are satis�ed), Eq. 14 remains still valid and estimated
quantities converge to their true values when number of samples N goes to in�nity.


A sequence of dependent samples x(i) is generated by using a Markov chain that has
the stationary distribution p(x). The chain is de�ned by a collection of transition proba-
bilities, i.e., a transition kernel T (x(i+1)jx(i)). The de�nition of the kernel is implicit, in
the sense that one de�nes a procedure to generate the x(i+1) given x(i). The Metropolis


algorithm (Metropolis & Ulam, 1949; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,
1953) provides a simple way of de�ning an ergodic kernel that has the desired stationary
distribution p(x). Suppose we have a sample x(i). A candidate x0 is generated by sam-
pling from a symmetric proposal distribution q(x0jx(i)) (for example a Gaussian centered
at x(i)). The candidate x0 is accepted as the next sample x(i+1) if p(x0) > p(x(i)). If x0


has a lower probability, it can be still accepted, but only with probability p(x0)=p(x(i)).
The algorithm is initialized by generating the �rst sample x(0) according to an (arbitrary)
proposal distribution.


However for a given transition kernel T , it is hard to assess the time required to converge
to the stationary distribution so in practice one has to run the simulation until a very large
number of samples have been obtained, (see e.g., Roberts & Rosenthal, 1998). The choice
of the proposal distribution q is also very critical. A poor choice may lead to the rejection of
many candidates x0 hence resulting in a very slow convergence to the stationary distribution.


For a large class of probability models, where the full posterior p(x) is intractable, one
can still eÆciently compute marginals of form p(xkjx�k), x�k = x1 : : : xk�1; xk+1; : : : xK
exactly. In this case one can apply a more specialized Markov chain Monte Carlo (MCMC)
algorithm, the Gibbs sampler given below.


1. Initialize x
(0)
1:K by sampling from a proposal q(x1:K)


2. For i = 0 : : : N � 1
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� For k = 1; : : : ;K, Sample


x
(i+1)
k � p(xkjx


(i+1)
1:k�1; x


(i)
k+1:K) (15)


In contrast to the Metropolis algorithm, where the new candidate is a vector x0, the
Gibbs sampler uses the exact marginal p(xkjx�k) as the proposal distribution. At each
step, the sampler updates only one coordinate of the current state x, namely xk, and the
new candidate is guaranteed to be accepted.


Note that, in principle we don't need to sample xk sequentially, i.e., we can choose k
randomly provided that each slice is visited equally often in the limit. However, a deter-
ministic scan algorithm where k = 1; : : : K, provides important time savings in the type of
models that we consider here.


3.1 Simulated Annealing and Iterative Improvement


Now we shift our focus from sampling to MAP state estimation. In principle, one can use the
samples generated by any sampling algorithm (Metropolis-Hastings or Gibbs) to estimate
the MAP state x� of p(x) by argmax


i=1:N
p(x(i)). However, unless the posterior is very much


concentrated around the MAP state, the sampler may not visit x� even though the samples
x(i) are obtained from the stationary distribution. In this case, the problem can be simply
reformulated to sample not from p(x) but from a distribution that is concentrated at local
maxima of p(x). One such class of distributions are given by p�j (x) / p(x)�j . A sequence of
exponents �1 < �2 < � � � < �j < : : : is called to be a cooling schedule or annealing schedule


owing to the inverse temperature interpretation of �j in statistical mechanics, hence the
name Simulated Annealing (SA) (Aarts & van Laarhoven, 1985). When �j !1 suÆciently
slowly in j, the cascade of MCMC samplers each with the stationary distribution p�j (x) is
guaranteed (in the limit) to converge to the global maximum of p(x). Unfortunately, for this
convergence result to hold, the cooling schedule must go very slowly (in fact, logarithmically)
to in�nity. In practice, faster cooling schedules must be employed.


Iterative improvement (II) (Aarts & van Laarhoven, 1985) is a heuristic simulated an-
nealing algorithm with a very fast cooling schedule. In fact, �j =1 for all j. The eventual
advantage of this greedy algorithm is that it converges in a few iterations to a local max-
imum. By restarting many times from di�erent initial con�gurations x, one hopes to �nd
di�erent local maxima of p(x) and eventually visit the MAP state x�. In practice, by using
the II heuristic one may �nd better solutions than SA for a limited computation time.


From an implementation point of view, it is trivial to convert MCMC code to SA (or II)
code. For example, consider the Gibbs sampler. To implement SA, we need to construct
a cascade of Gibbs samplers, each with stationary distribution p(x)�j . The exact one time
slice marginal of this distribution is p(xkjx�k)


�j . So, SA just samples from the actual
(temperature=1) marginal p(xkjx�k) raised to a power �j .


3.2 The Switching State Space Model and MAP Estimation


To solve the rhythm quantization problem, we need to calculate the MAP state of the
posterior in Eq. 11


p(1:K jy0:K) / p(1:K)


Z
dz0:Kp(y0:K jz0:K ; 1:K)p(z0:K j1:K) (16)
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This is a combinatorial optimization problem: we seek the maximum of a function p(1:K jy0:K)
that associates a number with each of the discrete con�gurations 1:K . Since it is not feasible
to visit all of the exponentially many con�gurations to �nd the maximizing con�guration
�1:K , we will resort to stochastic search algorithms such as simulated annealing (SA) and
iterative improvement (II). Due to the strong relationship between the Gibbs sampler and
SA (or II), we will �rst review the Gibbs sampler for the switching state space model.


The �rst important observation is that, conditioned on 1:K , the model becomes a linear
state space model and the integration on z0:K can be computed analytically using Kalman
�ltering equations. Consequently, one can sample only 1:K and integrate out z. The
analytical marginalization, called Rao-Blackwellization (Casella & Robert, 1996), improves
the eÆciency of the sampler (e.g., see Doucet, de Freitas, Murphy, & Russell, 2000a).


Suppose now that each switch variable k can have S distinct states and we wish to


generate N samples (i.e trajectories) f
(i)
1:K ; i = 1 : : : Ng. A naive implementation of the


Gibbs sampler requires that at each step k we run the Kalman �lter S times on the whole


observation sequence y0:K to compute the proposal p(kj
(i)
1:k�1; 


(i�1)
k+1:K ; y0:K). This would


result in an algorithm of time complexity O(NK2S) that is prohibitively slow when K is
large. Carter and Kohn (1996) have proposed a much more time eÆcient deterministic scan
Gibbs sampler that circumvents the need to run the Kalman �ltering equations at each
step k on the whole observation sequence y0:K . See also (Doucet & Andrieu, 2001; Murphy,
2002).


The method is based on the observation that the proposal distribution p(kj �) can
be factorized as a product of terms that either depend on past observations y0:k or the
future observations yk+1:K . So the contribution of the future can be computed a-priori by


a backward �ltering pass. Subsequently, the proposal is computed and samples 
(i)
k are


generated during the forward pass. The sampling distribution is given by


p(kj�k; y0:K) / p(kj�k)p(y0:K j1:K) (17)


where the �rst term is proportional to the joint prior p(kj�k) / p(k;�k). The second
term can be decomposed as


p(y0:K j1:K) =


Z
dzkp(yk+1:Kjy0:k; zk; 1:K)p(y0:k; zkj1:K) (18)


=


Z
dzkp(yk+1:Kjzk; k+1:K)p(y0:k; zkj1:k) (19)


Both terms are (unnormalized) Gaussian potentials hence the integral can be evaluated
analytically. The term p(yk+1:Kjzk; k+1:K) is an unnormalized Gaussian potential in zk and
can be computed by backwards �ltering. The second term is just the �ltering distribution
p(zkjy0:k; 1:k) scaled by the likelihood p(y0:kj1:k) and can be computed during forward
�ltering. The outline of the algorithm is given below, see the appendix B.1 for details.


1. Initialize 
(0)
1:K by sampling from a proposal q(1:K)


2. For i = 1 : : : N


� For k = K � 1; : : : ; 0,
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{ Compute p(yk+1:K jzk; 
(i�1)
k+1:K)


� For k = 1; : : : ;K,


{ For s = 1 : : : S


� Compute the proposal


p(k = sj� ) / p(k = s;�k)


Z
dzkp(y0:k; zkj


(i)
1:k�1; k = s)p(yk+1:Kjzk; 


(i�1)
k+1:K)


{ Sample 
(i)
k from p(kj� )


The resulting algorithm has a time complexity of O(NKS), an important saving in terms
of time. However, the space complexity increases from O(1) to O(K) since expectations
computed during the backward pass need to be stored.


At each step, the Gibbs sampler generates a sample from a single time slice k. In
certain types of \sticky" models, such as when the dependence between k and k+1 is
strong, the sampler may get stuck in one con�guration, moving very rarely. This is due to
the fact that most singleton ips end up in low probability con�gurations due to the strong
dependence between adjacent time slices. As an example, consider the quantization model
and two con�gurations [: : : k; k+1 : : : ] = [: : : 1; 1 : : : ] and [: : : 3=2; 1=2 : : : ]. By updating
only a single slice, it may be diÆcult to move between these two con�gurations. Consider
an intermediate con�guration [: : : 3=2; 1 : : : ]. Since the duration (k + k+1) increases, all
future quantization locations ck:K are shifted by 1=2. That may correspond to a score that
is heavily penalized by the prior, thus \blocking" the path.


To allow the sampler move more freely, i.e., to allow for more global jumps, one can
sample from L slices jointly. In this case the proposal distribution takes the form


p(k:k+L�1j� ) / p(k:k+L�1;�(k:k+L�1))�Z
dzk+L�1p(y0:k+L�1; zk+L�1j


(i)
1:k�1; k:k+L�1)p(yk+L:K jzk+L�1; 


(i�1)
k+L:K)


Similar to the one slice case, terms under the integral are unnormalized Gaussian potentials
(on zk+L�1) representing the contribution of past and future observations. Since k:k+L�1
has SL states, the resulting time complexity for generating N samples is O(NKSL), thus in
practice L must be kept rather small. One remedy would be to use a Metropolis-Hastings
algorithm with a heuristic proposal distribution q(k:k+L�1jy0:K) to circumvent exact cal-
culation, but it is not obvious how to construct such a q.


One other shortcoming of the Gibbs sampler (and related MCMC methods) is that the
algorithm in its standard form is inherently o�ine; we need to have access to all of the
observations y0:K to start the simulation. For certain applications, e.g., automatic score
typesetting, a batch algorithm might be still feasible. However in scenarios that require
real-time interaction, such as in interactive music performance or tempo tracking, online
methods must be used.


3.3 Sequential Monte Carlo


Sequential Monte Carlo, a.k.a. particle �ltering, is a powerful alternative to MCMC for
generating samples from a target posterior distribution. SMC is especially suitable for
application in dynamical systems, where observations arrive sequentially.
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The basic idea in SMC is to represent the posterior p(x0:k�1jy0:k�1) at time k � 1 by


a (possibly weighted) set of samples fx
(i)
0:k�1; i = 1 : : : Ng and extend this representation


to f(x
(i)
0:k�1; x


(i)
k ); i = 1 : : : Ng when the observation yk becomes available at time k. The


common practice is to use importance sampling.


3.3.1 Importance Sampling


Consider again a high dimensional probability distribution p(x) = p�(x)=Z with an unknown
normalization constant. Suppose we are given a proposal distribution q(x) that is close to
p(x) such that high probability regions of both distributions fairly overlap. We generate
independent samples, i.e., particles, x(i) from the proposal such that q(x) �


PN
i=1 Æ(x �


x(i))=N . Then we can approximate


p(x) =
1


Z


p�(x)


q(x)
q(x) (20)


�
1


Z


p�(x)


q(x)


1


N


NX
i=1


Æ(x� x(i)) (21)


�
NX
i=1


w(i)PN
j=1w


(j)
Æ(x� x(i)) (22)


where w(i) = p�(x(i))=q(x(i)) are the importance weights. One can interpret w(i) as correc-
tion factors to compensate for the fact that we have sampled from the \incorrect" distri-
bution q(x). Given the approximation in Eq.22 we can estimate expectations by weighted
averages


hf(x)ip(x) �
NX
i=1


~w(i)f(x(i)) (23)


where ~w(i) = w(i)=
PN


j=1w
(j) are the normalized importance weights.


3.3.2 Sequential Importance Sampling


Now we wish to apply importance sampling to the dynamical model


p(x0:K jy0:K) /
KY
k=0


p(ykjxk)p(xkjx0:k�1) (24)


where x = fz; g. In principle one can naively apply standard importance sampling by using
an arbitrary proposal distribution q(x0:K). However �nding a good proposal distribution
can be hard if K � 1. The key idea in sequential importance sampling is the sequential
construction of the proposal distribution, possibly using the available observations y0:k, i.e.,


q(x0:K jy0:K) =
KY
k=0


q(xkjx0:k�1; y0:k)
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Given a sequentially constructed proposal distribution, one can compute the importance
weight recursively as


w
(i)
k =


p�(x
(i)
0:kjy0:k)


q(x
(i)
0:kjy0:k)


=
p(ykjx


(i)
k )p(x


(i)
k jx


(i)
0:k�1; y0:k�1)


q(x
(i)
k jx


(i)
0:k�1y0:k)


p(y0:k�1jx
(i)
0:k�1)p(x


(i)
0:k�1)


q(x
(i)
0:k�1jy0:k�1)


(25)


=
p(ykjx


(i)
k )p(x


(i)
k jx


(i)
0:k�1; y0:k�1)


q(x
(i)
k
jx


(i)
0:k�1y0:k)


w
(i)
k�1 (26)


The sequential update schema is potentially more accurate than naive importance sam-
pling since at each step k, one can generate a particle from a fairly accurate proposal
distribution that takes the current observation yk into account. A natural choice for the
proposal distribution is the �ltering distribution given as


q(xkjx
(i)
0:k�1y0:k) = p(xkjx


(i)
0:k�1; y0:k) (27)


In this case the weight update rule in Eq. 26 simpli�es to


w
(i)
k = p(ykjx


(i)
0:k�1)w


(i)
k�1


In fact, provided that the proposal distribution q is constructed sequentially and past sam-
pled trajectories are not updated, the �ltering distribution is the optimal choice in the sense
of minimizing the variance of importance weights w(i) (Doucet, Godsill, & Andrieu, 2000b).
Note that Eq. 27 is identical to the proposal distribution used in Gibbs sampling at k = K
(Eq 15). At k < K, the SMC proposal does not take future observations into account; so
we introduce discount factors wk to compensate for sampling from the wrong distribution.


3.3.3 Selection


Unfortunately, the sequential importance sampling may be degenerate, in fact, it can be


shown that the variance of w
(i)
k increases with k. In practice, after a few iterations of


the algorithm, only one particle has almost all of the probability mass and most of the
computation time is wasted for updating particles with negligible probability.


To avoid the undesired degeneracy problem, several heuristic approaches are proposed
in the literature. The basic idea is to duplicate or discard particles according to their
normalized importance weights. The selection procedure can be deterministic or stochas-
tic. Deterministic selection is usually greedy; one chooses N particles with the highest
importance weights. In the stochastic case, called resampling, particles are drawn with a


probability proportional to their importance weight w
(i)
k . Recall that normalized weights


f ~w
(i)
k
; i = 1 : : : Ng can be interpreted as a discrete distribution on particle labels (i).


3.4 SMC for the Switching State Space Model


The SIS algorithm can be directly applied to the switching state space model by sampling
directly from xk = (zk; k). However, the particulate approximation can be quite poor if z
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Figure 3: Outline of the algorithm. The ellipses correspond to the conditionals


p(zkj
(i)
k ; y0:k). Vertical dotted lines denote the observations yk. At each step


k, particles with low likelihood are discarded. Surviving particles are linked to
their parents.


is high dimensional. Hence, too many particles may be needed to accurately represent the
posterior.


Similar to the MCMC methods introduced in the previous section, eÆciency can be
improved by analytically integrating out z0:k and only sampling from 1:k. In fact, this
form of Rao-Blackwellization is reported to give superior results when compared to standard
particle �ltering where both  and z are sampled jointly (Chen & Liu, 2000; Doucet et al.,
2000b). The improvement is perhaps not surprising, since importance sampling performs
best when the sampled space is low dimensional.


The algorithm has an intuitive interpretation in terms of a randomized breadth �rst tree
search procedure: at each new step k, we expand N kernels to obtain S �N new kernels.
Consequently, to avoid explosion in the number of branches, we select N out of S � N
branches proportional to the likelihood, See Figure 3. The derivation and technical details
of the algorithm are given in the Appendix C.


The tree search interpretation immediately suggests a deterministic version of the al-
gorithm where one selects (without replacement) the N branches with highest weight. We
will refer to this method as a greedy �lter (GF). The method is also known as split-track


�lter (Chen & Liu, 2000) and is closely related to Multiple Hypothesis Tracking (MHT)
(Bar-Shalom & Fortmann, 1988). One problem with the greedy selection schema of GF is
the loss of particle diversity. Even if the particles are initialized to di�erent locations in z0,
(e.g., to di�erent initial tempi), mainly due to the discrete nature of the state space of k,
most of the particles become identical after a few steps k. Consequently, results can not
be improved by increasing the number of particles N . Nevertheless, when only very few
particles can be used, say e.g., in a real time application, GF may still be a viable choice.
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Figure 4: A hypothetical situation where neither of the two particles 
(i)
1:5 is optimal. We


would obtain eventually a higher likelihood con�guration by interchanging 3
between particles.


3.5 SMC and estimation of the MAP trajectory


Like MCMC, SMC is a sampling method. Hence comments made in Section 3.1 about the


eventual suboptimality of estimating the MAP trajectory from particles as argmax p(
(i)
1:K jy0:K)


also apply here. An hypothetical situation is shown in �gure 4.
One obvious solution is to employ the SA \trick" and raise the proposal distribution to


a power p(kj�)
 . However, such a proposal will be peaked on a very few  at each time


slice. Consequently, most of the particles will become identical in time and the algorithm
eventually degenerates to greedy �ltering.


An algorithm for estimating the MAP trajectory from a set of SMC samples is recently
proposed in the literature (Godsill, Doucet, & West, 2001). The algorithm relies on the


observation that once the particles x
(i)
k are sampled during the forward pass, one is left with


a discrete distribution de�ned on the (discrete) support X1:K =
NK


k=1Xk. Here Xk denotes
is the support of the �ltering distribution a time k and


N
is the Cartesian product between


sets. Formally, Xk is the set of distinct samples at time k and is given by Xk =
S


ifx
(i)
k g.


The distribution p(X1:K jy1:K)3 is Markovian because the original state transition model
is Markovian, i.e., the posterior can be represented exactly by


p(X1:K jy1:K) /
KY
k=1


p(ykjXk)p(XkjXk�1)


Consequently, one can �nd the best MAP trajectory argmax p(X1:K) by using an algorithm
that is analogous to the Viterbi algorithm for hidden Markov models (Rabiner, 1989).


However, this idea does not carry directly to the case when one applies Rao-Black-
wellization. In general, when a subset of the hidden variables is integrated out, all time


slices of the posterior p(�1:K jy1:k) are coupled, where �1:K =
NK


k=1 �k and �k =
S
if


(i)
k
g.


One can still employ a chain approximation and run Viterbi, (e.g., Cemgil & Kappen,
2002), but this does not guarantee to �nd argmax p(�1:K jy1:k).


On the other hand, because 
(i)
k are drawn from a discrete set, several particles become


identical so �k has usually a small cardinality when compared to the number of particles
N . Consequently, it becomes feasible to employ SA or II on the reduced state space �1:K ;
possibly using a proposal distribution that extends over several time slices L.


3. By a slight abuse of notation we use the symbol Xk both as a set and as a general element when used
in the argument of a density, p(ykjXk) means p(ykjxk) s.t. xk 2 Xk


61







Cemgil & Kappen


In practice, for �nding the MAP solution from the particle set f
(i)
1:K ; i = 1 : : : Ng, we


propose to �nd the best trajectory i� = argmaxi p(y0:K j
(i)
1:K)p(


(i)
1:K) and apply iterative


improvement starting from the initial con�guration 
(i�)
1:K .


4. Simulations


We have compared the inference methods in terms of the quality of the solution and exe-
cution time. The tests are carried out both on arti�cial and real data.


Given the true notation true1:K , we measure the quality of a solution in terms of the
log-likelihood di�erence


�L = log
p(y0:K j1:K)p(1:K)


p(y0:K jtrue1:K )p(true1:K )


and in terms of edit distance


e(1:K) =
KX
k=1


(1� Æ(k � truek ))


The edit distance e(1:K) gives simply the number of notes that are quantized wrongly.


4.1 Arti�cial data: Clave pattern


The synthetic example is a repeating \son-clave" pattern 7 > � � > �� �� � 7 (c = [1, 2, 4, 5:5,
7 : : : ]) with uctuating tempo. We repeat the pattern 6 times and obtain a score 1:K with
K = 30.


Such syncopated rhythms are usually hard to transcribe and make it diÆcult to track
the tempo even for experienced human listeners. Moreover, since onsets are absent at
prominent beat locations, standard beat tracking algorithms usually loose track.


Given score 1:K , we have generated 100 observation sequences y0:K by sampling from
the tempo model in Eq. 7. We have parameterized the observation noise variance4 as
Q = kQa + Qb. In this formulation, the variance depends on the length of the interval
between consecutive onsets; longer notes in the score allow for more tempo and timing
uctuation. For the tests on the clave example we have not used a prior model that reects
true source statistics, instead, we have used the generic prior model de�ned in Section 2.1
with � = 1.


All the example cases are sampled from the same score (clave pattern). However, due
to the use of the generic prior (that does not capture the exact source statistics well) and a
relatively broad noise model, the MAP trajectory �1:K given y0:K is not always identical to


the original clave pattern. For the i'th example, we have de�ned the \ground truth" true;i1:K as
the highest likelihood solution found using any sampling technique during any independent
run. Although this de�nition of the ground truth introduces some bias, we have found
this exercise more realistic as well as more discriminative among various methods when
compared to, e.g.,, using a dataset with essentially shorter sequences where the exact MAP


4. The noise covariance parameters were R = 0:022, Qa = 0:062I and Qb = 0:022I. I is a 2 � 2 identity
matrix.
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trajectory can be computed by exhaustive enumeration. The wish to stress that the main
aim of the simulations on synthetic dataset is to compare e�ectiveness of di�erent inference
techniques; we postpone the actual test whether the model is a good one to our simulations
on real data.


We have tested the MCMC methods, namely Gibbs sampling (Gibbs), simulated an-
nealing (SA) and iterative improvement (II) with one and two time slice optimal proposal
and for 10 and 50 sweeps. For each onset yk, the optimal proposal p(kj�) is computed
always on a �xed set, � = f0; 1=4; 2=4 : : : 3g. Figure 6 shows a typical run of MCMC.


Similarly, we have implemented the SMC for N = f1; 5; 10; 50; 100g particles. The
selection schema was random drawing from the optimal proposal p(kj�) computed using
one or two time slices. Only in the special case of greedy �ltering (GF), i.e., when N = 1, we
have selected the switch with maximum probability. An example run is shown in Figure 5.


We observe that on average SMC results are superior to MCMC (Figure 7). We observe
that, increasing the number of sweeps for MCMC does not improve the solution signi�cantly.
On the other hand, increasing the number of particles seems to improve the quality of the
SMC solution monotonically. Moreover, the results suggest that sampling from two time
slices jointly (with the exception of SA ) does not have a big e�ect. GF outperforms a
particle �lter with 5 particles that draws randomly from the proposal. That suggests that
for PF with a small number of particles N , it may be desirable to use a hybrid selection
schema that selects the particle with maximum weight automatically and randomly selects
the remaining N � 1.


We compare inference methods in terms of execution time and the quality of solutions (as
measured by edit distance). As Figure 8 suggests, using a two slice proposal is not justi�ed.
Moreover it seems that for comparable computational e�ort, SMC tends to outperform all
MCMC methods.


4.2 Real Data: Beatles


We evaluate the performance of the model on polyphonic piano performances. 12 pianists
were invited to play two Beatles songs, Michelle and Yesterday. Both pieces have a relatively
simple rhythmic structure with ample opportunity to add expressiveness by uctuating the
tempo. The original score is shown in Figure 9(a). The subjects had di�erent musical edu-
cation and background: four professional jazz players, four professional classical performers
and four amateur classical pianists. Each arrangement had to be played in three tempo
conditions, three repetitions per tempo condition. The tempo conditions were normal, slow
and fast tempo, all in a musically realistic range and all according to the judgment of the
performer. Further details are reported in (Cemgil et al., 2001).


4.2.1 Preprocessing


The original performances contained several errors, such as missing notes or additional notes
that were not on the original score. Such errors are eliminated by using a matching tech-
nique (Heijink, Desain, & Honing, 2000) based on dynamical programming. However, visual
inspection of the resulting dataset suggested still several matching errors that we interpret
as outliers. To remove these outliers, we have extended the quantization model with a two
state switching observation model, i.e., the discrete space consists of (k; ik). In this simple
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Figure 5: Particle �ltering on clave example with 4 particles. Each circle denotes the mean


(�
(n)
k


; !
(n)
k


) where !
(n)
k


= log2�k. The diameter of each particle is proportional
to the normalized importance weight at each generation. '*' denote the true
(�; !) pairs; here we have modulated the tempo deterministically according to
!k = 0:3 sin(2�ck=32), observation noise variance is R = 0:0252.
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Figure 6: Typical runs of Gibbs sampling, Simulated Annealing (SA) and Iterative Improvement
(II) on clave example. All algorithms are initialized to the greedy �lter solution. The
annealing schedule for SA was linear from �1 = 0:1 to �33 = 10 and than proceeding de-
terministically by �34:50 =1. When SA or II converge to a con�guration, we reinitialize
by a particle �lter with one particle that draws randomly proportional to the optimal
proposal. Sharp drops in the likelihood correspond to reinitializations. We see that, at
the �rst sweep, the greedy �lter solution can only be slightly improved by II. Conse-
quently the sampler reinitializes. The likelihood of SA drops considerably, mainly due to
the high temperature, and consequently stabilizes at a suboptimal solution. The Gibbs
sampler seems to explore the support of the posterior but is no able to visit the MAP
state in this run.
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Figure 7: Comparison of inference methods on the clave data. The squares and ovals denote the
median and the vertical bars correspond to the interval between %25 and %75 quantiles.
We have tested the MCMC methods (Gibbs, SA and II) independently for 10 and 50
(shown from left to right). The SMC methods are the greedy �lter (GF) and particle �lter
(PF). We have tested �lters with N = f5; 10; 50; 100g particles independently (shown
from left to right.).
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Figure 8: Comparison of execution time in terms of oating point operations. For all methods, the
�rst number (1 or 2) denotes the number slices used by the optimal proposal distribution.
For the particle �lter (PF), the second number denotes the number of particles. The
dashed lines are merely used to connect related methods.


outlier detection mechanism, each switch ik is a binary indicator variable specifying whether
the onset yk is an outlier or not. We assume that all indicators are independent a-priori
and have a uniform prior. The observation model is given by p(ykjik; �k) = N (0; Rik )


5.
Since the score 1:K is known, the only unknown discrete quantities are the indicators i0:K .
We have used greedy �ltering followed by iterative improvement to �nd the MAP state
of indicators i0:K and eliminated outliers in our further studies. For many performances,
there were around 2 � 4 outliers, less than 1% of all the notes. The resulting dataset can
be downloaded from the url http://www.snn.kun.nl/�cemgil.


4.2.2 Parameter Estimation


We have trained tempo tracking models with di�erent dimensionality D, where D denotes
the dimension of the hidden variable z. In all of the models, we use a transition matrix that
has the form in Eq. 8.


Since the true score is known, i.e., the quantization location ck of each onset yk is given,
we can clamp all the discrete variables in the model. Consequently, we can estimate the
observation noise variance R, the transition noise variance Q and the transition matrix
coeÆcients A from data.


We have optimized the parameters by Expectation-Maximization (EM) for the linear
dynamical systems (Shumway & Sto�er, 1982; Ghahramani & Hinton, 1996) using all perfor-


5. We took Rik=0 = 0:002 and Rik=1 = 2.
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mances of \Yesterday" as training data. Similarly, the score prior parameters are estimated
by frequency counts from the score of \Yesterday" 6 . All tests are carried out on \Michelle".


4.2.3 Results


In Figure 9 we show the result of typesetting a performance with and without tempo
tracking. Due to uctuations in tempo, the quality of the automatically generated score is
very poor. The quality can be signi�cantly improved by using our model.


Figure 10 shows some tempo tracking examples on Michelle dataset for pianists from
di�erent background and training. We observe that in most cases the results are satisfactory.


In Figure 11, we give a summary of test results on Michelle data in terms of the log-
likelihood and edit distance as a function of model order and number of particles used for
inference. Figure 11(a) shows that the median likelihood on test data is increasing with
model order. This suggests that a higher order �lter is able to capture structure in pi-
anists' expressive timing. Moreover, as for the sythetic data, we see a somewhat monotonic
increase in the likelihood of solutions found when using more particles.


The edit distance between the original score and the estimates are given in Figure 11(b).
Since both pieces are arranged for piano, due to polyphony, there are many onsets that are
associated with the same quantization location. Consequently, many truek in the original
score are e�ectively zero. In such cases, typically, the corresponding inter onset interval
yk � yk�1 is also very small and the correct quantization (namely k = 0) can be identi�ed
even if the tempo estimate is completely wrong. As a consequence, the edit distance remains
small. To make the task slightly more challenging, we exclude the onsets with truek = 0
from edit distance calculation.


We observe that the extra prediction ability obtained using a higher order model does
not directly translate to a better transcription. The errors are around 5% for all models.
On the other hand, the variance of edit distance for higher order models is smaller. This
suggests that higher order models tend to be more robust against divergence from the
original tempo track.


5. Discussion


We have presented a switching state space model for joint rhythm quantization and tempo
tracking. The model describes the rhythmic structure of musical pieces by a prior distri-
bution over quantization locations. In this representation, it is easy to construct a generic
prior that prefers simpler notations and to learn parameters from a data set. The prior on
quantization locations c0:K translates to a non-Markovian distribution over a score 1:K .


Timing deviations introduced by performers (tempo uctuation, accentuations and mo-
tor errors) are modeled as independent Gaussian noise sources. Performer speci�c timing
preferences are captured by the parameters of these distributions.


Given the model, we have formulated rhythm quantization as a MAP state estimation
problem and tempo tracking as a �ltering problem. We have introduced Markov chain


6. The maximum likelihood parameters for a model of dimension D = 3 are found to be: a = �0:072, R =
0:0132 and q� = 0:0082 , q�1


= 0:0072 and q�2
= 0:0502. The prior p(c) is p(0) = 0:80, p(1=3) = 0:0082,


p(1=2) = 0:15 p(5=6) = 0:0418. Remaining p(c) are set to 10�6.
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(b) Typesetting without
processing by the model.
Due to uctuations in
tempo, the quality of the
score is poor.
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(c) Typesetting after tempo
tracking and quantization
with a particle �lter.


Figure 9: Results of Typesetting the scores.
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(c) Professional Classical Pianist. The
�lter temporarily loses track.
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(d) Tracking at twice the rate of the
original tempo.


Figure 10: Examples of �ltered estimates of z0:K = [�k;�k]
T from the Beatles data set. Circles


denote the mean of p(zkj
original
1:k ; y0:k) and \x" denote mean p(zkj


�


1:k; y0:k) obtained by
SMC. It is interesting to note di�erent timing characteristics. For example the classical
pianist uses a lot more tempo uctuation than the professional jazz pianist. Jazz pianist
slows down dramatically at the end of the piece, the amateur \rushes", i.e., constantly
accelerates at the beginning. The tracking and quantization results for (a) and (b)
are satisfactory. In (a), the �lter loses track at the last two notes, where the pianist
dramatically slows down. In (c), the �lter loses track but catches up again. In (d), the
�lter jumps to a metrical level that is twice as fast as the original performance. That
would translate to a duplication in note durations only.
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Figure 11: SMC results on the test data (108 performances of Michelle). For each model we show
the results obtained with N = 1; 10; 20 and 50 particles. The \-" show the median of
the best particle and \x" denote the median after applying iterative improvement. The
vertical bars correspond to the interval between %25 and %75 quantiles.
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Monte Carlo (MCMC) and sequential Monte Carlo (SMC) to approximate the respective
distributions.


The quantization model we propose is similar to that of (Raphael, 2001a). For transcrip-
tion, Raphael proposes to compute argmax p(c0:K ; z0:K jy0:K) and uses a message propaga-
tion scheme that is essentially analogous to Rao-Blackwellized particle �ltering. To prevent
the number of kernels from explosion, he uses a deterministic selection method, called
\thinning". The advantage of Raphael's approach is that the joint MAP trajectory can
be computed exactly, provided that the continuous hidden state z is one dimensional and
the model is in a parameter regime that keeps the number of propagated Gaussian kernels
limited, e.g., if R is small, thinning can not eliminate many kernels. One disadvantage is
that the number of kernels varies depending upon the features of the �ltering distribution;
it is diÆcult to implement such a scheme in real time. Perhaps more importantly, sim-
ple extensions such as increasing the dimensionality of z or introducing nonlinearities to
the transition model would render the approach quickly invalid. In contrast, Monte Carlo
methods provide a generic inference technique that allow great exibility in models one can
employ.


We have tested our method on a challenging arti�cial problem (clave example). SMC
has outperformed MCMC in terms of the quality of solutions, as measured in terms of the
likelihood as well as the edit distance. We propose the use of SMC for both problems. For
�nding the MAP quantization, we propose to apply iterative improvement (II) to the SMC
solution on the reduced con�guration space.


The correct choice of the score prior is important in the overall performance of the
system. Most music pieces tend to have a certain rhythmical vocabulary, that is certain
rhythmical motives reoccur several times in a given piece. The rhythmic structure depends
mostly upon the musical genre and composer. It seems to be rather diÆcult to devise
a general prior model that would work well in a large spectrum of styles. Nevertheless,
for a given genre, we expect a simple prior to capture enough structure suÆcient for good
transcription. For example, for the Beatles dataset, we have estimated the prior by counting
from the original score of \Yesterday". The statistics are fairly close to that of \Michelle".
The good results on the test set can be partially accounted for the fact that both pieces
have a similar rhythmical structure.


Conditioned on the score, the tempo tracking model is a linear dynamical system. We
have optimized several tempo models using EM where we have varied the dimension of
tempo variables z. The test results suggest that increasing the dimensionality of z improves
the likelihood. However, increase in the likelihood of the whole dataset does not translate
directly to overall better quantization results (as measured by edit distance). We observe
that models trained on the whole training data fail consistently for some subjects, especially
professional classical pianists. Perhaps interestingly, if we train \custom" models speci�cally
optimized for the same subjects, we can improve results signi�cantly also on test cases.
This observation suggests a kind of multimodality in the parameter space where modes
correspond to di�erent performer regimes. It seems that a Kalman �lter is able to capture
the structure in expressive timing deviations. However, when averaged over all subjects,
these details tend to be wiped out, as suggested by the quantization results that do not
vary signi�cantly among models of di�erent dimensions.
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A related problem with the edit distance measure is that under an \average" model, the
likelihood of the desired score (e.g., original score of \Michelle") may have a lower likelihood
than a solution found by an inference method. In such cases increasing the likelihood may
even decrease the edit distance. In some test cases we even observe solutions with a higher
likelihood than the original notation where all notes are wrong. In most of these cases, the
tempo trajectory of the solution correspond to the half or twice of the original tempo so
consequently all note durations are halved or doubled (e.g., all whole notes are notated as
half notes, all half notes as quarters e.t.c.). Considering the fact that the model is \self
initializing" its tempo, that is we assume a broad uncertainty a-priori, the results are still
satisfactory from a practical application perspective.


One potential shortcoming of our model is that it takes only timing information of onsets
into account. In reality, we believe that pitch and melodic grouping as well as articulation
(duration between note onsets and o�sets) and dynamics (louder or softer) provide useful
additional information for tempo tracking as well as quantization. Moreover, current model
assumes that all onsets are equally relevant for estimation. That is probably in general not
true: for example, a kick-drum should provide more information about the tempo than a
ute. On the other hand, our simulations suggest that even from such a limited model one
can obtain quite satisfactory results, at least for simple piano music.


It is somewhat surprising, that SMC, basically a method that samples from the �ltering
distribution outperforms an MCMC method such as SA that is speci�cally designed for
�nding the MAP solution given all observations. An intuitive explanation for relatively
poorer MCMC results is that MCMC proceeds �rst by proposing a global solution and then
tries to improve it by local adjustments. A human transcriber, on the other hand, would
listen to shorter segments of music and gradually write down the score. In that respect,
the sequential update schema of SMC seems to be more natural for the rhythm transcrip-
tion problem. Similar results, where SMC outperforms MCMC are already reported in the
literature, e.g., in the so-called \Growth Monte Carlo" for generating self-avoiding random
walks (Liu, Chen, & Logvinenko, 2001). It seems that for a large class of dynamical prob-
lems, including rhythm transcription, sequential updating is preferable over batch methods.


We note that theoretical convergence results for SA require the use of a logarithmic
cooling schedule. It seems that our cooling schedule was too fast to meet this requirement;
so one has to be still careful in interpreting the poor performance as a negative SA result.
We maintain that by using a richer neighborhood structure in the con�guration space (e.g.,
by using a block proposal distribution) and a slower cooling schedule, SA results can be
improved signi�cantly. Moreover, MCMC methods can be also be modi�ed to operate
sequentially, for example see (Marthi, Pasula, Russell, & Peres, 2002).


Another family of inference methods for switching state space models rely on determinis-
tic approximate methods. This family includes variational approximations (Ghahramani &
Hinton, 1998) and expectation propagation (Heskes, 2002). It remains an interesting open
question whether deterministic approximation methods provide an advantage in terms of
computation time and accuracy; in particular for the quantization problem and for other
switching state space models. A potential application of the deterministic approximation
techniques in a MCMC schema can be in designing proposal distributions that extend over
several time slices. Such a schema would circumvent the burden for computing the optimal
proposal distribution exhaustively hence allowing more global moves for the sampler.
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Our current results suggest the superiority of SMC for our problem. Perhaps the most
important advantage of SMC is that it is essentially an \anytime" algorithm; if we have
a faster computer we can increase the number of particles to make use of the additional
computational power. When computing time becomes short one can decrease the number
of samples. These features make SMC very attractive for real-time applications where one
can easily tune the quality/computation-time tradeo�.


Motivated by the practical advantages of SMC and our positive simulation results, we
have implemented a prototype of SMC method in real-time. Our current computer system
(a 800 MHz P3 laptop PC running MS Windows) allows us to use up to 5 particles with
almost no delay even during busy passages. We expect to signi�cantly improve the eÆciency
by translating the MATLAB c constructs to native C code. Hence, the method can be used
as a tempo tracker in an automatic interactive performance system and as a quantizer in
an automatic score typesetting program.
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Appendix A. A generic prior model for quantization locations c


In traditional western music notation, note durations are generated by recursive subdivisions
starting from a whole note, hence it is also convenient to generate quantization locations
in a similar fashion by regular subdivisions. We decompose a quantization location into an
integer part and a fraction: c = bcc+ (c mod 1). For de�ning a prior, we will only use the
fraction.


The set of all fractions can be generated by recursively subdividing the unit interval
[0; 1). We let S = [si] denote a subdivision schema, where [si] is a (�nite) sequence of
arbitrary integers (usually small primes such as 2,3 or 5). The choice of a particular S
depends mainly on the assumed time signature. We generate the set of fractions C as
follows: At �rst iteration, we divide the unit interval into s1 intervals of equal length and
append the endpoints c0 of resulting intervals into the set C. At each following iteration i,
we subdivide all intervals generated by the previous iteration into si equal parts and append
all resulting endpoints to C. Note that this procedure generates a regular grid where two
neighboring grid points have the distance 1=


Q
i si. We denote the iteration number at which


the endpoint c0 is �rst inserted to C as the depth of c0 (with respect to S). This number will
be denoted as d(c0jS). It is easy to see that this de�nition of d coincides with the number
of signi�cant bits to represent c mod 1 when S = [2; 2; : : : ].


As an illustirative example consider the subdivision S = [3; 2]. At the �rst iteration, the
unit interval is divided into s1 = 3 equal intervals, and the resulting endpoints 0, 1=3, and
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2=3 are inserted into C with depths d(0) = d(1=3) = d(2=3) = 1. At the second iteration,
the new endpoints 1=6, 3=6 and 5=6 are inserted to C and are assigned the depth 2.


Given an S, we can de�ne a distribution on quantization locations


p(ckjS) / exp(��d(ck mod 1jS))


If we wish to consider several time signatures, i.e., di�erent subdivision schemata, we can
interpret S as a hidden indicator variable and de�ne a prior p(S). In this case, the prior
becomes a multinomial mixture given by p(ck) =


P
S p(ckjS)p(S). For further details and


empirical results justifying such a choice see (Cemgil et al., 2000).


Appendix B. Derivation of two pass Kalman �ltering Equations


Consider a Gaussian potential with mean � and covariance � de�ned on some domain
indexed by x.


�(x) = Z �N (�;�) = Zj2��j�
1


2 exp(�
1


2
(x� �)T��1(x� �)) (28)


where
R
dx�(x) = Z > 0. If Z = 1 the potential is normalized. The exponent in Eq. 28 is


a quadratic form so the potential can be written as


�(x) = exp(g + hTx�
1


2
xTKx) (29)


where


K = ��1 h= ��1� g = logZ +
1


2
log j


K


2�
j �


1


2
hTK�1h


To denote a potential in canonical form we will use the notation


�(x) = Z �N (�;�) � [h;K; g]


and we will refer to g, h and K as canonical parameters. Now we consider a Gaussian
potential on (x1; x2)


T . The canonical representation is


�(x1; x2) =


��
h1
h2


�
;


�
K11 K12


K21 K22


�
; g


�


In models where several variables are interacting, one can �nd desired quantities by applying
three basic operations de�ned on Gaussian potentials. Those are multiplication, condition-
ing, and marginalization. The multiplication of two Gaussian potentials on the same index
set x follows directly from Eq. 29 and is given by


�0(x) = �a(x)� �b(x)


[h0;K 0; g0] = [ha;Ka; ga]� [hb;Kb; gb] = [ha + hb;Ka +Kb; ga + gb]


If the domain of �a and �b only overlaps on a subset, then potentials are extended to the
appropriate domain by appending zeros to the corresponding dimensions.
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The marginalization operation is given by


�(x1) =


Z
x2


�(x1; x2) = [h1 �K12K
�1
22 h2;K11 �K12K


�1
22 K21; g


0]


where g0 = g� 1
2 log jK22=2�j+


1
2h2


T (K22)
�1h2 and g is the initial constant term of �(x1; x2).


The conditioning operation is given by


�(x1; x2 = x̂2) = [h1 �K12x̂2;K11; g
0]


where g0 = g + hT2 x̂2 �
1
2 x̂


T
2K22x̂2.


B.1 The Kalman Filter Recursions


Suppose we are given the following linear model subject to noise


zk = Azk�1 + �k


yk = Czk + �k


where A and C are constant matrices, �k � N (0; Q) and �k � N (0; R)
The model encodes the joint distribution


p(z1:K ; y1:K) =


KY
k=1


p(ykjzk)p(zkjzk�1) (30)


p(z1jz0) = p(z1) (31)


p(z1) = [P�1�; P�1;�
1


2
log j2�P j �


1


2
�TP�1�]


p(y1jz1) =


��
0
0


�
;


�
CTR�1C �CTR�1


�R�1C R�1


�
;�


1


2
log j2�Rj


�


p(y1 = ŷ1jz1) = [0 + CTR�1ŷ1; C
TR�1C;�


1


2
log j2�Rj �


1


2
ŷT1 R


�1ŷ1]


p(z2jz1) =


��
0
0


�
;


�
ATQ�1A �ATQ�1


�Q�1A Q�1


�
;�


1


2
log j2�Qj


�
: : :


B.1.1 Forward Message Passing


Suppose we wish to compute the likelihood


p(y1:K) =


Z
zK


p(yK jzK) : : :


Z
z2


p(z3jz2)p(y2jz2)


Z
z1


p(z2jz1)p(y1jz1)p(z1)


7We can compute this integral by starting from z1 and proceeding to zK . We de�ne forward
\messages" � as


7. We let
R
z
�


R
dz
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� �1j0 = p(z1)


� k = 1 : K


{ �kjk = p(yk = ŷkjzk)�kjk�1


{ �k+1jk =
R
zk
p(zk+1jzk)�kjk


The forward recursion is given by


� �1j0 = [P�1�; P�1;�1
2 log j2�P j �


1
2�


TP�1�]


� k = 1 : : : K


{ �kjk = [hkjk;Kkjk; gkjk]


hkjk = CTR�1ŷk + hkjk�1


Kkjk = CTR�1C +Kkjk�1


gkjk = gkjk�1 �
1
2 log j2�Rj �


1
2 ŷ


T
1 R


�1ŷk


{ �k+1jk = [hk+1jk;Kk+1jk; gk+1jk]


Mk = (ATQ�1A+Kkjk)
�1


hk+1jk = Q�1AMkhkjk


Kk+1jk = Q�1 �Q�1AMkA
TQ�1


gk+1jk = gkjk �
1
2 log j2�Qj+


1
2 log j2�Mkj+


1
2h


T
kjkMkhkjk


B.1.2 Backward Message Passing


We can compute the likelihood also by starting from yK .


p(y1:K) =


Z
z1


p(z1)p(y1jz1)


Z
z2


p(z2jz1)p(y2jz2) : : :


Z
zK


p(zK jzK�1)p(yK jzK)


In this case the backward propagation can be summarized as


� �KjK+1 = 1


� k = K : : : 1


{ �kjk = p(yk = ŷkjzk)�kjk+1


{ �k�1jk =
R
zk
p(zkjzk�1)�kjk


The recursion is given by


� [h�
KjK+1;K


�
KjK+1; g


�
KjK+1] = [0; 0; 0]


� k = K : : : 1


{ �kjk = [h�
kjk;K


�
kjk; g


�
kjk]


h�
kjk = CTR�1ŷk + h�


kjk+1


K�
kjk = CTR�1C +K�


kjk+1
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g�
kjk = �


1
2 log j2�Rj �


1
2 ŷ


T
k R


�1ŷk + g�
kjk+1


{ �k�1jk = [h�
k�1jk;K


�
k�1jk; g


�
k�1jk]


M�
k = (Q�1 +K�


kjk)
�1


h�
k�1jk = ATQ�1M�


kh
�
kjk


K�
k�1jk = ATQ�1(Q�M�


k )Q
�1A


g�
k�1jk = g�


kjk �
1
2 log j2�Qj+


1
2 log j2�M


�
k j+


1
2h


�T
kjkM


�
kh


�
kjk


B.2 Kalman Smoothing


Suppose we wish to �nd the distribution of a particular zk given all the observations y1:K .
We just have to combine forward and backward messages as


p(zkjy1:K) / p(yk+1:K; zk; y1:k)


= p(y1:k; zk)p(yk+1:K jzk)


= �kjk � �kjk+1


= [hkjk + h�kjk+1;Kkjk +K�
kjk+1; gkjk + g�kjk+1]


Appendix C. Rao-Blackwellized SMC for the Switching State space


Model


We let i = 1 : : : N be an index over particles and s = 1 : : : S an index over states of . We
denote the (unnormalized) �ltering distribution at time k � 1 by


�
(i)
k�1 =̂ p(y0:k�1; zk�1j


(i)
1:k�1)


Since y0:k�1 are observed, �
(i)
k�1 is a Gaussian potential on zk�1 with parameters Z


(i)
k�1 �


N (�
(i)
k�1;�


(i)
k�1). Note that the normalization constant Z


(i)
k�1 is the data likelihood p(y0:k�1j


(i)
1:k�1) =R


dzk�
(i)
k�1. Similarly, we denote the �ltered distribution at the next slice conditioned on


k = s by


�
(sji)
k


=̂


Z
dzk�1p(ykjzk)p(zkjzk�1; k = s)�


(i)
k�1 (32)


= p(y0:k; zkj
(i)
1:k�1; k = s)


We denote the normalization constant of �
(sji)
k by Z


(sji)
k . Hence the joint proposal on s and


(i) is given by


q
(sji)
k =


Z
dzk�


(sji)
k � p(k = s; 


(i)
1:k�1)


= p(k = s; 
(i)
1:k�1; y0:k)


The outline of the algorithm is given below:


� Initialize. For i = 1 : : : N , �
(i)
0  p(y0; x0)
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� For k = 1 : : : K


{ For i = 1 : : : N , s = 1 : : : S


Compute �
(sji)
k from �


(i)
k�1 using Eq.32.


q
(sji)
k  Z


(sji)
k � p(k = s; 


(i)
1:k�1)


{ For i = 1 : : : N


Select a tuple (sjj) � qk



(i)
1:k  (


(j)
1:k�1; k = s)


�
(i)
k
 �


(sjj)
k


w
(i)
k  


P
s q


(sjj)
k


Note that the procedure has a \built-in" resampling schema for eliminating particles
with small importance weight. Sampling jointly on (sji) is equivalent to sampling a single


s for each i and then resampling i according to the weights w
(i)
k
. One can also check that,


since we are using the optimal proposal distribution of Eq.27, the weight at each step is


given by w
(i)
k = p(


(i)
1:k�1; y0:k).
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