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Abstract


The size and complexity of software and hardware systems have significantly increased
in the past years. As a result, it is harder to guarantee their correct behavior. One
of the most successful methods for automated verification of finite-state systems is model
checking. Most of the current model-checking systems use binary decision diagrams (BDDs)
for the representation of the tested model and in the verification process of its properties.
Generally, BDDs allow a canonical compact representation of a boolean function (given an
order of its variables). The more compact the BDD is, the better performance one gets
from the verifier. However, finding an optimal order for a BDD is an NP-complete problem.
Therefore, several heuristic methods based on expert knowledge have been developed for
variable ordering.


We propose an alternative approach in which the variable ordering algorithm gains
“ordering experience” from training models and uses the learned knowledge for finding
good orders. Our methodology is based on offline learning of pair precedence classifiers
from training models, that is, learning which variable pair permutation is more likely to
lead to a good order. For each training model, a number of training sequences are evaluated.
Every training model variable pair permutation is then tagged based on its performance on
the evaluated orders. The tagged permutations are then passed through a feature extractor
and are given as examples to a classifier creation algorithm. Given a model for which an
order is requested, the ordering algorithm consults each precedence classifier and constructs
a pair precedence table which is used to create the order.


Our algorithm was integrated with SMV, which is one of the most widely used verifica-
tion systems. Preliminary empirical evaluation of our methodology, using real benchmark
models, shows performance that is better than random ordering and is competitive with
existing algorithms that use expert knowledge. We believe that in sub-domains of models
(alu, caches, etc.) our system will prove even more valuable. This is because it features the
ability to learn sub-domain knowledge, something that no other ordering algorithm does.


1. Introduction


The size and complexity of software and hardware systems have significantly increased in
the past years. As a result, it is harder to guarantee their correct behavior. Thus, formal
methods, preferably computerized, are needed for this task.


One of the most successful methods for automated verification of finite-state systems is
temporal logic model checking (Clarke, Emerson, & Sistla, 1986; Queille & Sifakis, 1981).
Temporal logics are suitable formalisms for describing the behavior of a program over time.
A model checking procedure receives a finite-state model of the system and a specification
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written as a temporal logic formula. It returns “yes” if the model satisfies the formula
(meaning that the system behaves according to the specification). Otherwise, it returns
“no”, along with a counter example that demonstrates a bad behavior.


Model checking has been very successful in finding subtle errors in various systems.
It is currently recognized by the hardware industry as an important component of the
development phase of new designs. However, model checking procedures often suffer from
high space requirements, needed for holding the transition relation and the intermediate
results.


One of the most promising solutions to this problem is the use of binary decision dia-
grams (BDDs) (Akers, 1978; Bryant, 1986) as the basic data structure in model checking.
BDDs are canonical representations of boolean functions and are often very concise in size.
Their conciseness also yields efficiency in computation time. Since it is straightforward to
represent the transition relation and the intermediate results as boolean functions, BDDs
are particularly suitable for model checking. Today, existing industrial BDD-based veri-
fiers, such as IBM’s RuleBase (Beer, Ben-David, Eisner, & Landver, 1996) and Motorola’s
Verdict (Kaufmann & Pixley, 1997) are used by many companies in their development
infrastructure.


The size of a BDD for a given function is sensitive to the ordering of the variables in
the BDD. However, finding an optimal ordering, which yields a smallest BDD for a given
function, is an NP-complete problem (Bollig & Wegener, 1996). Therefore, several heuristic
algorithms based on expert knowledge have been developed for variable ordering in the
hope of reducing the BDD size. Unfortunately, and in spite of the resources invested, these
algorithms do not produce good enough variable orders. The reason for this may be that
only general rules are used and no domain-specific knowledge is exploited.


The goal of this research is to develop learning techniques for acquiring and using
domain-specific knowledge for variable ordering. We assume the availability of one or more
training models. The training models are used for off-line acquisition of ordering experience
which can be used for ordering variables of a previously unseen model.


We first present a method for converting the ordering learning task into a concept
learning problem. The concept is the set of all ordered variable pairs that are in the “right”
order. The examples are ordered pairs of variables of a given training model. We show
a statistical method for tagging examples based on evaluated training orders and present
a set of variable-pair features. The result is a standard concept learning problem. We
apply decision tree learning to generate a decision tree for each training model. When used
for an unseen model, we combine the trees and generate a partial order which is used for
generating the required order. We also present an extension of the algorithm which learns
context-based precedence relations.


Our algorithm was integrated with SMV (McMillan, 1993), which is the backbone of
many verification systems. Empirical evaluation of our methodology, using real benchmark
models of hardware designs, shows performance that is much better than random ordering
and is competitive with existing algorithms that use expert knowledge.


Section 2 contains background on model checking. Section 3 presents our main algorithm
with empirical evaluation. Section 4 shows the context-based algorithm. Our conclusions
are presented in Section 5.
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2. Background


Model checking was introduced by Clarke and Emerson (1986) and by Queille and Sifakis
(1981) in the early 1980s. They presented algorithms that automatically reason about
temporal properties of finite state systems by exploring the state space. The use of binary
decision diagrams (BDDs) to represent finite state systems and to perform symbolic state
traversal is called symbolic model checking. The use of BDDs has greatly extended the
capacity of model checkers. Models with 2100 and more states are routinely being verified.


BDDs were introduced by Akers (1978) as compact representations for boolean func-
tions. Bryant (1986) proposed ordered binary decision diagrams (OBDDs) as canonical
representations of boolean functions. He also showed algorithms for computing boolean
operations efficiently on OBDDs.


The following subsection gives an overview of how finite state systems are represented
in symbolic model checking. BDDs are then described and the variable ordering problem is
defined. Existing algorithms for static variable ordering algorithms are reviewed. Finally,
a brief description of machine learning algorithms used for ordering is given.


2.1 Finite State Machines in Symbolic Model Checking


Finite state systems (FSM) can be described by defining the set of possible states in a
system and the transition relation between these states. A state typically describes values
of components (e.g., latches in digital circuits), where each component is represented by
a state variable. Let V = {v0, v1, ...vn−1} be the set of variables in a system. Let Kvi


be
the set of possible values for variable vi. Then a state in the system can be described by
assigning values to all the variables in V . The set of all possible states SA is


SA = Kv0
× Kv1


.... × Kvn−1
.


A state can be written using a function that is true only in this state:


∧n−1
i=0 (vi == cj),


where cj ∈ Kvi
is the value of vi in the state. A set of states can be described by a function


as the disjunction of the functions that represent the states.


Figure 1 shows a 3-bit counter. A state in the 3-bit counter can be described by a
tuple which gives an assignment to the 3 variables v2, v1, v0. For example, the tuple 〈1, 0, 0〉
represents the state with v2 = 1, v1 = 0, v0 = 0. The corresponding boolean expression for
the state is (v2 == 1) ∧ (v1 == 0) ∧ (v0 == 0).


In order to describe a system, we also need to specify its transition relation. The
transition relation describes all the possible transitions of each system state. It can thus be
described by pairs of states, 〈present state, next state〉, where next state is a system state
after a transition from the present state. The variables in V will represent the present state
variables, and for each variable vi ∈ V we will define a corresponding next state variable
v′i ∈ V ′. V ′ will denote the set of next state variables.


An example of a valid transition for the 3-bit counter is from 〈0, 0, 0〉 to 〈0, 0, 1〉. The
boolean function which represents this transition is (v2 == 0) ∧ (v1 == 0) ∧ (v0 ==
0) ∧ (v′2 == 0) ∧ (v′1 == 0) ∧ (v′0 == 1). The transition relation can be represented by a
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V2 V V1 0


Figure 1: 3 bit counter


Present State Next State
v2 v1 v0 v′2 v′1 v′0
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 1 1 1
1 1 1 0 0 0


Table 1: 3-bit counter transition relation table


boolean function which is the disjunction of the boolean functions of each of the transitions.
Table 1 shows the transition relation for the 3-bit counter.


An alternative method for describing the transition relation is for each state variable
to define its valid next states. This form is known as the partitioned transition relation.
The transition relation is then described by a set of functions (instead of one), one for each
variable. For variable vi, a boolean function Ti(V, v′i) defines the next value of vi, v′i, given
that the current state of the system is V .


For synchronous systems, in which there is a simultaneous transition of all the system
components, the transition relation is


∧n−1
i=0 Ti(V, v′i).


In model checking it is common to use the partitioned transition relation form of representa-
tion, since it is usually more compact in memory requirements and thus allows the handling
of larger systems. For the 3-bit counter, the next state boolean functions are given below,
where ⊗ stands for the boolean operator Xor.


T0(V, v′0) : (v′0 == v0)
T1(V, v′1) : (v′1 == (v0 ⊗ v1))


T2(V, v′2) : (v′2 == (v2 ⊗ (v0 ∧ v1))).
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2.2 Binary Decision Diagrams


A binary decision diagram (BDD) is a DAG (directed acyclic graph) representation of a
boolean function. A BDD is composed of two sink nodes and several non-sink nodes. The
two sink nodes, labeled 0 and 1, represent the corresponding boolean values. Each non-sink
node is labeled with a boolean variable v and has two outgoing edges labeled 1 (or then)
and 0 (or else). Each non-sink node represents the boolean function corresponding to its 1
edge if v = 1, or the boolean function corresponding to its 0 edge if v = 0.


An ordered binary decision diagram (OBDD) is a BDD with the constraint that the
variables are ordered, and every root-to-sink path in the OBDD visits the variables in
ascending order.


A reduced ordered binary decision diagram (ROBDD) is an OBDD where each node
represents a distinct logic function. This representation is a canonical BDD representation
and the most compact representation possible for a given boolean function and a variable
ordering.
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Figure 2: 3-bit counter transition relation (a),(b) and partitioned transition relation (c),(d)


Figure 2 (a),(b) shows the OBDD and ROBDD (respectively) representations of the
transition relation function for the 3-bit counter. The dashed lines are the 0 edges and the
solid lines are the 1 edges. ROBDDs have only two leaf nodes, one with 1 and one with
0. We drew them several times to enhance readability. ROBDDs can also use complement
edges, which produces an even more compact representation. We did not use complement
edges, also for reasons of readability. Figure 2 (c),(d) shows the OBDD and ROBDD
representations of the partitioned transition relation of the 3-bit counter. The variable
order v2, v


′
2, v1, v


′
1, v0, v


′
0 was used in all the representations. Variable ordering algorithms


in model checking place the next state variable v ′
i adjacent to the present state variable vi.
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For the rest of this document we will refer to ROBDDs as BDDs (unless we explicitly state
otherwise).


Bollig and Wegener (1996) proved that finding an optimal variable ordering is an NP-
complete problem. An order is optimal if it yields a BDD with the smallest number of
nodes. Bryant (1986) pointed out that variable ordering greatly influences the size of the
BDD. He showed that for a boolean function, one variable ordering may yield a BDD that
is exponential in the number of variables, while a different ordering may yield a BDD of
polynomial size.
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Figure 3: ROBDDs for the function F (v1, v2, v3, v4) = (v1 = v3) ∧ (v2 = v4)


Figure 3 gives an example of the effect of variable ordering on the BDD size for the func-
tion F (v1, v2, v3, v4) = (v1 = v3) ∧ (v2 = v4). In (a) the variable ordering is v1, v3, v2, v4
and in (b) the variable ordering is v1, v2, v3, v4.


Various algorithms have been developed for variable ordering. Exact algorithms (Ishiura,
Sawada, & Yajima, 1991; Drechsler, Drechsler, & Slobodova, 1998; Friedman & Supowit,
1987) are algorithms that find the optimal order. These algorithms use a method similar
to dynamic programming with pruning to find the optimal order. Due to the complexity
of the problem, exact algorithms are only practical for small cases, and one usually has to
turn to other heuristic methods. These heuristic methods can be roughly divided into two
groups.


1. Static Ordering (Aziz, Tasiran, & Brayton, 1994; Butler, Ross, & Rohit Kapur, 1991;
Chung, Hajj, & Patel, 1993; Fujii, Ootomo, & Hori, 1993; Jain, Adams, & Fujita, 1998;
Fujita, Fujisawa, & Kawato, 1988; Malik, Wang, Brayton, & Sangiovanni-Vincentelli,
1988; Touati, Savoj, Lin, Brayton, & Sangiovanni-Vincetelli, 1990) which try to find
a good ordering before constructing the BDD. Most of these algorithms are based on
the topological structure of the verified system.


2. Dynamic Ordering (Rudell, 1993; Meinel & Slobodova, 1998; Bollig, Lobbing, & We-
gener, 1995; Meinel & Slobodova, 1997; Meinel, Somenzi, & Theobald, 1997; Ishiura
et al., 1991; Bern, Meinel, & Slobodova, 1995; Fujita, Kukimoto, & Brayton, 1995;
Mercer, Kapur, & Ross, 1992; Zhuang, Benten, & Cheung, 1996; Drechsler, Becker,
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& Gockel, 1996; Panda & Somenzi, 1995; Panda, Somenzi, & Plessier, 1994), which
given a BDD with some variable order, reorder the variables in the hope of finding a
smaller BDD.


In model checking procedures, variable ordering is a central component. At the initial
phase of model checking, when the system is translated into a BDD representation, Static
Ordering is used. The order built at this stage greatly influences the memory usage during
the whole computation. However, since model checking keeps producing and eliminating
BDDs, the variable order should be changed dynamically in order to effect the size of the
current BDDs. Dynamic Ordering is used in order to achieve this goal. It is applied by the
model checking procedure whenever the size of the BDDs reaches a certain threshold.


Since our work introduces a static ordering algorithm based on machine learning, the
next subsection presents a review of the existing static algorithms. Most of these algorithms
were developed for combinational circuits (i.e., models whose outputs depend only on their
current inputs and not on inputs of previous cycles) and were described with hardware
terminology. In order to simplify the description, we will describe them with the terminology
we have used so far.


2.3 Static Ordering


Static ordering algorithms try to find an initial good order for the BDD. To do so, they
extract topological data from the model and use this data to determine an order. All the
algorithms convert the model, described by a set of next state functions, into a directed
graph known as the model connectivity graph. Vertices in the graph are variables and
boolean operations (gates). A variable vertex represents a variable, while a gate vertex
represents a function. The edges ni → nj in the graph are between ni, which is either a
variable or gate vertex, and nj, which is a gate vertex. An edge ni → nj is placed if the
function represented by ni is an operand (i.e., an immediate subfunction) of the function
represented by nj. We can divide the static algorithms into four groups that differ in the
way they use the graph information.


2.3.1 Graph Search Algorithms


The method suggested by Malik et al. (1988) assigns to each vertex a level metric and orders
the variables in decreasing level value. The level of vertices with no out edges is set to be
zero and the level of every other vertex (vi) is set to be level(vi) = maxvj |vi→vj


(level(vj)+1).
This method resembles a BFS (breadth first search) which originates in nodes that have no
out edges, and progresses backwards in the model. Fujita et al. (1988) proposed executing
a DFS (depth first search) from the vertices with no out edges, and progressing backwards.
Variables in this algorithm are added in post order form.


The algorithms of Malik et al. and Fujita et al. were designed for cases where only one
function should be represented in a BDD. This is hardly ever the case in model checking.
Butler et al. (1991) adapted the algorithm of Fujita et al. to models with multiple starting
points (that is, multiple vertices with no out edges). Their heuristic guides the algorithm
to select the first vertex as the vertex that represents the function which depends on the
maximum number of variables. This heuristic also guides the search to advance (backwards)
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from an inner vertex to the vertex that leads to the maximum number of different variables.
A tie breaking heuristic (Fujita, Fujisawa, & Matsunaga, 1993) for the enhanced algorithm
advises selecting (in case of a tie) the vertex with the maximum number of out edges.


The DFS-based methods append the variables to the variable order. Another DFS-based
algorithm relies on interleaving the variables in the order (Fujii et al., 1993). The algorithm
adds a variable after the variable which precedes it in the DFS order.


2.3.2 Graph Evaluation Algorithms


Graph evaluation algorithms use the model graph to evaluate the model variables and to
perform guided search based on their evaluation values. Minato et al. (1990) propagate
values backward through the graph, starting from vertices with no out edges, whose value
is set to 1. In vertices of boolean operations, the values on the out edges are summed and
the value obtained is divided equally between the in edges. This is done recursively until a
vertex of a variable is reached. At variable vertices the propagated values are accumulated
as the variable evaluation value. The order is constructed by iteratively adding the variable
with the highest value, removing it from the graph, and updating the values.


Chung et al.(1993) proposed two algorithm frameworks. The first framework is com-
posed of two sweeps. In the first sweep each vertex is assigned a value. The values are set
by a propagating algorithm that starts from variable vertices with no in edges and advances
forward (by their out edges) to all the vertices in the graph. In the second sweep a guided
DFS initiated from vertices with no out edges is executed. This search is executed backward
in the graph and is guided by the maximal value. This means that the order of traversal
among vertex ancestors is according to their assigned value. A number of heuristics to
compute the values of the vertices were proposed:


1. Level-Based sets the value of variables with no input edges to be zero. The value of
the other vertices is set to be the maximal vertex value over its inputs plus one.


2. Fanout-Based propagates two values through the graph (one for each boolean value).
At a boolean operation vertex the values are not summed and passed along. Rather,
they are computed according to the boolean operation at the vertex. The initial values
are of variables with no input edges. Their value is set to be the number of out edges
the variable has.


In the second framework proposed by Chung et al., the shortest distance between each
pair of variables is computed. The total distance of a variable is computed as the sum of
its distances to all the variables. The variable with the lowest total distance is selected as
the first variable. The next variable is selected as the closest variable to the last ordered
variable. Ties are broken according to the distance to previous ordered variables.


All the graph evaluation algorithms try to order the variables so that the variable that
most influences the model’s next state functions will be first. The algorithms differ by the
methodology they use to order the other variables. Some algorithms order them so that
variables which substantially influence the model’s next-state functions are placed higher
in the variable order (toward the beginning of the order). Other algorithms place the other
variables according to their proximity to previously ordered variables.
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2.3.3 Decomposition Algorithms


Decomposition algorithms break down the model into parts. The algorithms then solve
two different problems. The first is finding a good order for each part, and the second is
finding the order of the parts. The order is constructed by combining the solutions of the
two problems.


The algorithm of Malik et al. was extended and adapted for finite-state machines (FSM)
by Toutai et al. (1990). In their algorithm, a model is decomposed to its next state functions,
each of which is considered separately. Variables of each next state function are ordered
according to Malik et al. The next state functions are then ordered by a cost function.
They are ordered so that functions with many overlapping variables will be adjacent. The
variable order is obtained by adding the variables of the next state functions according to
the order of the parts, while removing variables that already exist.


The algorithm of Aziz et al. (1994) decomposes the model in a different way. A model
is a hierarchical composition that is constructed by joining a number of internal parts that
pass information among themselves. Usually, there is less communication among the parts
than within them. Variables of an internal part tend to depend highly on one another.
The algorithm uses a process communication graph (PCG), which models the hierarchical
structure of the model and the communication between the parts. In a PCG each vertex is
an internal part, and an edge i → j connects vertex i and vertex j if part j depends on a
bit of part i. The PCG has parallel edges i → j, one for each bit value in i that j depends
upon. Alternatively, the edges could be weighted.


Given an order of the parts, an upper bound on the BDD size of the model can be com-
puted. The computation is based on the size of the parts and the amount of communication
between them. Heuristics guided by the upper bound are applied in order to determine the
order of the parts. The order of the variables in each part is decided by one of the previous
ordering algorithms.


2.3.4 Sample-Based Algorithms


Sample-based static algorithms (Jain et al., 1998) are not real static algorithms in the
sense that they do not create the order based on information extracted from the model
description. Sample algorithms perform tests on parts of the model (building transition
relations and reachable states). For each part, a number of orders are evaluated. The good
orders are then merged to create a complete order for the model. Sampling algorithms use
“traditional” algorithms in order to find the candidate orders for the parts. These candidate
orders are then checked by the sampling algorithm.


2.3.5 Summary


A majority of the graph search algorithms and graph evaluation algorithms were developed
for other problems and adapted for symbolic model checking. Some of the algorithms
were developed in the context of combinational circuits, while others were developed for the
simple case of one function. In symbolic model checking the models are rarely combinational
(their outputs almost always depend also on inputs of previous cycles), and there is more
than one function to display. Adapting the existing algorithms to conform to the needs of


91







Grumberg, Livne, & Markovitch


symbolic model checking has had various degrees of success. Most of the adapted algorithms
are heuristic and apply a simple rule with some logical reasoning behind it.


The decomposition algorithms are either heuristic or provide a theoretical upper bound.
However, the bounds they use are rarely realistic; for most models we require much smaller
BDDs. The algorithms are also based on decomposing the model into parts and solving the
ordering of each part using graph search algorithms. Thus, they also inherit the drawbacks
of these algorithms.


Despite the efforts that have been invested and the many algorithms that have been
developed for static ordering, the results are not yet satisfactory. The produced BDDs
are too large to manipulate, and dynamic ordering must be applied. One problem with
the above approaches is their generality: they do not utilize domain-specific knowledge.
Domain-specific knowledge is essential for solving the majority of complex problems. It is
also difficult to retrieve. In the next subsection we discuss machine learning methods for
acquiring domain-specific knowledge for ordering tasks.


2.4 Learning to Order Elements


Learning to order elements can be done by first trying to induce a partial order, which can
then be used for generating a total order. In this context, a partial order is usually called
a preference predicate. Preference predicate induction is based on a set of tagged pairs of
elements where the binary tag identifies the preferred element. Broos and Branting (1994)
present a method for inducing a preference predicate using nearest neighbor classification.
The distance between an untagged pair and each tagged pair is computed as the sum of
distances between the corresponding elements. The closest tagged pair is selected. The
preferred element of the untagged pair is the one matching the preferred element in the
tagged pair.


Utgoff and Saxena (1987) represent a pair A,B by the concatenated feature vector
〈a1, . . . an, b1, . . . bn〉. The preference predicate is a decision tree induced from these exam-
ples.


Utgoff and Clouse (1991) represent a preference predicate by a polynomial. Let A =
〈a1, . . . an〉 , and B = 〈b1, . . . bn〉 be a pair of elements represented by feature vectors. Let
w1, . . . , wn be a set of weights. The preference predicate P is defined as follows:


P (A,B) =


{


1
∑n


i=1 wi(ai − bi) ≥ 0
0 otherwise


Each example represents a linear constraint and the weights are found by solving the set of
constraints.


Cohen, Schapire and Singer (1999) extended the above mechanism by allowing any
preference function fi instead of (ai − bi) in the above expressions. They also present
two methods for generating a total order based on the induced preference predicate. Both
methods use the preference predicate to construct a graph where the nodes are the elements
to be ordered and a directed edge is placed between two elements that have a precedence
relation. Two algorithms for inferring the order from the graph are given. The first defines
for each node a degree which equals the sum of the outgoing edges minus the sum of the
incoming edges. The order is then constructed by selecting the node with the greatest
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degree and removing its edges from the graph. The second algorithm constructs the order
in two stages. In the first stage, all the strongly connected components of the graph are
found, and they are ordered according to the dependencies between them. In the second
stage the elements of each component are ordered using the first algorithm.


3. A Learning Algorithm for Static Variable Ordering


Producing a good variable order requires extensive understanding of BDDs and their relation
to the model they represent. Such knowledge can be manually inserted by a human expert.
However, this task is too complex for large models. Therefore, it is rarely done. Existing
static ordering algorithms use relatively simple heuristic rules that are based on expert
knowledge. These rules look at the model structure to compose the ordering. Since the
rules are to be applied to all variables in all the models, they are general and thus limited
in the ability to produce good orders. Alternatively, we can try to build a program that
automatically acquires more specific knowledge based on ordering experience. In this section
we present such an algorithm.


The first step in building such a learning algorithm is deciding what knowledge we wish
to acquire from the ordering experience. The existing ordering algorithms demonstrate that
the precedence relation between variables is a key consideration for the order creation. The
graph search algorithms and the search-based graph evaluation algorithms try to place a
variable after the variables that influence its next state value. Generally, a variable order
of n variables yields


(n
2


)


precedence pairs. A precedence pair vi ≺ vj denotes that variable
vi should precede vj in the variable order. For example, the variable order a, b, c, d yields
the precedence pairs a ≺ b, a ≺ c, a ≺ d, b ≺ c, b ≺ d, c ≺ d.


The above task of learning precedence pairs can be transformed into a concept learning
task. A concept learning task is defined by:


• A universe X over which the concept is learned;


• A concept C – a subset of items in X that we want to learn (usually marked by its
associated boolean characteristic function fc);


• A set of examples – pairs of the form 〈x, fc(x)〉, where x ∈ X;


• A set of features – functions above X that allow generalization.


For many learning tasks it is difficult to transform the problem to the format listed
above. It is already clear from the discussion above that the general concept we wish to
learn is the set of variable pairs in which the first should precede the second in the variable
ordering1 .


More precisely, we define the universe over which the concept is learned as the set of all
pairs 〈(vi, vj),M〉, where (vi,vj) is an ordered variable pair comprised of vi and vj, which
are variables in the model M . Since we expect that some pairs will have no preferred order,
we define a ternary instead of a binary concept. The ternary concept has the following
classes:


1. In practice, we will need only a small subset of the precedence pairs for constructing a total order.
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1. C+, the class of all 〈(vi, vj),M〉 for which it is preferable to place vi prior to vj in
order to get a good initial order.


2. C−, the class of all 〈(vi, vj),M〉 for which it is preferable to place vi after vj in order
to get a good initial order.


3. C?, the class of all 〈(vi, vj),M〉 for which placing vi before vj is just as likely to lead
to a good variable order as placing vi after vj.


In the following subsections we describe the algorithms for learning and using this con-
cept.


3.1 Algorithm Framework


We start with the description of the general framework of the learning algorithm. Our goal
is to find variable orders that yield BDDs with small number of nodes. Given a training
model, the algorithm first generates a set of orders of its variables. We define a utility
function u over variable orders as following. Each of the orders is used as the initial order
for building the BDD representation of the model2. This BDD (denoted M-BDD) includes
the model’s partitioned transition relation and its set of initial states. The utility u of a
generated order is then defined to be reversely proportional to the the number of nodes in
the M-BDD constructed with this order.


A subset that consists of all the variable pairs that appear together in some next-state
function is selected by the example extractor from all the possible variable pairs. We call
such pairs interacting variable pairs. For example, if next(x) = y ∨ z then (y, z) is an
interacting variable pair. The example tagger tags each of the selected ordered pairs with
one of the classes C+, C−, or C?, based on the evaluated orders. The tagged pairs are
forwarded to the feature extractor which, based on the model, computes for each pair its
feature vector. The learner, which is an ID3 (Quinlan, 1986) decision tree generator, uses
the tagged feature vectors to create a pair precedence classifier.


Several training models are used in this manner to construct different pair precedence
classifiers. When solving a new unseen problem, these pair precedence classifiers are used
by the ordering algorithm to create a variable order.


The learning framework for creating a pair precedence classifier of a training model is
given in Figure 4. The complete data flow is displayed in Figure 5. The following subsections
describe in greater detail the components of the framework.


3.2 The Training Sequence Generator


The goal of the training sequence generator is to produce orders with high variance in quality
which is exploited by the tagger (see Subsection 3.4). The simplest strategy for generating
such sequences is by producing random orders. This is indeed the strategy we have used in
the experiments described in this paper. One potential problem with this approach is with
domains where good orders (or bad orders) are rare. In such a case, a random generator
will not necessarily produce sequences with the desired diversity in quality.


2. We use the SMV (McMillan, 1993) system for this purpose.
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Input : Training Model
Output : Precedence Classifier


1. Create sample orders.


2. Use SMV to evaluate the utility of each sample order by the M-BDD size.


3. Find the interacting variable pairs of the training model.


4. Based on the evaluated sampled orders, tag each ordered pair that is based on an
interacting variable pair.


5. Transform each tagged pair to a tagged feature vector.


6. Create a classifier based on the tagged feature vectors.


Figure 4: Training model precedence classifier construction
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Figure 5: Data flow


An alternative approach is to actively try producing orders that are very good and orders
that are very bad, therefore creating a large diversity in quality. One way of producing a
good order is by taking the orders that are the result of the dynamic ordering process.


Another option is by using an existing static ordering algorithm. One interesting idea
is to try and bootstrap the process by using the results of the adaptive ordering algorithm
as training examples thus resulting in progressively more diverse input.
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3.3 The Example Extractor


Given a set of n variables, we can extract n ∗ (n − 1) example ordered pairs for training.
But should we actually use all these ordered pairs as examples?


There are two main reasons for being selective about what examples to use:


1. Each example carries computational costs associated with tagging, feature extraction,
and the added computation by the induction procedure.


2. Noisy examples are known to have harmful effect on the induction process.


The process of selecting a subset of examples, to be tagged, out of a set of untagged
examples is called selective sampling. There are two common ways of performing selective
sampling. One is by automatic methods that use various general metrics for selecting
informative examples (Lindenbaum, Markovitch, & Rusakov, 1999). The other way is by
using domain specific heuristics about the potential of an example to be informative.


In this work we use the second approach. Consider a function f over m variables,
represented within a BDD of n variables (where m ≤ n). The number of nodes used to
represent f depends only on the relative order of the m variables. This means that changing
the order of the other n − m variables would not influence the BDD representation of the
function f .


The BDD representation of a model to be checked consists of the initial states of the
model and the next-state functions of the variables. Since the BDD representation for the
initial states is typically small, we do not take it into account. Therefore, when looking for
examples, we consider only the next-state functions. Usually, each such function is defined
only over a subset of all the model variables. Thus, the order of a pair of variables (vi, vj),
that do not appear together in any next-state function is less likely to affect the quality of
the generated order. We therefore filter out such pairs.


3.4 The Example Tagger


An ordered variable pair (vi, vj) should be tagged as belonging to C+ if it is preferable to
place vi before vj. Let V = {v1, . . . , vn} be the set of variables of a given model. Let O be
the set of all possible orderings over V . Let Ovi≺vj


be the set of all o ∈ O where vi precedes
vj . The ordered variable pair (vi, vj) is defined to be preferable to (vj , vi) if and only if


Average{u(o)|o ∈ Ovj≺vi
} ≤ Average{u(o)|o ∈ Ovi≺vj


}.


Since it is not feasible to evaluate all the possible orders, we sample the space of possible
orders, evaluate them and partition the samples to two sets as above. As the averages now
only estimate the real averages, we replace the term “smaller” in the above definition
with “significantly smaller.” This is determined by the unpaired t-test, which tests the
significance (with a given confidence) of the difference between the averages of two samples
of two populations.


More precisely, for each variable pair vi, vj , the set of sampled orders S ⊆ O is par-
titioned into two subsets Svi≺vj


⊆ Ovi≺vj
and Svj≺vi


⊆ Ovj≺vi
. An unpaired t-test with


a predetermined confidence level is used to check if the averages of the set utilities differ
significantly. If they do, the ordered pair corresponding to the set with the smaller average
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is tagged with + and the other ordered pair is tagged with - (meaning that they belong
to C+ and C−, respectively). Otherwise, the average difference is not significant, and both
ordered pairs are tagged with ? (meaning that they belong to C?).


A more elaborative approach could use the t-value as a weight on how important a par-
ticular order is. These weights could solve conflicts in the ordering process. Such a scheme
would require, however, a method to incorporate weights into the induction algorithm. One
method is by trying to induce a continues function instead of a ternary function.


3.5 The Feature Extractor


If we want to generalize from training models to future unseen models, we cannot represent
the pairs by the variable names. Rather, we should use a representation that can be used
across models. Most induction algorithms require that the examples be represented by
feature vectors.


The process of constructing an appropriate feature set is a crucial part of applying a
learning algorithm to a problem. It is a common knowledge engineering process where a
domain expert comes up with a set of features that might be relevant. It is the role of
the induction algorithm, then, to find out what combination of features are relevant to the
specific problem.


We have come up with a set of features over variable pairs. These features are extracted
from the model connectivity graph. Some of these attributes are inspired by traditional
static ordering algorithms. The attributes can be categorized into three groups:


• Variable attributes are defined on a single variable and try to capture its characteristics
in the model. One example is the variable-dependence attribute, which equals the
number of variables on which a variable depends. This attribute was inspired by the
value used by Butler et al. (1991) to guide the DFS search. A higher value indicates
that a larger portion of the model’s variables are needed to determine the variable’s
next-state value. Thus, a higher value may indicate that the variable location should
be lower in the order. Another example is the variable-dependency, which takes the
complementary view of variable-dependence. The attribute equals the number of
variables that depend on a given variable. A higher value may indicate that the
variable should be placed higher in the variable order.


• Symmetric pair attributes are defined on a variable pair vi, vj . These attributes try to
capture the strength of the bond between the two variables, as well as that between
this pair and the other variables in the model. For example, pair-minimal-distance
measures the shortest path between the variables in the model connectivity graph. A
shorter path can indicate a stronger bond between the variables. The distance-based
ordering framework (Chung et al., 1993) uses a similar feature to order variables.
Another example is pair-mutual-dependency, which counts the number of variables
whose next-state function depends on both vi and vj.


• Non-symmetric pair attributes try to capture the relationship between the two vari-
ables. For example, the pair-dependency-ratio is the ratio between the variable-
dependency values of the two variables. If the ratio is relatively high or low, it may
indicate the relative order of the two. pair-ns-distance evaluates the influence of one
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variable on the next state value of the other. It does so by measuring the distance
between the variables in the subgraph that represents the next-state function.


The complete list of attributes can be found in Appendix A.


3.6 The Induction Algorithm


After the feature extraction phase, our data is represented as a set of tagged feature vectors.
This type of representation can be used to produce classifiers by many induction algorithms,
including decision trees (Hunt, Marin, & Stone, 1966; Friedman, 1977; Quinlan, 1979;
Breiman, Frieman, Olshen, & Stone, 1984), neural networks (Widrow & Hoff, 1960; Parker,
1985; Rumelhart & McClelland, 1986) and nearest neighbor (Cover & Hart, 1967; Duda &
Hart, 1973). We have decided to use decision tree classifiers because of their relatively fast
learning and fast classification. Fast classification is especially important since we wish to
be competitive with other ordering algorithms and the number of variable pairs we need to
classify is large.


Decision trees have been researched thoroughly in the last decade, producing many
valuable extensions. One such extension enables the decision tree to give not only the
classification of items but also to associate with each such classification a confidence esti-
mation. We have used this variant to allow conflict resolution. This will be described in
Section 3.7.3.


3.7 The Ordering Algorithm


The outcome of the learning process described in the last four subsections is a set of decision
trees, one for each training model.


We could also generate one tree based on the union of generated samples. One advantage
of the multiple-tree approach is that we expect the examples from the same model to be more
consistent, allowing generating compact trees. In contrast, a set of examples coming from
different models is likely to be more noisy, yielding a large tree. In addition, the multiple-tree
version allows us using a voting scheme during the ordering process, as described below.


Given a model M, the algorithm first extracts the interacting variable pairs. Each
of the classifiers is then applied to the feature vector representations of these pairs. For
each classifier, the classifications of all the pairs are gathered to form a precedence table.
These tables are then merged into one table. The order creation algorithm uses the merged
precedence table to construct the model’s variable order. The following subsections describe
the components in greater detail. Figure 6 shows the data flow in the ordering algorithm.


3.7.1 Building the Precedence Table


To build a precedence table based on a given classifier, the algorithm asks two questions for
each interacting variable pair vi, vj :


1. Should vi ≺ vj ?


2. Should vj ≺ vi ?
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Figure 6: Ordering algorithm data flow


vi ≺ vj ? vj ≺ vi ? vi, vj order


1 No No Unknown
2 No Yes vj ≺ vi


3 No Unknown Unknown
4 Yes No vi ≺ vj


5 Yes Yes Unknown
6 Yes Unknown Unknown
7 Unknown No Unknown
8 Unknown Yes Unknown
9 Unknown Unknown Unknown


Table 2: Pair order table


If the two agree, the pair order is set to the agreed order. If they disagree, the order is
set to unknown. Table 2 summarizes all the possible answers for the two questions and the
resulting pair order.


3.7.2 The Merging Algorithm


After constructing the pair precedence tables from the training model’s classifiers, we merge
the tables using a voting scheme. For each variable pair vi, vj , we count the number of tables
that vote vi ≺ vj and the number of tables that vote vj ≺ vi. We then decide their pair
order according to the majority (ignoring the unknown votes).


Assuming that the majority vote chooses the order vi ≺ vj, the confidence for this vote


is computed by
conf(vi≺vj)−conf(vj≺vi)
vote(vi≺vj)+vote(vj≺vi)


, where vote(vi ≺ vj) is the number of tables that vote
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vi ≺ vj and conf(vi ≺ vj) is the sum of the confidence values of these votes. vote(vj ≺ vi)
and conf(vj ≺ vi) are defined similarly. If this value turns out to be lower than 0.1, we set
it to a minimal value of 0.1.


3.7.3 Cycle Resolution


In order to build a total, strict order out of the merged table, the table must not contain
any cycle. However, the above algorithm does not guarantee this. We therefore have to
apply a cycle resolution algorithm that makes the table cycle-free.


The precedence table can be seen as a directed graph in which the nodes are variables,
and there is a weighted edge vi → vj if and only if vi ≺ vj . There are many possible ways to
eliminate cycles in a directed graph. One reasonable bias is removing the least number of
edges. This problem is known as the minimum feedback arc set and is proven to be NP-hard
(Karp, 1972). Approximation algorithms for this problem exist (Even, Naor, Schieber, &
Sudan, 1998), but they are too costly for our purposes.


We use instead a simple greedy algorithm to solve the problem. All the constraints
(edges) are gathered into a list and sorted in a decreasing order according to their weights
(i.e., their confidence). A graph is initialized to hold only the variable vertices. The list of
edges is then traversed and each edge is added if it does not close a cycle.


3.7.4 Pair Precedence Ordering


At this stage of the algorithm, we hold an acyclic merged precedence table. The last step of
the ordering process is to convert the partial order represented by this table to a total order.
This is done by topological ordering. At each stage, the algorithm finds all the minimal
variables, i.e., variables that are not constrained to follow other unordered variable. From
this set, we select a variable vadd with maximal fan-out and add it after the last ordered
variable. We then add all the variables which are larger than vadd but do not appear in
any constraint with an unordered variable. We do this because it is desirable to place
interacting variables near each other. The pair precedence ordering (PPO) algorithm is
listed in Figure 7. Figure 8 lists the selection of vadd in PPO .


One possible change to the ordering process is to delay the cycle resolution to the last
stage. We call this version cycle resolution on demand. The modified algorithm does not
perform any cycle resolution on the merged table. Instead, the algorithm works with the
merged table that may contain cycles. If the table contains a cycle, the algorithm must
reach a stage where not all the variables are ordered and there are no minimal variables.
In this case the algorithm performs cycle resolution as before and continues the ordering
process.


3.8 Experiments


We performed an empirical evaluation of the PPO algorithm using models from the
ISCAS89 (Brglez, Bryan, & Kozminski, 1989) benchmark. The ISCAS89 benchmark circuits
have been used to empirically evaluate many algorithms that deal with various aspects of
circuit design (Chamberlain, 1995; Wahba & Borrione, 1995; Nakamura, Takagi, Kimura,
& Watanabe, 1998; Long, Iyer, & Abramovici, 1995; Iyer & Abramovici, 1996; Konuk
& Larrabee, 1993). We discovered that some of the circuits are insensitive to the initial
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Input : The merged pair precedence table.
Output : A variable order.


Let V be the set of all variables.
Let before(v, V ′) = {v′ ∈ V ′|v ≺ v′}.
Let after(v, V ′) = {v′ ∈ V ′|v′ ≺ v}.


1. VC = {vi|before(vi, V ) 6= ∅ or after(vi, V ) 6= ∅}
VNC = V − VC


2. While VC 6= ∅


(a) Vmin = {vi ∈ VC |after(vi, VC) = ∅}


(b) vadd = argmaxvi∈Vmin
|before(vi, VC)| a


(c) order = order || vadd
b


(d) VC = VC − {vadd}


(e) for each vi ∈ VC


if after(vi, VC) = ∅ and before(vi, VC) = ∅ then
order = order || vi, VC = VC − {vi}


3. Add VNC to end of variable list.


a. If more than one exists, select one.
b. Add variable to order.


Figure 7: Pair precedence ordering


ordering. This means that the entire sample of initial orders yielded model BDDs of similar
sizes. We eliminated these circuits from the set. Out of the remaining circuits we selected
those with a number of variables that SMV can handle. We ended up with the following
five circuits: s1269 (55), s1423 (91), s1512(86), s4863 (153), s6669 (314). The numbers in
parentheses stand for the number of variables in each model.


We began with an offline learning session where the three smaller models (s1269, s1423,
s1512) are used as training models. For each of these models we generated 200 random
orders and extracted examples as described in the previous section. The algorithm then
induced three precedence classifiers in the form of decision trees.


The number 200 was selected since it proved to be sufficiently large. In real application
the algorithm can be used as an anytime algorithm where training sequences are generated
as long as the user is willing to wait for the offline learner. An alternative approach would
keep aside a validation set that would be used for testing the system’s performance. The
training could have then be stopped when the learning curve flattens.


The algorithm was tested on the two larger models (s4863, s6669). For each of the
models, the three learned decision trees were used to generate the merged precedence table.
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Figure 8: Pair precedence ordering vadd selection


Our PPO algorithm (with cycle resolution on demand) was compared to the random
algorithm. In addition, we compared our results to two advanced graph search algorithms
for static ordering: the DFS append algorithm of Fujita et al. (1988) and the interleave
algorithm of Fujii et al. (1993). In both algorithms we used the adaptation for multiple
starting points (Butler et al., 1991) and its expanded version, which includes the tie breaking
rule (Fujita et al., 1993). The random results were taken based on 200 variable orders. The
two other algorithms were each run 10 times on every model. The performance of the
ordering algorithms is measured by the number of nodes in the model BDDs (partitioned
transition relation and initial states).


Table 3 and Figure 9 show the results obtained. The table shows that on model s6669,
PPO outperformed the random order by more than 300%. On model s4863, PPO out-
performed the random order by 5%.
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Figure 9: Comparative histogram of PPO vs. Random
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Model Random PPO
Average STD Average STD


s4863 849197 121376 807763 100754
s6669 2030880 1744493 713950 35446


Table 3: Comparative table of PPO vs. Random


The comparison of our algorithm to the two static algorithms is given in Figure 10.
The results show that our learning algorithm, after training, becomes competitive with the
existing ordering algorithms written by experts.
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Figure 10: Comparative histogram of PPO vs. Static


To evaluate the utility of the learned knowledge we would like to compare the perfor-
mance of the ordering process with and without the learned knowledge. Ordering without
any learned knowledge is equivalent to random ordering. The comparison of our results to
the random-ordering algorithm reveals that the learner indeed induced meaningful knowl-
edge during the learning process. Our method is also much more stable than random
ordering on s6669 as indicated by comparing the standard deviation. This large variance
in the results of the random ordering is indeed exploited by our tagging procedure as ex-
plained in Section 3.4. The small variance in the results obtained by random ordering on
s4863 can explain why the improvement obtained by the PPO algorithm is much smaller
on this circuit. A more sophisticated training sequence generator, such as those described
in Section 3.2, might have been more successful with that circuit.


The comparison to the hand-crafted algorithms may look disappointing at first look
since the results of the learning system are not better than the existing algorithms. Recall,
however, that we are comparing an automated learning process to human expertise. Most
of the works in empirical machine learning make comparisons between the performance of
various learning algorithms. It is not common to compare the performance of a learning
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algorithm with a human expert or an expert system since in most cases it is clear that hand-
crafted algorithms would outperform automated learning processes. Since there are hardly
any other learning systems that were built to solve the BDD variable ordering problem we
could not make the more common comparison between learning systems.


4. Learning Context-Based Precedence for Static Ordering


The precedence relation is one of the key considerations used by traditional static ordering
algorithms. Another key consideration is the clustering of variables and their subsequent
ordering. The algorithms try to place highly interacting variables near each other.


The effect of the variable clustering in a BDD can be seen in the simple example given in
Figure 3. In this function, switching the two variables v2 and v3 increases the BDD size by
3 nodes. For this function, all the orders in which the variables of each of the two clusters,
v1, v3 and v2,, v4, are kept together yield the minimal BDD representation. Other variable
orders yield a less compact BDD. Thus, in this function, the only key consideration is the
compliance with clustering (precedence is not taken into account).


4.1 Variable Distance


The above discussion leads to the hypothesis that the distance between variables is an im-
portant factor when considering alternative orders. One way to obtain distance information
is by learning the distance function between pairs of variables. There are, however, two
problems with this approach:


1. The target distance function is not well-defined across models. For example, if we
train on small models, the absolute distance function is not likely to be applicable for
large models.


2. Information on absolute distances between variables is not sufficient to construct a
good ordering. This is because the absolute distance does not uniquely define the
order between the variables. In fact, it defines two possible orders, where one is the
reverse of the other.


The example in Figure 11 demonstrates that an order and its reverse can yield BDDs
that are significantly different in size. Each of the BDDs in Figure 11 represents two
functions, f1(a, b, c, d, e) = (a = b = c) ∨ (c = d) and f2(a, b, c, d, e) = (a = b =
c) ∨ (c = e). The absolute distance between the variables in the orders is clearly the
same. However, the upper BDD is approximately double the size of the lower one.


We wanted to check whether in realistic examples reverse orders can yield BDDs that
are significantly different in size. We tested models from the ISCAS89 benchmarks
and created 5,000 variable orders for each model. For each order, we compared its
quality with the quality of the reversed order. We found that in many cases one order
was exceptionally good while the reversed one was exceptionally bad. Thus, learning
the absolute distance is not sufficient, and more information is needed.


We conclude that there are problems inherent both in learning and in utilizing absolute
distances. Still, clustering is a key consideration and should be pursued. We suggest,
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Figure 11: ROBDDs for the functions f1(a, b, c, d, e) = (a = b = c) ∨ (c = d) and
f2(a, b, c, d, e) = (a = b = c) ∨ (c = e)


alternatively, learning the relative distance that determines, for variables vi, vj , and vk,
which of vj, vk should be closer to vi, given that vi precedes the other two.


The remainder of this section describes a method for learning and utilizing context-based
precedence to infer the relative distance between variables.


4.2 Context-Based Precedence


A context precedence relation is a triplet vi ≺ vj ≺ vk: given that vi precedes vj and vk, the
variable vj should come before the variable vk. Thus, the context precedence relation adds
context to pair ordering decisions.


As in pair precedence learning, we define the universe to be the set of pairs 〈(vi, vj , vk),M〉
where vi, vj , vk are variables in the model M . The universe is divided into three classes,
C+, C−, C?, as before. Examples for these classes are drawn in the same way. The pair
precedence framework can be applied with minor changes to work with context precedence
relations. These minor changes are described below.


4.3 The Example Tagger


A variable triplet (vi, vj , vk) should be tagged as C+ if, given that vi precedes vj and vk, it is
preferable to place vj before vk (i.e., vi ≺ vj ≺ vk). As in pair precedence learning, we use a
set of evaluated variable orders for the tagging. Any set of such orders can be partitioned to
three subsets, depending on which of the three variables is first. Given a partition defined
by vi (for example), we can test the order of vj and vk using t-test, as described in Section
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3.4. To reduce the number of noisy examples, we use only the partition that yields the most
significant t-test results.


4.4 The Feature Extractor


The attributes of a triplet (vi, vj , vk) are computed based on the attributes of the two pairs
vi ≺ vj and vi ≺ vk. Each attribute value is the division/subtraction of two corresponding
attribute values from the two pair attributes.


More precisely, assume that the pair vi ≺ vj has attributes f1(vi, vj), . . . , fn(vi, vj) and
the pair vi ≺ vk has attributes f1(vi, vk), . . . , fn(vi, vk). Then the triple (vi, vj , vk) has
attributes f1(vi, vj)/f1(vi, vk), . . . , fn(vi, vj)/fn(vi, vk). If some of the fl(vi, vk) can be 0
then the corresponding attributes are subtracted instead of divided.


As an example consider an attribute fl which is pair minimal distance (see Section 3.5).
If fl(vi, vj)/fl(vi, vk) is greater than 1 than the shortest path between vi and vj is larger
than the shortest path between vi and vk. This attribute can indicate that vk should appear
closer to vi.


Similarly, if fl is pair mutual dependency then fl(vi, vj)/fl(vi, vk) > 1 indicates that the
number of variables whose next-state function depends on both vi and vj is greater than
those depending on both vi and vk. This may indicate that it is preferable to keep vi and
vj close together.


4.5 The Ordering Algorithm


The outcome of the learning phase is a set of decision trees, one for each model. This is the
same as in the case of context-free pairs. In this subsection we describe ways to use these
trees for ordering.


4.5.1 Building the Context Precedence Table


While in the case of pair precedence we had a table of size n2 (where n is the number of
variables), we now produce one such table for each context variable. For each table we
perform inconsistency elimination similar to that described in Section 3.7.1. Here, however,
when we ask the classifier the two questions vj , vk and vk, vj , we add the context variable
vi to the query.


4.5.2 Pair Precedence Ordering with Context Precedence Filtering


The ordering algorithm uses the pair precedence table in the same way as the PPO algo-
rithm. However, it was often found to be the case that the PPO algorithm had several
minimal variables, even after employing the maximal fanout filter. We use the context-
based precedence table to further reduce the size of the set of minimal elements. We use
the variables in the already ordered sequence as context variables and look at their asso-
ciated tables. If the set of minimal elements contains a pair of variables constrained as
vj ≺ vk in one of the tables, we eliminate vk from the set. Figure 12 lists the code which
when added to the PPO algorithm, accepts a variable set Vadd (from which we previously


selected randomly), and returns one variable. We call the new algorithm PPOCPF .


Figure 13 lists the selection of vadd in PPOCPF .
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Input : The set of candidate variables to be added, Vadd, and the merged context precedence
table.
Output : A variable to be added.


Let after(v, Vi, Vj) = {〈vi, vj〉 vi ∈ Vi, vj ∈ Vj|vi ≺ vj ≺ v}.


b.1 V ′
add = {vi ∈ Vadd|after(vi, VInOrder, Vadd) = ∅}


b.2 If V ′
add 6= ∅ then


select randomly one variable from V ′
add


else select randomly one variable from Vadd


Figure 12: Pair precedence ordering with context precedence filtering
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Figure 13: Pair precedence ordering with context precedence filtering vadd selection


4.6 Experiments


We have evaluated the performance of PPOCPF , performing off-line learning on the
training models followed by ordering of the test models. The results are shown in Figure 14.
For comparison we also show the performance of the PPO algorithm and the two expert
algorithms.


The PPOCPF algorithm outperforms all the other algorithms on the two tested models.
The results show that the context-based precedence relations add valuable information.


We have tested the effect of the resources invested in the learning phase on the perfor-
mance of the algorithms. Since the learning examples are tagged based on evaluated training
orders, and since the evaluation of the training orders is the most resource-consuming op-
eration, we used the number of these orders as the resource estimator. Figure 15 shows the
learning curves of our algorithms, that is, it shows how the system performance changes
according to the offline resources consumed (the number of training orders evaluated).


Without testing any random order, our system has no knowledge on which to build
the precedence classifiers, and thus its performance is equivalent to random ordering. The
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Figure 14: Comparative histogram of ordering algorithms
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Figure 15: Learning curves of the PPOCPF algorithm for the two testing models


tagging based on 20 orders is too noisy. While it improves the performance of s6669, it
degrades the performance of s4863. Forty orders are sufficient to generate stable tagging,
which yields improved classifiers and therefore improved ordering quality.


5. Discussion


The work described in this paper presents a general framework for using machine learning
methods to solve the static variable ordering problem. Our method assumes the availability
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of training models. For each training model, the learning algorithm generates a set of
random orders and evaluates them by building their associated BDDs. Each ordered pair
of interacting variables is then tagged as a good example if it appears more frequently
in highly valued orders. The ordered pairs are converted to feature-based representations
and are then given, with their associated tags, to an induction algorithm. When ordering
variables of a new unseen model, the resulting classifiers (one for each model) are used to
determine the ordering of variable pairs. We also present an extension of this method that
learns context-based ordering.


Our algorithm was empirically tested on real models. Its performance was significantly
better than random ordering, meaning that the algorithm was able to acquire useful ordering
knowledge. Our results were slightly better than existing static ordering algorithms hand-
crafted by experts. This result is significant if we compare it to applications of learning
systems to other domains. We would surely appreciate an induction algorithm that produces
a classifier with performance comparable to that of an expert system built by a medical
expert. A chess learning program that is able to learn an evaluation function that is
equivalent in power to a function produced by an expert will be similarly appreciated.
We therefore claim that the ability of or learning algorithm to achieve results that are as
good as manually designed algorithms indicates strong learning capabilities.


In most learning algorithms, we expect to get better performance when the testing
problems are similar to the training problems. In the verification domain, we expect to get
good results when the testing and training models come from a family of similar models.
There are several occasions in which models are similar enough to be considered a family:
Models of different versions of a design under development; models which are reduced
versions of a design, each with respect to a different property; models of designs with
a similar functionality like ALUs, arbiters, pipelines and bus controllers. Unfortunately,
due to the difficulty in obtaining suitable real models for our experiments, we ended up
experimenting with training and testing models that are not related. We expect to achieve
much better results for related models.


Compared with previous work in machine learning, our precedence relations most re-
semble these of Utgoff and Saxena (1987). Our ordering approach, in which we construct a
total order of elements by finding the precedence relation between them, is in essence the
same as that of Cohen, Schapire and Singer (1999). Specifically, the second ordering algo-
rithm of Cohen, Schapire and Singer also uses the topological ordering approach to create
an order. Their algorithm initially finds in the precedence graph the connected components
and, after ordering them (using topological ordering), finds the order in each connected
component. However, since the quality of the final order is determined by the sum of con-
straints adhered to, all topological orders have theoretically the same quality. We found
that in the BDD variable ordering problem not all topological orders have the same quality.
Thus, we developed a topological ordering that takes into consideration those features that
we recognized as true for variable orders in BDDs.


Our work also differs from previous research in that it introduces the notion of context-
based precedence. Using this concept we were able to create an ordering algorithm that
produces the best results.


There are several directions for extending the work described here. One problem with
our current empirical evaluation is the small number of models. In spite of our extensive
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search efforts we were not able to find a large set of suitable examples. The majority of the
known examples are very simple (compared with real industry problems), producing small
model BDD representations with very little variance. We are currently in the process of
approaching companies that use model checking. In this way we hope to obtain additional
real models, preferably from families of the designs described above.


The attributes of the variable pairs were partially based on substantive research in the
field of static algorithms. We could not find such information on which to base context-
based variable attributes. Thus, we also based these attributes on those of the variable
pairs. Nevertheless, we believe that human experts in this field may have information that
can lead to the development of better attributes. The development of such attributes should
help to capture in a better way the context-based precedence concept.


Given our current results, an immediate question is whether the concept of precedence
pairs (context and non-context) can be extended to triplets, quadruples, etc. Such prece-
dence relations take into account a larger part of the model and thus may possess valuable
information. Such an extension, however, could carry high cost during learning and, even
worse, during ordering.


Our framework for solving the static variable ordering problem was shown to be valuable
in model checking. Model checking is only one field of verification in which BDDs are used.
BDDs are also used in verification for simulation and equivalence checking. Our algorithm
can be applied for these problems as well. We are unaware of special static variable ordering
algorithms for these fields, but if such do exist, variable attributes based on these algorithms
should be added.


The most interesting future direction is the generalization of our framework for other
ordering problems. Ordering a set of objects is a very common sub-task in problem solving.
The most common approach for tackling such a problem is to evaluate each object using
a utility function and order the objects according to their utilities. Such an approach is
taken, for example, by most heuristic search algorithms. In many problems, however, it is
much easier to determine the relative order of two objects than to give each object a global
utility value. Few works have applied learning to ordering techniques that are not utility
based (Cohen et al., 1999). The algorithms described in Section 3 and Section 4 can be
applied to any ordering problem if a method for evaluating training orders is available, and
a set of meaningful pair features can be defined.


We believe that the research presented in this paper contributes both to the field of
machine learning and to the field of formal verification. For machine learning, it presents
a new methodology for learning to order elements. This methodology can be applied to
various kinds of ordering problems. For formal verification, it presents new learning-based
techniques for variable ordering. Finding good variable ordering techniques is one of the
key problems in this field.


Appendix A. Variable Pair Attributes


The following definitions and symbols will be used in the attribute description:


• NS(vi) for the next state function of variable vi


• vi . vj to indicate that variable vi depends on variable vj’s value (vj ∈ NS(vi))
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• vi ./ vj to indicate that variable vi interacts with variable vj (vi . vj and/or vj . vi)


• # variables for the number of variables in the model


A.1 Variable Attributes


The attributes computed for vi are


1. Variable-dependence: the number of variables upon which vi depends (|{vj |vi . vj}|)


2. Variable-dependency : the number of variables that depend on vi (|{vj |vj . vi}|)


3. Variable-dependency-size: the sum of function sizes that depend on vi (
∑


vj.vi
|{vk ∈ NS(vj)}|)


4. Variable-dependency-average-size: the average function size dependent on vi
(
∑


vj.vi
|{vk∈NS(vj)}|


|{vj |vj.vi}|


)


5. Variable-dependence-dependency-ratio: the proportion between the number of vari-


ables on which vi depends and the number of variables that depend on it


(


|{vj |vi.vj}|
|{vj |vj.vi}|


)


6. Variable-interaction: the number of variables interacting with vi (|{vj |vi ./ vj}|)


7. Variable-dependence-percentage: the percentage of model variables on which vi de-


pends


(


|{vj |vi.vj}|
#variables


)


8. Variable-dependency-percentage: the percentage of model variables that depend on vi
(


|{vj |vj.vi}|
#variables


)


9. Variable-interaction-percentage: the percentage of model variables interacting with vi
(


|{vj |vi./vj}|
#variables


)


A.2 Variable Pair Attributes


The attributes computed for 〈vi, vj〉 are


• Symmetric attributes


1. Pair-minimal-distance: the minimal distance between vi,vj in the model graph


2. Pair-minimal-distance-eval : the minimal distance between vi,vj in the model
graph divided by the number of times it appears


3. Pair-minimal-dependency : the number of variables that depend on the pair with
the minimal distance


4. Pair-minimal-dependency-eval : the minimal distance between vi,vj in the model
graph divided by number of variables that depend on the minimal distance
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5. Pair-minimal-connection-class: the minimal distance between the vi,vj connec-
tion class (the operators that can be applied on two variables were divided into
classes and the operator that connected the two variables in the minimal distance
class was extracted)


6. Pair-minimal-maximal : the maximal sized NS(vk) connecting the pair in mini-
mal distance


7. Pair-minimal-maximal-eval : the minimal distance between vi,vj in the model
graph divided by maximal sized NS(vk) connecting the pair in minimal distance


8. Pair-sum-distance: the sum of distances between vi,vj in the model graph


9. Pair-dependency-ns-size: the sum of NS(vk) sizes that are dependent on vi and
vj (


∑


vk.vi & vk.vj
|vl ∈ NS(vk)|)


10. Pair-sum-distance-dependency-ratio: the sum of distances between vi,vj in the
model graph divided by sum of NS(vk) sizes that are dependent on vi and vj


11. Pair-mutual-dependence: the number of variables on which both vi,vj depend
(|{vk|vi . vk & vj . vk}|)


12. Pair-mutual-dependency : the number of variables that depend on vi and vj


(|{vk|vk . vi & vk . vj}|)


13. Pair-mutual-interaction: the number of variables that interact with vi and vj


(|{vk|vi ./ vk & vi ./ vk}|)


14. Pair-mutual-ns-dependency : vi depends on vj and vj depends on vi - (vi . vj & vj . vi)


• Non-Symmetric attributes ( those computed for the pair 〈vi, vj〉 with relevance to vi)


1. Pair-ns-distance: the distance between vi,vj in NS(vi)


2. Pair-dependence-ratio: the ratio between the number of variables that vi depends


on and the number of variables that vj depends on


(


|{vl|vi.vl}|
|{vm|vj.vm}|


)


3. Pair-dependency-ratio: the ratio between the number of variables that depend


on vi and the number of variable that depend on vj


(


|{vl|vl.vi}|
|{vm|vm.vj}|


)


4. Pair-interaction-ratio: the ratio between the number of variables that interact


with vi and the number of variables that interact with vj


(


|{vl|vi./vl}|
|{vm|vj./vm}|


)


5. Pair-dependence-flag : the number of variables that vi depends on compared to


the number of variables that vj depends on


(


|{vl|vi.vl}|
|{vm|vj.vm}| >= 1.0


)


6. Pair-interaction-flag : the number of variables that interact with vi compared to


the number of variables that vj interacts with


(


|{vl|vi./vl}|
|{vm|vj./vm}| >= 1.0


)
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