

Journal of Artificial Intelligence Research 19 (2003) 25-71 Submitted 10/02; published 08/03


Answer Set Planning Under Action Costs


Thomas Eiter EITER@KR.TUWIEN.AC.AT


Wolfgang Faber FABER@KR.TUWIEN.AC.AT


Institut für Informationssysteme, TU Wien
Favoritenstr. 9-11, A-1040 Wien, Austria


Nicola Leone LEONE@UNICAL.IT


Department of Mathematics, University of Calabria
I-87030 Rende (CS), Italy


Gerald Pfeifer PFEIFER@DBAI.TUWIEN.AC.AT


Axel Polleres POLLERES@KR.TUWIEN.AC.AT


Institut für Informationssysteme, TU Wien
Favoritenstr. 9-11, A-1040 Wien, Austria


Abstract


Recently, planning based on answer set programming has been proposed as an approach to-
wards realizing declarative planning systems. In this paper, we present the language Kc, which
extends the declarative planning language K by action costs. Kc provides the notion of admissi-
ble and optimal plans, which are plans whose overall action costs are within a given limit resp.
minimum over all plans (i.e., cheapest plans). As we demonstrate, this novel language allows for
expressing some nontrivial planning tasks in a declarative way. Furthermore, it can be utilized for
representing planning problems under other optimality criteria, such as computing “shortest” plans
(with the least number of steps), and refinement combinations of cheapest and fastest plans. We
study complexity aspects of the language Kc and provide a transformation to logic programs, such
that planning problems are solved via answer set programming. Furthermore, we report experi-
mental results on selected problems. Our experience is encouraging that answer set planning may
be a valuable approach to expressive planning systems in which intricate planning problems can be
naturally specified and solved.


1. Introduction


Recently, several declarative planning languages and formalisms have been introduced, which allow
for an intuitive encoding of complex planning problems involving ramifications, incomplete infor-
mation, non-deterministic action effects, or parallel actions (see e.g., Giunchiglia & Lifschitz, 1998;
Lifschitz, 1999b; Lifschitz & Turner, 1999; McCain & Turner, 1998; Giunchiglia, 2000; Cimatti &
Roveri, 2000; Eiter et al., 2000b, 2003b).


While these systems are designed to generate any plans that accomplish the planning goals, in
practice one is often interested in particular plans that are optimal with respect to some objective
function by which the quality (or the cost) of a plan is measured. A common and simple objective
function is the length of the plan, i.e., the number of time steps to achieve the goal. Many systems
are tailored to compute shortest plans. For example, CMBP (Cimatti & Roveri, 2000) and GPT
(Bonet & Geffner, 2000) compute shortest plans in which each step consists of a single action,
while the Graphplan algorithm (Blum & Furst, 1997) and descendants (Smith & Weld, 1998; Weld,


c©2003 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.







EITER, FABER, LEONE, PFEIFER & POLLERES


Anderson, & Smith, 1998) compute shortest plans where in each step actions might be executed in
parallel.


However, there are other, equally important objective functions to consider. In particular, if
executing actions causes some cost, we may desire a plan which minimizes the overall cost of the
actions.


In answer set planning (Subrahmanian & Zaniolo, 1995; Dimopoulos, Nebel, & Koehler, 1997;
Niemelä, 1998; Lifschitz, 1999b), a recent declarative approach to planning where plans are en-
coded by the answer sets of a logic program, the issue of optimal plans under an objective value
function has not been addressed in detail so far (see Section 8 for more details). In this paper, we
address this issue and present an extension of the planning language K (Eiter et al., 2000b, 2003b),
where the user may associate costs with actions, which are then taken into account in the planning
process. The main contributions of our work are as follows.


• We define syntax and semantics of the planning language Kc, which modularly extends the
language K: Costs are associated to an action by extending the action declarations with an
optional cost construct which describes the cost of executing the respective action.


The action costs can be static or dynamic, as they may depend on the current stage of the plan
when an action is considered for execution. Dynamic action costs are important and have
natural applications, as we show on a simple variant of the well-known Traveling Salesperson
Problem, which is cumbersome to model and solve in other, similar languages.


• We analyze the computational complexity of planning in the language Kc, and provide com-
pleteness results for major planning tasks in the propositional setting, which locate them in
suitable slots of the Polynomial Hierarchy and in classes derived from it. These results pro-
vide insight into the intrinsic computational difficulties of the respective planning problems,
and give a handle for efficient transformations from optimal planning to knowledge represen-
tation formalisms, in particular to logic programs.


• We show, in awareness of the results of the complexity analysis, how planning with action
costs can be implemented by a transformation to answer set programming, as done in a sys-
tem prototype that we have developed. The prototype, ready for experiments, is available at
http://www.dlvsystem.com/K/.


• Finally, we present some applications which show that our extended language is capable
of easily modeling optimal planning under various criteria: computing (1) “cheapest” plans
(which minimize overall action costs); (2) “shortest” plans (with the least number of steps);
and, refinement combinations of these, viz. (3) shortest plans among the cheapest, and (4)
cheapest plans among the shortest. Notice that, to our knowledge, task (3) has not been
addressed in other works so far.


The extension of K by action costs provides a flexible and expressive tool for representing
various problems. Moreover, since K’s semantics builds on states of knowledge rather than on
states of the world, we can deal with both incomplete knowledge and plan quality, which is, to the
best of our knowledge, completely novel.


Our experience is encouraging that answer set planning, based on powerful logic programming
engines, allows for the development of declarative planning systems in which intricate planning


26







ANSWER SET PLANNING UNDER ACTION COSTS


tasks can be specified and solved. This work complements and extends the preliminary results
presented in our previous work (Eiter et al., 2002a).


The remainder of this paper is organized as follows. In the next section, we briefly review
the language K by informally presenting its main constituents and features on a simple planning
example. After that, we define in Section 3 the extension of K by action costs, and consider some
first examples for the usage of Kc. Section 4 is devoted to the analysis of complexity issues. In
Section 5, we consider applications of Kc. We show that various types of particular optimization
problems can be expressed in Kc, and also consider some practical examples. In Section 6, we
present a transformation of Kc into answer set programming, and in Section 7, we report about a
prototype implementation and experiments. After a discussion of related work in Section 8, we
conclude the paper with an outlook on ongoing and future work.


2. Short Review of Language K


In this section, we give a brief informal overview of the language K, and refer to (Eiter et al., 2003b)
and to the Appendix for formal details. We assume that the reader is familiar with the basic ideas
of planning and action languages, in particular with the notions of actions, fluents, goals and plans.
For illustration, we shall use the following planning problem as a running example.


Problem 1 [Bridge Crossing Problem] Four persons want to cross a river at night over a plank
bridge, which can only hold up to two persons at a time. They have a lamp, which must be used
when crossing. As it is pitch-dark and some planks are missing, someone must bring the lamp back
to the others; no tricks (like throwing the lamp or halfway crosses, etc.) are allowed.


Fluents and states. A state in K is characterized by the truth values of fluents, describing relevant
properties of the domain of discourse. A fluent may be true, false, or unknown in a state – that is,
states in K are states of knowledge, as opposed to states of the world where each fluent is either true
or false (which can be easily enforced in K, if desired). Formally, a state is any consistent set s of
(possibly negated) legal fluent instances.


An action is applicable only if some precondition (a list of literals over some fluents) holds in
the current state. Its execution may cause a modification of truth values of some fluents.


Background knowledge. Static knowledge which is invariant over time in a K planning domain
is specified in a normal (disjunction-free) Datalog program Π that has a single answer set and can
be viewed as a set of facts. For our example, the background knowledge specifies the four persons:


person(joe). person(jack). person(william). person(averell).


Type declarations. Each fluent or action must have a declaration where the ranges of its argu-
ments are specified. For instance,


crossTogether(X, Y) requires person(X), person(Y), X < Y.1


specifies the arguments of the action crossTogether, where two persons cross the bridge together,
while


across(X) requires person(X).


1. “<” here is used instead of inequality to avoid symmetric rules.


27







EITER, FABER, LEONE, PFEIFER & POLLERES


specifies a fluent describing that a specific person is on the other side of the river. Here the literals
after “requires” must be classical literals of the static background knowledge (like person(X) and
person(Y)), or literals of built-in predicates (such as X < Y). Our implementation of K, the DLVK-
system (Eiter, Faber, Leone, Pfeifer, & Polleres, 2003a), currently supports the built-in predicates
“A < B”, “A <= B”, “A != B” with the obvious meaning of less-than, less-or-equal and inequality for
strings and numbers, the arithmetic built-ins “A = B + C” and “A = B ∗ C” which stand for integer
addition and multiplication, and the predicate “#int(X)” which enumerates all integers (up to a
user-defined limit).


Causation rules. Causation rules (“rules” for brevity) are syntactically similar to rules of the
action language C (Giunchiglia & Lifschitz, 1998; Lifschitz, 1999a; Lifschitz & Turner, 1999) and
are of the basic form:


caused f if B after A.


where A is a conjunction of fluent and action literals, possibly including default negation, B is a
conjunction of fluent literals, again possibly including default negation, and f is a fluent literal.
Informally, such a rule reads: if B is known to be true in the current state and A is known to be true
in the previous state, then f is known to be true in the current state as well. Both the if-part and
the after-part are allowed to be empty (which means that they are true). A causation rule is called
dynamic, if its after-part is not empty, and is called static otherwise.


Causation rules are used to express effects of actions or ramifications. For example,


caused across(X) after cross(X), -across(X).
caused -across(X) after cross(X), across(X).


describe the effects of a single person crossing the bridge in either direction.


Initial state constraints. Static rules can apply to all states or only to the initial states (which
may not be unique). This is expressed by the keywords “always :” and “initially :” preceding
sequences of rules where the latter describes initial state constraints that must be satisfied only in
the initial state. For example,


initially : caused -across(X).
enforces the fluent across to be false in the initial state for any X satisfying the declaration of the
fluent across, i.e., for all persons. The rule is irrelevant for all subsequent states.


Executability of actions. This is expressed in K explicitly. For instance,


executable crossTogether(X, Y) if hasLamp(X).
executable crossTogether(X, Y) if hasLamp(Y).


declares that two persons can jointly cross the bridge if one of them has a lamp. The same action
may have multiple executability statements. A statement


executable cross(X).


with empty body says that cross is always executable, provided that the type restrictions on X are
respected. Dually,


nonexecutable a if B.


prohibits the execution of action a if condition B is satisfied. For example,


nonexecutable crossTogether(X, Y) if differentSides(X, Y).


28







ANSWER SET PLANNING UNDER ACTION COSTS


says that persons X and Y can not cross the bridge together if they are on different sides of the bridge.
In case of conflicts, nonexecutable A overrides executable A.


Default and strong negation. K supports strong negation (“¬,” also written as “-”). Note, how-
ever, that for a fluent f, in a state neither f nor -f needs to hold. In this case the knowledge about
f is incomplete. In addition, weak negation (“not”), interpreted like default negation in answer set
semantics (Gelfond & Lifschitz, 1991), is permitted in rule bodies. This allows for natural model-
ing of inertia and default properties, as well as dealing with incomplete knowledge in general. For
example,


caused hasLamp(joe) if not hasLamp(jack), not hasLamp(william), not hasLamp(averell).


expresses the conclusion that by default, joe has the lamp, whenever it is not evident that any of the
other persons has it.


Macros. K provides a number of macros as “syntactic sugar”. For example,


inertial across(X).


informally states that across(X) holds in the current state, if across(X) held at the previous state,
unless -across(X) is explicitly known to hold. This macro expands to the rule


caused across(X) if not -across(X) after across(X).


Moreover, we can “totalize” the knowledge of a fluent by declaring total f. which is a shortcut for


caused f if not -f. caused -f if not f.


The intuitive meaning of these rules is that unless a truth value for f can be derived, the cases where
f resp. -f is true will both be considered.


Planning domains and problems. In K, a planning domain PD = 〈Π, 〈D,R〉〉 has a background
knowledge Π, action and fluent declarations D, and rules and executability conditions R; a planning
problem P = 〈PD, q〉 has a planning domain PD and a query


q = g1, . . . , gm, not gm+1, . . . , not gn ? (l)


where g1, . . . , gn are ground fluents and l ≥ 0 is the plan length. For instance, the goal query


across(joe), across(jack), across(william), across(averell)? (5)


asks for plans which bring all four persons across in 5 steps.
Plans are defined using a transition-based semantics, where the execution of a set of actions


transforms a current state into a new state. An (optimistic) plan for P is a sequence P = 〈A1, . . . , Al〉
of sets of action instances A1, A2, . . . , Al in a trajectory T = 〈〈s0, A1, s1〉, 〈s1, A2, s2〉, . . . ,
〈sl−1, Al, sl〉〉 from a legal initial state s0 to state sl in which all literals of the goal are true. That
is, starting in s0, the legal transition t1 = 〈s0, A1, s1〉, modeling the execution of the actions in A1


(which must be executable), transforms s0 into the state s1. This is then followed by legal transitions
ti = 〈si−1, Ai, si〉, for i = 2, 3, . . . , l (cf. Appendix for details). A plan is sequential, if |Ai| ≤ 1
for all i = 1, . . . , l, i.e., each step consists of at most one action; such plans can be enforced by
including the keyword noConcurrency.


Besides optimistic plans, in K we also support stronger secure (or conformant) plans. A secure
plan must be guaranteed to work out under all circumstances (Eiter et al., 2000b), regardless of
incomplete information about the initial state and possible nondeterminism in the action effects.


29







EITER, FABER, LEONE, PFEIFER & POLLERES


For better readability, in the following we will not always describe K planning problems P
strictly in terms of sets of declarations, rules and executability conditions, but optionally use the
more compact representation of K programs of the following general form:


fluents : FD


actions : AD


initially : IR


always : CR


goal : q


where the (optional) sections fluents through always consist of lists of fluent declarations FD ,
action declarations AD , initial state constraints IR and executability conditions and causation rules
CR , respectively. Together with the background knowledge Π and the goal query q, they specify
a K planning problem P = 〈〈Π, 〈D,R〉〉, q〉, where D is given by FD plus AD and R by IR plus
CR . 2


2.1 Solving the Bridge Crossing Problem


Using the above constructs, a K encoding of the Bridge Crossing Problem, assuming that joe
initially carries the lamp, is shown in Figure 1. There are simple five-step plans (l = 5), in which
joe always carries the lamp and brings all others across. One of them is:


P = 〈 {crossTogether(joe,jack)}, {cross(joe)}, {crossTogether(joe, william)},
{cross(joe)}, {crossTogether(joe,averell)} 〉


3. Actions with Costs


Using the language K and the system prototype, DLVK, we can already express and solve some
involved planning tasks, cf. (Eiter et al., 2003b). However, K and DLVK alone offer no means
for finding optimal plans under an objective cost function. In general, different criteria of plan
optimality can be relevant, such as optimality wrt. action costs as shown in the next example, which
is a slight elaboration of the Bridge Crossing Problem, and a well-known brain teasing riddle:


Problem 2 [Quick Bridge Crossing Problem] The persons in the bridge crossing scenario need
different times to cross the bridge, namely 1, 2, 5, and 10 minutes, respectively. Walking in two
implies moving at the slower rate of both. Is it possible that all four persons get across within 17
minutes?


On first thought this is infeasible, since the seemingly optimal plan where joe, who is the fastest,
keeps the lamp and leads all the others across takes 19 minutes altogether. Surprisingly, as we will
see, the optimal solution indeed only takes 17 minutes.


In order to allow for an elegant and convenient encoding of such optimization problems, we
extend K to the language Kc in which one can assign costs to actions.


3.1 Syntax of Kc


Let σact, σfl, and σvar denote (finite) sets of action names, fluent names and variable symbols.
Furthermore, let Lact, Lfl, and Ltyp denote the sets of action, fluent, and type literals, respectively,


2. This is also the format of the input files of our system prototype, which will be presented in Section 7.


30







ANSWER SET PLANNING UNDER ACTION COSTS


actions : cross(X) requires person(X).
crossTogether(X, Y) requires person(X), person(Y), X < Y.


takeLamp(X) requires person(X).


fluents : across(X) requires person(X).
differentSides(X, Y) requires person(X), person(Y).
hasLamp(X) requires person(X).


initially : -across(X). hasLamp(joe).


always : executable crossTogether(X, Y) if hasLamp(X).
executable crossTogether(X, Y) if hasLamp(Y).
nonexecutable crossTogether(X, Y) if differentSides(X, Y).


executable cross(X) if hasLamp(X).


executable takeLamp(X).
nonexecutable takeLamp(X) if hasLamp(Y), differentSides(X, Y).


caused across(X) after crossTogether(X, Y), -across(X).
caused across(Y) after crossTogether(X, Y), -across(Y).
caused -across(X) after crossTogether(X, Y), across(X).
caused -across(Y) after crossTogether(X, Y), across(Y).


caused across(X) after cross(X), -across(X).
caused -across(X) after cross(X), across(X).


caused hasLamp(X) after takeLamp(X).
caused -hasLamp(X) after takeLamp(Y), X != Y, hasLamp(X).


caused differentSides(X, Y) if across(X), -across(Y).
caused differentSides(X, Y) if -across(X), across(Y).


inertial across(X).
inertial -across(X).
inertial hasLamp(X).


noConcurrency.


goal : across(joe), across(jack), across(william), across(averell)? (l)


Figure 1: K encoding of the Bridge Crossing Problem


formed from the action names, fluent names, and predicates in the background knowledge (including
built-in predicates), respectively, using terms from a nonempty (finite) set of constants σcon.


Kc extends action declarations as in K with costs as follows.


Definition 3.1 An action declaration d in Kc is of the form:


p(X1, . . . , Xn) requires t1, . . . , tm costs C where c1, . . . , ck. (1)


where (1) p ∈ σact has arity n ≥ 0, (2) X1, . . . , Xn ∈ σvar , (3) t1, . . . , tm, c1, . . . , ck are from
Ltyp such that every Xi occurs in t1, . . . , tm, (4) C is either an integer constant, a variable from the
set of all variables occurring in t1, . . . , tm, c1, . . . , ck (denoted by σvar(d)), or the distinguished
variable time, (5) σvar(d) ⊆ σvar ∪ {time}, and (6) time does not occur in t1, . . . tm.


31







EITER, FABER, LEONE, PFEIFER & POLLERES


If m = 0, the keyword ‘requires’ is omitted; if k = 0, the keyword ‘where’ is omitted and
‘costs C’ is optional. Here, (1) and (2) state that parameters to an action must be variables, and
not fixed values. Informally, (3) means that all parameters of an action must be “typed” in the
requires part. Condition (4) asserts that the cost is locally defined or given by the stage of the
plan, which is referenced through the global variable time. Conditions (5) and (6) ensure that all
variables are known and that type information of action parameters is static, i.e., does not depend
on time.


Planning domains and planning problems in Kc are defined as in K.


For example, in the elaborated Bridge Crossing Problem, the declaration of cross(X) can be
extended as follows: suppose a predicate walk(Person, Minutes) in the background knowledge
indicates that Person takes Minutes to cross. Then, we may simply declare


cross(X) requires person(X) costs WX where walk(X, WX).


3.2 Semantics of Kc


Semantically, Kc extends K by the cost values of actions at points in time. In any plan P =
〈A1, . . . , Al〉, at step 1 ≤ i ≤ l, the actions in Ai are executed to reach time point i.


A ground action p(x1, . . . , xn) is a legal action instance of an action declaration d wrt. a Kc


planning domain PD = 〈Π, 〈D,R〉〉, if there exists some ground substitution θ for σvar(d) ∪
{time} such that Xiθ = xi, for 1 ≤ i ≤ n and {t1θ, . . . , tmθ} ⊆ M , where M is the unique answer
set of the background knowledge Π. Any such θ is called a witness substitution for p(x1, . . . , xn).
Informally, an action instance is legal, if it satisfies the respective typing requirements. Action costs
are now formalized as follows.


Definition 3.2 Let a = p(x1, . . . , xn) be a legal action instance of a declaration d of the form (1)
and let θ be a witness substitution for a. Then


costθ(p(x1, . . . , xn)) =











0, if the costs part of d is empty;
val(Cθ), if {c1θ, . . . , ckθ} ⊆ M ;
undefined otherwise.


where M is the unique answer set of Π and val : σcon → IN is defined as the integer value for
integer constants and 0 for all non-integer constants.


By reference to the variable time, it is possible to define time-dependent action costs; we shall con-
sider an example in Section 5.2. Using costθ, we now introduce well-defined legal action instances
and define action cost values as follows.


Definition 3.3 A legal action instance a = p(x1, . . . , xn) is well-defined iff it holds that (i) for any
time point i ≥ 1, there is some witness substitution θ for a such that time = i and costθ(a) is an
integer, and (ii) costθ(a) = costθ′(a) holds for any two witness substitutions θ, θ ′ which coincide
on time and have defined costs. For any well-defined a, its unique cost at time point i ≥ 1 is given
by costi(a) = costθ(a) where θ is as in (i).


In this definition, condition (i) ensures that some cost value exists, which must be an integer,
and condition (ii) ensures that this value is unique, i.e., any two different witness substitutions θ and
θ′ for a evaluate the cost part to the same integer cost value.


32







ANSWER SET PLANNING UNDER ACTION COSTS


An action declaration d is well-defined, if all its legal instances are well-defined. This will be
fulfilled if, in database terms, the variables X1, . . . , Xn together with time in (1) functionally deter-
mine the value of C . In our framework, the semantics of a Kc planning domain PD = 〈Π, 〈D,R〉〉
is only well-defined for well-defined action declarations in PD. In the rest of this paper, we assume
well-definedness of Kc unless stated otherwise.


Using costi, we now define costs of plans.


Definition 3.4 Let P = 〈PD,Q ? (l)〉 be a planning problem. Then, for any plan P = 〈A1, . . . , Al〉
for P, its cost is defined as


costP(P ) =
∑l


j=1


(


∑


a∈Aj
costj(a)


)


.


A plan P is optimal for P, if costP(P ) ≤ costP(P ′) for each plan P ′ for P, i.e., P has least cost
among all plans for P. The cost of a planning problem P, denoted cost∗P , is given by cost∗P =
costP(P ∗), where P ∗ is an optimal plan for P.


In particular, costP(P ) = 0 if P = 〈〉, i.e., the plan is void. Note that cost∗P is only defined if a
plan for P exists.3


Usually one only can estimate some upper bound of the plan length, but does not know the exact
length of an optimal plan. Although we have only defined optimality for a fixed plan length l, we
will see in Section 5.1 that by appropriate encodings this can be extended to optimality for plans
with length at most l.


Besides optimal plans, also plans with bounded costs are of interest, which motivates the fol-
lowing definition.


Definition 3.5 A plan P for a planning problem P is admissible wrt. cost c, if costP(P )≤c.


Admissible plans impose a weaker condition on the plan quality than optimal plans. They are
particularly relevant if optimal costs are not a crucial issue, as long as the cost stays within a given
limit, and if optimal plans are difficult to compute. We might face questions like “Can I make it
to the airport within one hour?”, “Do I have enough change to buy a coffee?” etc. which amount
to admissible planning problems. As we shall see, computing admissible plans is complexity-wise
easier than computing optimal plans.


3.3 An Optimal Solution for the Quick Bridge Crossing Problem


To model the Quick Bridge Crossing Problem in Kc, we first extend the background knowledge as
follows, where the predicate ‘walk’ describes the time a person needs to cross and ‘max’ determines
which of two persons is slower:


walk(joe, 1). walk(jack, 2). walk(william, 5). walk(averell, 10).


max(A, B, A) :- walk( , A), walk( , B), A >= B.


max(A, B, B) :- walk( , A), walk( , B), B > A.


Next, we modify the declarations for cross and crossTogether from Figure 1 by adding costs:


3. In the following, subscripts will be dropped when clear from the context.


33







EITER, FABER, LEONE, PFEIFER & POLLERES


cross(X) requires person(X) costs WX where walk(X, WX).
crossTogether(X, Y) requires person(X), person(Y), X < Y


costs Wmax where walk(X, WX), walk(Y, WY), max(WX, WY, Wmax).


The declaration of takeLamp remains unchanged, as the time to hand over the lamp is negligible.
Using this modified planning domain, the 5-step plan reported in Section 2.1 has cost 19. Ac-


tually, it is optimal for plan length l = 5. However, when we relinquish the first intuition that the
fastest person, joe, always has the lamp and consider the problem under varying plan length, then
we can find the following 7-step plan:


P = 〈 {crossTogether(joe,jack)}, {cross(joe)}, {takeLamp(william)},
{crossTogether(william, averell)}, {takeLamp(jack)}, {cross(jack)},
{crossTogether(joe,jack)} 〉


Here, costP(P ) = 17, and thus P is admissible with respect to cost 17. This means that the Quick
Bridge Crossing Problem has a positive answer. In fact, P has least cost over all plans of length
l = 7, and is thus an optimal 7-step plan. Moreover, P has also least cost over all plans that emerge
if we consider all plan lengths. Thus, P is an optimal solution for the Quick Bridge Crossing
Problem under arbitrary plan length.


3.4 Bridge Crossing under Incomplete Knowledge


The language K is well-suited to model problems which involve uncertainty such as incomplete
initial states or non-deterministic action effects at a qualitative level. The enriched language Kc


gracefully extends to secure (conformant) plans as well, which must reach the goal under all cir-
cumstances (Eiter et al., 2000b, 2003b). More precisely, an optimistic plan 〈A1, . . . , An〉 is secure,
if it is applicable under any evolution of the system: starting from any legal initial state s0, the first
action set A1 (for plan length l ≥ 1) can always be executed (i.e., some legal transition 〈s0, A1, s1〉
exists), and for every such possible state s1, the next action set A2 can be executed etc., and after
having performed all actions, the goal is always accomplished (cf. Appendix for a formal definition).


While secure plans inherit costs from optimistic plans, there are different possibilities to define
optimality of secure plans. We may consider a secure plan as optimal, if it has least cost either


• among all optimistic plans, or


• among all secure plans only.


In the first alternative, there might be planning problems which have secure plans, but no optimal
secure plans. For this reason, the second alternative appears to be more appropriate.


Definition 3.6 A secure plan P is optimal for a planning problem P, if it has least cost among all
secure plans for P, i.e., costP(P ) ≤ costP(P ′) for each secure plan P ′ for P. The secure cost of
P, denoted cost∗sec(P), is cost∗sec(P) = costP(P ∗), where P ∗ is any optimal secure plan for P.


The notion of admissible secure plans is defined analogously.


For example, assume that it is known that at least one person in the bridge scenario has a lamp,
but that neither the exact number of lamps nor the allocation of lamps to persons is known. If the
four desperate persons now ask for a plan which brings them safely across the bridge, we need a
(fast) secure plan that works under all possible initial situations. In Kc, this can be modeled by
replacing the initially-part with the following declarations:


34







ANSWER SET PLANNING UNDER ACTION COSTS


initially : total hasLamp(X).
caused false if -hasLamp(joe), -hasLamp(jack),


-hasLamp(william), -hasLamp(averell).
The first statement says that each person either has a lamp or not, and the second that at least


one of them must have a lamp. For a detailed discussion on the use of the “total” statement for
modeling incomplete knowledge and non-determinism we refer to (Eiter et al., 2003b).


As we can easily see, an optimal secure solution will take at least 17 minutes, since the original
case (where only joe has a lamp) is one of the possible initial situations, for which the cost of
an optimistic plan which is optimal over all plan lengths was 17. However, a secure plan which
is optimal over all plan lengths requires at least 8 steps now (but no higher cost): Different from
optimistic plans, we need one extra step at the beginning which makes sure that one of those who
walk first (above, joe and jack) has the lamp, which is effected by the proper takeLamp action.


An example of such a plan is the following which has cost 17:


P = 〈 {takeLamp(joe)}, {crossTogether(joe, jack)}, {cross(joe)},
{takeLamp(william)}, {crossTogether(william, averell)}, {takeLamp(jack)},
{cross(jack)}, {crossTogether(joe, jack)} 〉


We can easily check that P works for every possible initial situation. Thus, it is an optimal (secure)
plan for plan length 8, and moreover also for arbitrary plan length.


4. Computational Complexity


In this section, we will address the computational complexity of Kc, complementing similar results
for the language K (Eiter et al., 2003b).


4.1 Complexity Classes


We assume that the reader is familiar with the basic notions of complexity theory, such as P, NP,
problem reductions and completeness; see e.g. (Papadimitriou, 1994) and references therein. We
recall that the Polynomial Hierarchy (PH) contains the classes ΣP


0 = ΠP
0 = ∆P


0 = P and ΣP
i+1 =


NPΣP
i , ΠP


i+1 = co-ΣP
i+1, ∆P


i+1 = PΣP
i , for i ≥ 0. In particular, ΣP


1 = NP and ∆P
2 = PNP.


Note that these classes contain decision problems (i.e., problems where the answer is “yes” or
“no”). While checking well-definedness and deciding plan existence are such problems, computing
a plan is a search problem, where for each problem instance I a (possibly empty) finite set S(I) of
solutions exists. To solve such a problem, a (possibly nondeterministic) algorithm must compute the
alternative solutions from this set in its computation branches, if S(I) is not empty. More precisely,
search problems are solved by transducers, i.e., Turing machines equipped with an output tape. If
the machine halts in an accepting state, then the contents of the output tape is the result of the
computation. Observe that a nondeterministic machine computes a (partial) multi-valued function.


As an analog to NP, the class NPMV contains those search problems where S(I) can be com-
puted by a nondeterministic Turing machine in polynomial time; for a precise definition, see (Sel-
man, 1994). In analogy to ΣP


i+1, by ΣP
i+1MV = NPMVΣP


i , i ≥ 0, we denote the generalization of
NPMV where the machine has access to a ΣP


i oracle.
Analogs to the classes P and ∆P


i+1, i ≥ 0, are given by the classes FP and F∆P
i+1, i ≥ 0,


which contain the partial single-valued functions (that is, |S(I)| ≤ 1 for each problem instance


35







EITER, FABER, LEONE, PFEIFER & POLLERES


I) computable in polynomial time using no resp. a ΣP
i oracle. We say, abusing terminology, that


a search problem A is in FP (resp. F∆P
i+1), if there is a partial (single-valued) function f ∈ FP


(resp. f ∈ F∆P
i+1) such that f(I) ∈ S(I) and f(I) is undefined iff S(I) = ∅. For example,


computing a satisfying assignment for a propositional CNF (FSAT) and computing an optimal tour
in the Traveling Salesperson Problem (TSP) are in F∆P


2 under this view, cf. (Papadimitriou, 1994).
A partial function f is polynomial-time reducible to another partial function g, if there are


polynomial-time computable functions h1 and h2 such that f(I) = h2(I, g(h1(I))) for all I and
g(h1(I)) is defined whenever f(I) is defined. Hardness and completeness are defined as usual.


4.2 Problem Setting


We will focus on the following questions:


Checking Well-Definedness: Decide whether a given action description is well-defined wrt. a
given planning domain PD, resp. whether a given planning domain PD is well-defined.


Admissible Planning: Decide whether for planning problem P an admissible (optimistic/secure)
plan exists wrt. a given cost value c, and find such a plan.


Optimal Planning: Find an optimal (optimistic/secure) plan for a given planning problem.


Notice that (Eiter et al., 2003b) focused on deciding the existence of optimistic/secure plans,
rather than on actually finding plans, and presented a detailed study of the complexity of this task
under various restrictions for ground (propositional) planning problems. In this paper, we confine
the discussion to the case of planning problems P = 〈PD,Q ? (l)〉 which look for polynomial length
plans, i.e., problems where the plan length l is bounded by some polynomial in the size of the input.


We shall consider here mainly ground (propositional) planning, and assume that the planning
domains are well-typed and that the unique model of the background knowledge can be computed
in polynomial time. In the general case, by well-known complexity results on logic programming,
cf. (Dantsin, Eiter, Gottlob, & Voronkov, 2001), already evaluating the background knowledge is
EXPTIME-hard, and the problems are thus provably intractable. We recall the following results,
which appear in (or directly follow from) previous work (Eiter et al., 2003b).


Proposition 4.1 Deciding, given a propositional planning problem P and a sequence P = 〈A1, . . . ,


Al〉 of action sets, (i) whether a given sequence T = 〈t1, . . . , tl〉 is a legal trajectory witnessing that
P is an optimistic plan for P is feasible in polynomial time, and (ii) whether P is a secure plan for
P is ΠP


2 -complete.


4.3 Results


We start by considering checking well-definedness. For this problem, it is interesting to investigate
the non-ground case, assuming that the background knowledge is already evaluated. This way we
can assess the intrinsic difficulty of this task obtaining the following result.


Theorem 4.2 (Complexity of checking well-definedness) Given a Kc planning domain PD =
〈Π, 〈D,R〉〉 and the unique model M of Π, checking (i) well-definedness of a given action dec-
laration d of form (1) wrt. PD and (ii) well-definedness of PD are both ΠP


2 -complete.


36







ANSWER SET PLANNING UNDER ACTION COSTS


Proof. Membership: As for (i), d is violated if it has a nonempty costs part and a legal action
instance a = p(x1, . . . , xn) such that either (1) there exist witness substitutions θ and θ ′ for a such
that timeθ = timeθ′, costθ(a) = val(Cθ) and costθ′(a) = val(Cθ′), and val(Cθ) 6= val(Cθ′),
or (2) there is no witness substitution θ for a such that costθ(a) = val(Cθ) is an integer. Such
an a can be guessed and checked, via a witness substitution, in polynomial time, and along with
a also θ and θ′ as in (1); note that, by definition, all variables must be substituted by constants
from the background knowledge (including numbers), and so must be values for time if it occurs in
c1, . . . , ck . Given a, we can decide (2) with the help of an NP oracle. In summary, disproving well-
definedness of d is nondeterministically possible in polynomial time with an NP oracle. Hence,
checking well-definedness of d is in co-ΣP


2 = ΠP
2 . The membership part of (ii) follows from (i),


since well-definedness of PD reduces to well-definedness of all action declarations in it, and ΠP
2 is


closed under conjunctions.
Hardness: We show hardness for (i) by a reduction from deciding whether a quantified Boolean
formula (QBF)


Q = ∀X∃Y.c1 ∧ · · · ∧ ck


where each ci = Li,1 ∨ · · · ∨ Li,`i
, i = 1, . . . , k, is a disjunction of literals Li,j on the atoms


X = x1, . . . , xn and Y = xn+1 . . . , xm, is true. Without loss of generality, we may assume that
each ci contains three (not necessarily distinct) literals, which are either all positive or all negative.


We construct a planning domain PD and d as follows. The background knowledge, Π, is


bool(0). bool(1).
pos(1, 0, 0). pos(0, 1, 0). pos(0, 0, 1). pos(1, 1, 0). pos(1, 0, 1). pos(0, 1, 1). pos(1, 1, 1).
neg(0, 0, 0). neg(1, 0, 0). neg(0, 1, 0). neg(0, 0, 1). neg(1, 1, 0). neg(1, 0, 1). neg(0, 1, 1).


Here, bool declares the truth values 0 and 1. The facts pos(X1, X2, X3) and neg(X1, X2, X3) state
those truth assignments to X1, X2, and X3 such that the positive clause X1 ∨ X2 ∨ X3 resp. the
negative clause ¬X1 ∨ ¬X2 ∨ ¬X3 is satisfied.


The rest of the planning domain PD consists of the single action declaration d of form


p(V1, ..., Vn) requires bool(V1), ..., bool(Vn) costs 0 where c∗1, ..., c
∗


k.


where


c∗i =


{


pos(Vi,1, Vi,2, Vi,3), if ci = xi,1 ∨ xi,2 ∨ xi,3,


neg(Vi,1, Vi,2, Vi,3), if ci = ¬xi,1 ∨ ¬xi,2 ∨ ¬xi,3,
i = 1, . . . , k.


For example, the clause c = x1 ∨ x3 ∨ x6 is mapped to c∗ = pos(V1, V3, V6). It is easy to see that
each legal action instance a = p(b1, . . . , bn) of d corresponds 1-1 to the truth assignment σa of X


given by σa(xi) = bi, for i = 1, . . . , n. Furthermore, a has a cost value defined (which is 0) iff the
formula ∃Y (c1σa ∧ · · · ∧ ckσa) is true. Thus, d is well-defined wrt. PD iff Q is true. Since PD and
d are efficiently constructible, this proves ΠP


2 -hardness. 2


Observe that in the ground case, checking well-definedness is much easier. Since no substitu-
tions need to be guessed, the test in the proof of Theorem 4.2 is polynomial. Thus, by our assumption
on the efficient evaluation of the background program, we obtain:


Corollary 4.3 In the ground (propositional) case, checking well-definedness of an action descrip-
tion d wrt. a Kc planning domain PD = 〈Π, 〈D,R〉〉, resp. of PD as a whole, is possible in
polynomial time.


37







EITER, FABER, LEONE, PFEIFER & POLLERES


We remark that checking well-definedness can be expressed as a planning task in K, and also
by a logic program; we refer to (Eiter, Faber, Leone, Pfeifer, & Polleres, 2002b) for details.


We now turn to computing admissible plans.


Theorem 4.4 (Complexity of admissible planning) For polynomial plan lengths, deciding whether
a given (well-defined) propositional planning problem 〈PD, q〉 has (i) some optimistic admissible
plan wrt. to a given integer b is NP-complete, and finding such a plan is complete for NPMV, (ii)
deciding whether 〈PD, q〉 has some secure admissible plan wrt. to a given integer b is ΣP


3 -complete,
and computing such a plan is ΣP


3 MV-complete. Hardness holds in both cases for fixed plan length.


As for the proof we refer to the Appendix. We finally address the complexity of computing
optimal plans.


Theorem 4.5 (Complexity of optimal planning) For polynomial plan lengths, (i) computing an
optimal optimistic plan for 〈PD,Q ? (l)〉 in Kc is F∆P


2 -complete, and (ii) computing an optimal
secure plan for 〈PD,Q ? (l)〉 in Kc is F∆P


4 -complete. Hardness holds in both cases even if the plan
length l is fixed.


The proof again can be found in the in the Appendix.


We remark that in the case of unbounded plan length, the complexity of computing plans in-
creases and requires (at least) exponential time in general, since plans might have exponential length
in the size of the planning problem. Thus, in practical terms, constructing such plans is infeasible,
since they occupy exponential space. Furthermore, as follows from previous results (Eiter et al.,
2003b), deciding the existence of an admissible optimistic resp. secure plan for a planning prob-
lem wrt. a given cost is PSPACE-complete resp. NEXPTIME-complete. We leave a more detailed
analysis of complexity aspects of Kc for further work.


5. Applications


5.1 Cost Efficient versus Time Efficient Plans


In this section, we show how the language Kc can be used to minimize plan length in combination
with minimizing the costs of a plan. This is especially interesting in problem settings where parallel
actions are allowed (cf. (Kautz & Walser, 1999; Lee & Lifschitz, 2001)).


For such domains with parallel actions, Kautz and Walser propose various criteria to be op-
timized, for instance the number of actions needed, or the number of necessary time steps when
parallel actions are allowed, as well as combinations of these two criteria (1999). By exploiting
action costs and proper modeling, we can solve optimization problems of this sort. For example,
we can single out plans with a minimal number of actions simply by assigning cost 1 to all possible
actions.


We consider the following optimization problems:


(α) Find a plan with minimal cost (cheapest plan) for a given number of steps.


(β) Find a plan with minimal time steps (shortest plan).


(γ) Find a shortest among the cheapest plans.


38







ANSWER SET PLANNING UNDER ACTION COSTS


(δ) Find a cheapest among the shortest plans.


Problem (α) is what we have already defined as optimal plans so far. We will now show how to
express (β) in terms of optimal cost plans as well, and how to extend this elaboration with respect
to the combinations (γ) and (δ).


5.1.1 CHEAPEST PLANS WITH GIVEN PLAN LENGTH (α)


As a guiding example, we refer to Blocks World with parallel moves allowed, where apart from
finding shortest plans also minimizing the total number of moves is an issue. A Kc encoding for this
domain, where plans are serializable, is shown in Figure 2. Serializability here means that parallel
actions are non-interfering and can be executed sequentially in any order, i.e. the parallel plan can
be arbitrarily “unfolded” to a sequential plan.


fluents : on(B, L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).


actions : move(B, L) requires block(B), location(L) costs 1.


always : executable move(B, L) if B != L.


nonexecutable move(B, L) if blocked(B).
nonexecutable move(B, L) if blocked(L).
nonexecutable move(B, L) if move(B1, L), B < B1, block(L).
nonexecutable move(B, L) if move(B, L1), L < L1.


nonexecutable move(B, B1) if move(B1, L).


caused on(B, L) after move(B, L).
caused blocked(B) if on(B1, B).
caused moved(B) after move(B, L).
caused on(B, L) if not moved(B) after on(B, L).


Figure 2: Kc encoding for the Blocks World domain


The planning problem emerging from the initial state and the goal state depicted in Figure 3 can
be modeled using the background knowledge Πbw:


block(1). block(2). block(3). block(4). block(5). block(6).
location(table).
location(B) :- block(B).


and extending the program in Figure 2 as follows:
initially : on(1, 2). on(2, table). on(3, 4). on(4, table). on(5, 6). on(6, table).


goal : on(1, 3), on(3, table), on(2, 4), on(4, table), on(6, 5), on(5, table) ?(l)


42
31


3 4
21


6
5


5
6


Figure 3: A simple Blocks World instance


39







EITER, FABER, LEONE, PFEIFER & POLLERES


Each move is penalized with cost 1, which results in a minimization of the total number of moves.
Let Pl denote the planning problem for plan length l.


For l = 2, we have an optimal plan which involves six moves, i.e. cost∗P2
= 6:


P2 = 〈 {move(1, table), move(3, table), move(5,table)}, {move(1, 3), move(2, 4), move(6, 5)} 〉


By unfolding the steps, this plan gives rise to similar plans of length l = 3, . . . , 6 that have cost 6.
For l = 3, we can find among others the following optimal plan, which has cost 5:


P3 = 〈 {move(3, table)}, {move(1, 3), move(5, table)}, {move(2, 4), move(6, 5)} 〉


This plan can not be further parallelized to having only two steps. For any plan length l > 3, we
will obtain optimal plans similar to P3, extended by void steps. Thus a plan which is cheapest over
all plan lengths has cost 5 and needs three steps. Note that shortest parallel plans (of length 2) are
more expensive, as explained above.


5.1.2 SHORTEST PLANS (β)


Intuitively, it should be possible to include the minimization of time steps in the cost function. We
describe a preprocessing method which, given a K planning domain PD, a list Q of ground literals,
and an upper bound i ≥ 0 for the plan length, generates a planning problem Pβ(PD,Q, i) such that
the optimal plans for Pβ correspond to shortest plans which reach Q in PD in at most i steps, i.e.,
to plans for 〈PD,Q ? (l)〉 such that l ≤ i is minimal. We assume that no action costs are specified
in the original planning domain PD, and minimizing time steps is our only target.


First we rewrite the planning domain PD to PDβ as follows: We introduce a new distinct fluent
gr and a new distinct action finish, defined as follows:


fluents : gr.


actions : finish costs time.


Intuitively, the action finish represents a final action, which we use to finish the plan. The later
this action occurs, the more expensive the plan as we assign time as cost. The fluent gr (“goal
reached”) shall be true and remain true as soon as the goal has been reached, and it is triggered by
the finish action.


This can be modeled in Kc by adding the following statements to the always section of the
program:


executable finish if Q, not gr.


caused gr after finish.


caused gr after gr.


Furthermore, we want finish to occur exclusively and we want to block the occurrence of any
other action once the goal has been reached. Therefore, for every action A in PD, we add


nonexecutable A if finish.


and add not gr to the if-part of each executability condition for A. Finally, to avoid any inconsis-
tencies from static or dynamic effects as soon as the goal has been reached, we add not gr to the
if part of any causation rule of the PD except nonexecutable rules which remain unchanged.4


We define now Pβ(PD,Q, i) = 〈PDβ , gr ?(i + 1)〉. We take i + 1 as the plan length since we
need one additional step to execute the finish action.


4. There is no need to rewrite nonexecutable rules because the respective actions are already “switched off” by
rewriting the executability conditions.


40







ANSWER SET PLANNING UNDER ACTION COSTS


By construction, it is easy to see that any optimal plan P = 〈A1, . . . , Aj , Aj+1, . . . , Ai+1〉 for
the planning problem Pβ must have Aj+1 = {finish} and Aj+2 = . . . = Ai+1 = ∅ for some
j ∈ {0, . . . , i}. We thus have the following desired property.


Proposition 5.1 The optimal plans for Pβ are in 1-1 correspondence to the shortest plans reach-
ing Q in PD. More precisely, P = 〈A1, . . . , Aj+1, ∅, . . . , ∅〉 is an optimal optimistic plan for
Pβ(PD,Q, i) and Aj+1 = {finish} if and only if P ′ = 〈A1, . . . , Aj〉 is an optimistic plan for
〈PD,Q ? (j)〉 where j ∈ {0, . . . , i}, and 〈PD,Q ? (j ′)〉 has no optimistic plan for each j ′ < j.


In our Blocks World example, using this method we get all 2-step plans, if we choose i ≥ 2.
To compute shortest plans over all plan lengths, we can set the upper bound i large enough such


that plans of length l ≤ i are guaranteed to exist. A trivial such bound is the total number of legal
states which is in general exponential in the number of fluents.


However, many typical applications have an inherent, much smaller bound on the plan length.
For instance, in a Blocks World with n blocks, any goal configuration can be reached within at most
2n − sinit − sgoal steps, where sinit and sgoal are the numbers of stacks in the initial and the goal
state, respectively.5 Therefore, 6 is an upper bound for the plan length of our simple instance.


We remark that this approach for minimizing plan length is only efficient if an upper bound
close to the optimum is known. Searching for a minimum length plan by iteratively increasing the
plan length may be much more efficient if no such bound is known, since a weak upper bound can
lead to an explosion of the search space (cf. the benchmarks in Section 7.2).


5.1.3 SHORTEST AMONG THE CHEAPEST PLANS (γ)


In the previous subsection, we have shown how to calculate shortest plans for K programs without
action costs. Combining arbitrary Kc programs and the rewriting method described there is easy.
If we want to find a shortest among the cheapest plans, we can use the same rewriting, with just a
little change. All we have to do is setting the costs of all actions except finish at least as high as
the highest possible cost of the finish action. This is is obviously the plan length i + 1. So, we
simply modify all action declarations


A requires B costs C where D.


in Pβ by multiplying the costs with factor i + 1:
A requires B costs C1 where C1 = (i + 1) ∗ C, D.


This lets all other action costs take priority over the cost of finish and we can compute plans
satisfying criterion (γ). Let Pγ denote the resultant planning problem. Then we have:


Proposition 5.2 The optimal plans for Pγ are in 1-1 correspondence to the shortest among the
cheapest plans reaching Q in PD within i steps. More precisely, P = 〈A1, . . . , Aj+1, ∅, . . . , ∅〉
is an optimal optimistic plan for Pγ(PD,Q, i) and Aj+1 = {finish} if and only if (i) P ′ =
〈A1, . . . , Aj〉 is a plan for Pj = 〈PD,Q ? (j)〉, where j ∈ {0, . . . , i}, and (ii) if P ′′ = 〈A1, . . . , Aj′〉
is any plan for Pj′ = 〈PD,Q ? (j ′)〉 where j ′ ≤ i, then either costPj′


(P ′′) > costPj
(P ′) or


costPj′
(P ′′) = costPj


(P ′) and j′ ≥ j.


Figure 4 shows Pγ for our Blocks World instance where i = 6. One optimal plan for Pγ is


5. One can solve any Blocks World problem sequentially by first unstacking all blocks which are not on the table
(n − sinit steps) and then building up the goal configuration (n − sgoal steps).


41







EITER, FABER, LEONE, PFEIFER & POLLERES


fluents : on(B, L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).
gr.


actions : move(B, L) requires block(B), location(L) costs C where C = 7 ∗ 1.
finish costs time.


always : executable move(B, L) if B != L, not gr.


nonexecutable move(B, L) if blocked(B).
nonexecutable move(B, L) if blocked(L).
nonexecutable move(B, L) if move(B1, L), B < B1, block(L).
nonexecutable move(B, L) if move(B, L1), L < L1.


nonexecutable move(B, B1) if move(B1, L).


caused on(B, L) if not gr after move(B, L).
caused blocked(B) if on(B1, B), not gr.


caused moved(B) if not gr after move(B, L).
caused on(B, L) if not moved(B), not gr after on(B, L).


executable finish if on(1, 3), on(3, table), on(2, 4), on(4,table),
on(6, 5), on(5, table), not gr.


caused gr after finish.


caused gr after gr.


nonexecutable move(B, L) if finish.


initially : on(1, 2). on(2, table). on(3, 4). on(4, table). on(5, 6). on(6, table).


goal : gr? (7)


Figure 4: Computing the shortest plan for a Blocks World instance with a minimum number of
actions


P = 〈 {move(3, table)}, {move(1, 3), move(5, table)},
{move(2, 4), move(6, 5)}, {finish}, ∅, ∅, ∅ 〉,


which has costPγ (P ) = 39. We can now compute the optimal cost wrt. optimization (γ) by sub-
tracting the cost of finish and dividing by i + 1: (39 − 4) ÷ (i + 1) = 35 ÷ 7 = 5. Thus, we
need a minimum of 5 moves to reach the goal. The minimal number of steps is obviously all steps,
except the final finish action, i.e. 3. Thus, we need at least 3 steps for a plan with five moves.


5.1.4 CHEAPEST AMONG THE SHORTEST PLANS (δ)


Again, we can use the rewriting for optimization (β). The cost functions have to be adapted similarly
as in the previous subsection, such that now the cost of the action finish takes priority over all other
actions costs. To this end, it is sufficient to set the cost of finish high enough, which is achieved
by multiplying it with a factor F higher than the sum of all action costs of all legal action instances
at all steps j = 1, . . . , i + 1. Let Pδ denote the resulting planning problem. We have:


Proposition 5.3 The optimal plans for Pδ are in 1-1 correspondence to the cheapest among the
shortest plans reaching Q in PD within i steps. More precisely, P = 〈A1, . . . , Aj+1, ∅, . . . , ∅〉


42







ANSWER SET PLANNING UNDER ACTION COSTS


is an optimal optimistic plan for Pδ(PD,Q, i) and Aj+1 = {finish} if and only if (i) P ′ =
〈A1, . . . , Aj〉 is a plan for Pj = 〈PD,Q ? (j)〉, where j ∈ {0, . . . , i}, and (ii) if P ′′ = 〈A1, . . . , Aj′〉
is any plan for Pj′ = 〈PD,Q ? (j ′)〉 where j ′ ≤ i, then either j ′ > j, or j′ = j and costPj′


(P ′′) ≥
costPj


(P ′).


In our example, there are 36 possible moves. Thus, we could take F = 36 ∗ (i + 1) and
would set the costs of finish to time ∗ 36 ∗ (i + 1). However, we only need to take into account
those actions which can actually occur simultaneously. In our example, at most six blocks can
be moved in parallel. Therefore, it is sufficient to set F = 6 ∗ (i + 1) and assign finish cost
time ∗ F = time ∗ 42. Accordingly, the action declarations are modified as follows:


actions : move(B, L) requires block(B), location(L) costs 1.


finish costs C where C = time ∗ 42.


An optimal plan for the modified planning problem Pδ is:


P = 〈 {move(1, table), move(3, table), move(5,table)},
{move(1, 3), move(2, 4), move(6, 5)}, {finish}, ∅, ∅, ∅, ∅〉


We have costPδ
(P ) = 132. Here, we can compute the optimal cost wrt. optimization (δ) by simply


subtracting the cost of finish, i.e. 132 − 3 ∗ 42 = 6, since finish occurs at time point 3.
Consequently, we need a minimum of 6 moves for a shortest plan, which has length 3 − 1 = 2.


And indeed, we have seen that (and how) the optimization problems (α) through (δ) can be
represented in Kc. We remark that the transformations Pβ , Pγ , and Pδ all work under the restrictions
to secure and/or sequential plans as well.


5.2 Traveling Salesperson


As another illustrating example for optimal cost planning, we will now introduce some elaboration
of the Traveling Salesperson Problem.


Traveling Salesperson Problem (TSP). We start with the classical Traveling Salesperson Prob-
lem (TSP), where we have a given set of cities and connections (e.g., roads, airways) of certain costs.
We want to know a most economical round trip which visits all cities exactly once and returns to
the starting point (if such a tour exists). Figure 5 shows an instance representing the capitals of all
Austrian provinces. The dashed line is a flight connection, while all other connections are roads;
each connection is marked with the costs in traveling hours.


brg ... Bregenz
eis ... Eisenstadt
gra ... Graz
ibk ... Innsbruck
kla ... Klagenfurt
lin  ... Linz
sbg ... Salzburg
stp ... St. Pölten
vie ... Vienna


1


2 5


2


1
2


1


2


1lin stp


2
brg ibk 2


3


2
2


2
1


eis


vie


kla


gra


sbg
1 3


Figure 5: TSP in Austria


43







EITER, FABER, LEONE, PFEIFER & POLLERES


We represent this in Kc as follows. The background knowledge ΠTSP defines two predicates
city(C) and conn(F, T, C) representing the cities and their connections with associated costs. Con-
nections can be traveled in both ways:


conn(brg, ibk, 2). conn(ibk, sbg, 2). conn(ibk, vie, 5). conn(ibk, kla, 3).
conn(sbg, kla, 2). conn(sbg, gra, 2). conn(sbg, lin, 1). conn(sbg, vie, 3).
conn(kla, gra, 2). conn(lin, stp, 1). conn(lin, vie, 2). conn(lin, gra, 2).
conn(gra, vie, 2). conn(gra, eis, 1). conn(stp, vie, 1). conn(eis, vie, 1).
conn(stp, eis, 2). conn(vie, brg, 1).
conn(B, A, C) :- conn(A, B, C).
city(T) :- conn(T, , ).


A possible encoding of TSP starting in Vienna (vie) is the Kc program in Figure 6. It includes two
actions for traveling from one city to another and for directly returning to the starting point at the
end of the round trip as soon as all cities have been visited.


actions : travel(X, Y) requires conn(X, Y, C) costs C.


return from(X) requires conn(X, vie, C) costs C.


fluents : unvisited. end.


in(C) requires city(C).
visited(C) requires city(C).


always : executable travel(X, Y) if in(X).
nonexecutable travel(X, Y) if visited(Y).
executable return from(X) if in(X).
nonexecutable return from(X) if unvisited.


caused unvisited if city(C), not visited(C).
caused end after return from(X).
caused in(Y) after travel(X, Y).
caused visited(C) if in(C).
inertial visited(C).


noConcurrency.


initially : in(vie).
goal : end? (9)


Figure 6: Traveling Salesperson


The problem has ten optimal 9-step solutions with cost 15. We show only the first five here, as the
others are symmetrical:


P1 = 〈 {travel(vie, stp)}, {travel(stp, eis)}, {travel(eis, gra)}, {travel(gra, lin)},
{travel(lin, sbg)}, {travel(sbg, kla)}, {travel(kla, ibk)}, {travel(ibk, brg)},
{return from(brg)} 〉


P2 = 〈 {travel(vie, eis)}, {travel(eis, stp)}, {travel(stp, lin)}, {travel(lin, sbg)},
{travel(sbg, gra)}, {travel(gra, kla)}, {travel(kla, ibk)}, {travel(ibk, brg)},
{return from(brg)} 〉


P3 = 〈 {travel(vie, eis)}, {travel(eis, stp)}, {travel(stp, lin)}, {travel(lin, gra)},
{travel(gra, kla)}, {travel(kla, sbg)}, {travel(sbg, ibk)}, {travel(ibk, brg)},
{return from(brg)} 〉


P4 = 〈 {travel(vie, lin)}, {travel(lin, stp)}, {travel(stp, eis)}, {travel(eis, gra)},
{travel(gra, kla)}, {travel(kla, sbg)}, {travel(sbg, ibk)}, {travel(ibk, brg)},


44







ANSWER SET PLANNING UNDER ACTION COSTS


{return from(brg)} 〉
P5 = 〈 {travel(vie, gra)}, {travel(gra, eis)}, {travel(eis, stp)}, {travel(stp, lin)},


{travel(lin, sbg)}, {travel(sbg, kla)}, {travel(kla, ibk)}, {travel(ibk, brg)},
{return from(brg)} 〉


TSP with variable costs. Let us now consider an elaboration of TSP, where we assume that
the costs of traveling different connections may change during the trip. Note that three of the
five solutions in our example above include traveling from St.Pölten to Eisenstadt or vice versa on
the second day. Let us now assume that the salesperson, who starts on Monday, has to face some
exceptions which might increase the cost of the trip. For instance, (i) heavy traffic jams are expected
on Tuesdays on the route from St.Pölten to Eisenstadt or (ii) the salesperson shall not use the flight
connection between Vienna and Bregenz on Mondays as only expensive business class tickets are
available on this connection in the beginning of the week. So we have to deal with different costs
for the respective connections depending on the particular day.


To this end, we first add to the background knowledge ΠTSP a new predicate cost(A, B, W, C)
representing the cost C of traveling connection A to B on weekday W which can take exceptional
costs into account:


cost(A, B, W, C) :- conn(A, B, C), #int(W), 0 < W, W <= 7, not ecost(A, B, W).
ecost(A, B, W) :- conn(A, B, C), cost(A, B, W, C1), C !=C1.


The original costs in the predicate conn(A, B, C) now represent defaults, which can be overridden
by explicitly adding different costs. For instance, to represent the exceptions (i) and (ii), we add:


cost(stp, eis, 2, 10). cost(vie, brg, 1, 10).


setting the exceptional costs for these two critical connections to 10. Weekdays are coded by integers
from 1 (Monday) to 7 (Sunday). We represent a mapping from time steps to the weekdays by the
following rules which we also add to ΠTSP :


weekday(1, 1).
weekday(D, W) :- D = D1+ 1, W = W1+ 1, weekday(D1, W1), W1 < 7.


weekday(D, 1) :- D = D1+ 1, weekday(D1, 7).


Note that although the modified background knowledge ΠTSP is not stratified (since cost is defined
by cyclic negation), it has a total well-founded model, and thus a unique answer set.


Finally, we change the costs of traveling and returning in the Kc program from Figure 6:
actions : travel(X, Y) requires conn(X, Y, C1) costs C


where weekday(time, W), cost(X, Y, W, C).
return from(X) requires conn(X, vie, C1) costs C


where weekday(time, W), cost(X, vie, W, C).


Since now the costs for P1 (which includes traveling from St.Pölten to Eisenstadt) on the second
day have increased due to exception (i), only four of the plans from above remain optimal. Note
that unlike the default costs, exceptional costs do not apply bidirectionally, so the exception does
not affect P2 and P3. Furthermore, due to exception (ii) the symmetrical round trips starting with
the flight trips to Bregenz are no longer optimal.


The presented encoding proves to be very flexible, as it allows for adding arbitrary exceptions
for any connection on any weekday by simply adding the respective facts; moreover, even more
involved scenarios, where exceptions are defined by rules, can be modeled.


45







EITER, FABER, LEONE, PFEIFER & POLLERES


5.3 A Small Example for Planning under Resource Restrictions


Although planning with resources is not the main target of our approach, the following encoding
shows that action costs can also be used in order to model optimization of resource consumption in
some cases. An important resource in real world planning is money. For instance, let us consider a
problem about buying and selling (Lee & Lifschitz, 2001):


“I have $6 in my pocket. A newspaper costs $1 and a magazine costs $3. Do I have
enough money to buy one newspaper and two magazines?”


In Kc, this can be encoded in a very compact way by the following background facts:


item(newspaper, 1). item(magazine, 2).


combined with the following short Kc program:
actions : buy(Item, Number) requires item(Item, Price), #int(Number)


costs C where C = Number ∗ Price.


fluents : have(Item, Number) requires item(Item, Price), #int(Number).


always : executable buy(Item, Number).
nonexecutable buy(Item, N1) if buy(Item, N2), N1 < N2.


caused have(Item, Number) after buy(Item, Number).


goal : have(newspaper, 1), have(magazines, 2) ? (1)


The action buy is always executable, but one must not buy two different amounts of a certain
item at once. Obviously, no admissible plan wrt. cost 6 exists, as the optimal plan for this problem,
〈{buy(newspaper, 1), buy(magazine, 2)} 〉 has cost∗P = 7. Therefore, the answer to the problem
is “no.”


Our approach considers only positive action costs and does not directly allow modeling full
consumer/producer/provider relations on resources in general, in favor of a clear non-ambiguous
definition of optimality. For instance, by allowing negative costs one could always add a producer
action to make an existing plan cheaper, whereas in our approach costs are guaranteed to increase
monotonically, allowing for a clear definition of plan costs and optimality.


On the other hand, we can encode various kinds of resource restrictions by using fluents to rep-
resent these resources. We can then model production/consumption as action effects on these fluents
and add restrictions as constraints. This allows us to model even complex resource or scheduling
problems; optimization, however, remains restricted to action costs.


6. Transformation to Logic Programming


In this section, we describe how planning under action costs can be implemented by means of a
transformation to answer set programming. It extends our previous transformation (Eiter et al.,
2003a), which maps ordinary K planning problems to disjunctive logic programs under the answer
set semantics (Gelfond & Lifschitz, 1991), and takes advantage of weak constraints, cf. (Buccafurri,
Leone, & Rullo, 1997, 2000), as implemented in the DLV system (Faber & Pfeifer, 1996; Eiter,
Faber, Leone, & Pfeifer, 2000a). In addition, we show how this translation can be adapted to the
language of Smodels (Simons, Niemelä, & Soininen, 2002).


6.1 Disjunctive Logic Programs with Weak Constraints


First, we give a brief review of disjunctive logic programs with weak constraints.


46







ANSWER SET PLANNING UNDER ACTION COSTS


Syntax A disjunctive rule (for short, rule) R is a construct


a1 v · · · v an :- b1, · · · , bk, not bk+1, · · · , not bm. (2)


where all ai and bj are classical literals over a function-free first-order alphabet, and n ≥ 0, m ≥
k ≥ 0. The part left (resp. right) of “:-” is the head (resp. body) of R, where “:-” is omitted if
m = 0. We let H(R) = {a1, . . ., an} be the set of head literals and B(R) = B+(R) ∪ B−(R)
the set of body literals, where B+(R) = {b1,. . . , bk} and B−(R) = {bk+1, . . . , bm}. A (strong)
constraint is a rule with empty head (n = 0).


A weak constraint is a construct


:∼ b1, · · · , bk, not bk+1, · · · , not bm. [w :] (3)


where w is an integer constant or a variable occurring in b1, . . . , bk and all bi are classical literals.6


B(R) is defined as for (2).
A disjunctive logic program (DLPw) (simply, program) is a finite set of rules, constraints and


weak constraints; here, superscript w indicates the potential presence of weak constraints.


Semantics The answer sets of a program Π without weak constraints are defined as usual (Gel-
fond & Lifschitz, 1991; Lifschitz, 1996). There is one difference, though: We do not consider
inconsistent answer sets. The answer sets of a program Π with weak constraints are defined by
selection from the answer sets S of the weak-constraint free part Π′ of Π as optimal answer sets.


A weak constraint c of form (3) is violated, if it has an instance for which its conjunction is
satisfied with respect to the candidate answer set S, i.e., there exists a substitution mapping θ from
the variables in c to the Herbrand base of Π such that {b1θ, · · · , bkθ} ⊆ S and {bk+1θ, · · · , bmθ}∩
M = ∅; we then call wθ the violation value of c wrt. θ.7 The violation cost of c wrt. S, denoted
costc(S), is the sum of all violation values over all violating substitutions for c wrt. S; the cost of
S, denoted costΠ(S), is then


costΠ(S) =
∑


c∈weak constraints of Π


costc(S),


i.e., the sum of violation costs of weak constraints in Π wrt. S. An answer set M of Π is now
selected (called an optimal answer set), if costΠ(M) is minimal over all answer sets of Π.


From (Buccafurri et al., 2000) we know that given a head-cycle-free disjunctive program, decid-
ing whether a query q is true in some optimal answer set is ∆P


2 -complete. The respective class for
computing such an answer set is F∆P


2 -complete. Together with the results from Section 4 this indi-
cates that translations of optimal planning problems to head-cycle-free disjunctive logic programs
with weak constraints or the language of Smodels are feasible in polynomial time.


6.2 Translating Kc to DLPw


We extend our original transformation lp(P), which naturally maps a K planning problem P into a
weak-constraint free program (Eiter et al., 2003a), to a new translation lpw(P), such that the optimal
answer sets of lpw(P) correspond to the optimal cost plans for the Kc planning problem P.


6. The colon in [w :] stems from the DLV language, which allows to specify a priority layer after the colon. We do not
need priority layers in our translation, but stick to the DLV syntax.


7. A weak constraint c is only admissible, if all possible violation values in all candidate answer sets S are integers.
Thus, if w is a variable, then Π must guarantee that w can only be bound to an integer.


47







EITER, FABER, LEONE, PFEIFER & POLLERES


Basically, in lp(P) fluent and action literals are extended by an additional time parameter, and
executability conditions as well as causations rules are modularly translated (rule by rule) into cor-
responding program rules and constraints; disjunction is used for guessing the actions which should
be executed in the plan at each point in time.


6.2.1 REVIEW OF THE TRANSLATION lp(P)


The basic steps of the translation from K programs to logic programs are as follows (cf. (Eiter et al.,
2003a) for details):


Step 0 (Macro Expansion): First, replace all macros in the K program by their definitions.


Step 1 (Background Knowledge): The background knowledge Π of P is already given as a logic
program and is included in lp(P), without further modification.


Step 2 (Auxiliary Predicates): To represent steps, we add the following facts to lp(P)


time(0)., . . . , time(l). next(0, 1)., . . . , next(l − 1, l).


where l is the plan length of the query q = G?(l) in P at hand.


Step 3 (Causation Rules): Causation rules are mapped to rules in lp(P) by adding type informa-
tion and extending fluents and actions with a time stamp using time and next. For example,


caused across(X) after cross(X), -across(X).


leads to rule across(X, T1) :- cross(X, T0), -across(X, T0), person(X), next(T0, T1).
in lp(P) where T1, T0 are new variables. Here, type information person(X) for across(X), and
-across(X), taken from the type declaration, is added, which helps to avoid unsafe logic program-
ming rules.


Step 4 (Executability Conditions): Similarly, each executability condition is translated to a dis-
junctive rule “guessing” whether an action occurs at a certain time step. In our running example,


executable cross(X) if hasLamp(X).


becomes cross(X, T0) ∨ -cross(X, T0) :- hasLamp(X, T0), person(X), next(T0, T1).


which encodes a guess whether at time point T0 action cross(X) should happen; again, type infor-
mation person(X) is added as well as next(T0, T1) to ensure that T0 is not the last time point.


Step 5 (Initial State Constraints): Initial state constraints are transformed like static causation
rules in Step 3, but using the constant 0 instead of the variable T1 and thus need no auxiliary predi-
cate for the time stamp. For instance,


initially : caused -across(X).


becomes, by again adding the type information -across(X, 0) :- person(X).


Step 6 (Goal Query): Finally, the query q:
goal : g1(t1), . . . , gm(tm), not gm+1(tm+1), . . . , not gn(tn) ? (l).


is translated as follows, where goal reached is a new 0-ary predicate symbol:


goal reached :- g1(t1, l), . . . , gm(tm, l), not gm+1(tm+1, l), . . . , not gn(tn, l).
:- not goal reached.


48







ANSWER SET PLANNING UNDER ACTION COSTS


6.2.2 EXTENDING THE TRANSLATION TO ACTION COSTS


The extended translation lpw(P) for a Kc problem P first includes all rules of lp(Pnc), where Pnc


results from P by stripping off all cost parts. Furthermore, the following step is added:


Step 7 (Action Costs): For any action declaration d of form (1) with a nonempty costs-part, add:


(i) A new rule rd of the form
costp(X1, . . . , Xn, T, Cθ) :- p(X1, . . . , Xn, T), t1, . . . , tm,


c1θ, . . . , ckθ, U = T + 1.
(4)


where costp is a new symbol, T and U are new variables and θ = {time → U}. As an optimization,
U = T + 1 is only present if U occurs elsewhere in rd.


(ii) A weak constraint wcd of the form :∼ costp(X1, . . . , Xn, T, C). [C :] (5)


For example, the cross action from the Quick Bridge Crossing Problem is translated to


costcross(X, T, WX):- cross(X, T), person(X), walk(X, WX).


:∼ costcross(X, T, WX). [WX :]


As we showed in previous work (Eiter et al., 2003a), the answer sets of lp(P) correspond to
trajectories of optimistic plans for P. The following theorem states a similar correspondence result
for lpw(P) and optimal plans for P. We define, for any consistent set of ground literals S, the sets
AS


j = {a(t) | a(t, j − 1) ∈ S, a ∈ σact} and sS
j = {f(t) | f(t, j) ∈ S, f(t) ∈ Lfl}, for all j ≥ 0.


Theorem 6.1 (Answer Set Correspondence) Let P = 〈PD, q〉 be a (well-defined) Kc planning
problem, and let lpw(P) be the above program. Then,


(i) for each optimistic plan P = 〈A1, . . . , Al〉 of P and supporting trajectory T = 〈〈s0, A1, s1〉,
〈s1, A2, s2〉, . . . , 〈sl−1, Al, sl〉〉 of P , there exists some answer set S of lpw(P) such that
Aj = AS


j for all j = 1, . . . , l, sj = sS
j , for all j = 0, . . . , l and costP(P ) = costlpw(P)(S);


(ii) for each answer set S of lpw(P), the sequence P = 〈A1, . . . , Al〉 is a solution of P, i.e., an
optimistic plan, witnessed by the trajectory T = 〈〈s0, A1, s1〉, 〈s1, A2, s2〉, . . . , 〈sl−1, Al, sl〉〉
with costP(P ) = costlpw(P)(S), where Aj = AS


j and sk = sS
k for all j = 1, . . . , l and


k = 0, . . . , l.


The proof is based on the resp. correspondence result for K (Eiter et al., 2003a). For the details,
we refer to the Appendix.


From this result and the definitions of optimal cost plans and optimal answer sets, we conclude
the following result:


Corollary 6.2 (Optimal answer set correspondence) For any well-defined Kc planning problem
P = 〈PD,Q ? (l)〉, the trajectories T = 〈〈s0, A1, s1〉, . . . , 〈sl−1, Al, sl〉〉 of optimal plans P for P
correspond to the optimal answer sets S of lpw(P), such that Aj = AS


j for all j = 1, . . . , l and
sj = sS


j , for all j = 0, . . . , l.


Proof. For each a ∈ Aj , the weak constraint (5) causes a violation value of costj(a). Further-
more, these are the only cost violations. Thus, a candidate answer set S is optimal if and only if
costlpw(P)(S) =


∑l
j=1


∑


a∈Aj
costj(a) = costP(P ) is minimal, i.e., S corresponds to an optimal


plan. 2


A similar correspondence result also holds for admissible plans:


49







EITER, FABER, LEONE, PFEIFER & POLLERES


Corollary 6.3 (Answer set correspondence for admissible plans) For any well-defined Kc plan-
ning problem P = 〈PD,Q ? (l)〉, the trajectories T = 〈〈s0, A1, s1〉, . . . , 〈sl−1, Al, sl〉〉 of admissi-
ble plans P for P wrt. cost c correspond to the answer sets S of lpw(P) having costlpw(P)(S) ≤ c,
such that Aj = AS


j for all j = 1, . . . , l and sj = sS
j , for all j = 0, . . . , l.


As for secure planning, we have introduced a technique to check security of an optimistic plan
for certain planning problem instances by means of a logic program (Eiter et al., 2003a). This
method carries over to planning with action costs in a straightforward way, and optimal resp. ad-
missible secure plans can be similarly computed by answer set programming.


6.3 Alternative Translation for Smodels


Apart from the presented translation using weak constraints, one could also choose an alternative
approach for the translation to answer set programming. Smodels (Simons et al., 2002) supports
another extension to pure answer set programming allowing to minimize over sets of predicates.


This approach could be used in an alternative formulation of Step 7:


Step 7a: For action declarations with nonempty costs-parts, we add a new rule of form


cost(p, X1, . . . , Xn, 0, . . . , 0, T, Cθ) :- t1, . . . , tm, c1θ, . . . , ckθ, U = T + 1. (6)


similar to Step 7 above, with two differences: (1) action name p is now a parameter, and (2) we add
l − n parameters with constant “0” between Xn and T where l is the maximum arity of all actions in
PD. This is necessary in order to get unique arity l + 2 for predicate cost. Furthermore, we add


occurs(p, X1, . . . , Xn, 0, . . . , 0, T) :- p(X1, . . . , Xn, T), t1, . . . , tm,. (7)


This second rule adds the same “0” parameters as for to achieve unique arity l + 1 of the new
predicate occurs. Using Smodels syntax, we can now compute optimal plans by adding


minimize[occurs(A, X1, ..., Xl, T) : cost(A, X1, ..., Xl, T, C) = C].


Note that Smodels does not support disjunction in rule heads, so we also need to modify Step 4,
expressing the action guess via unstratified negation or Smodels’ choice rules.


7. Implementation


We have implemented an experimental prototype system, DLVK, for solving K planning prob-
lems (Eiter et al., 2003a). An improved version of this prototype it is now capable of optimal
and admissible planning with respect to the extended syntax of Kc, available for experiments at
http://www.dlvsystem.com/K/ .


DLVK has been realized as a frontend to the DLV system (Faber & Pfeifer, 1996; Eiter et al.,
2000a). First, the planning problem at hand is transformed as described in the previous section.
Then, the DLV kernel is invoked to produce answer sets. For optimistic planning the (optimal, if
action costs are defined) answer sets are then simply translated back into suitable output for the user
and printed.


In case the user specified that secure/conformant planning should be performed, our system has
to check security of the plans computed. In normal (non-optimal) planning, this is simply done by
checking each answer set returned right before transforming it back to user output. In the case of


50







ANSWER SET PLANNING UNDER ACTION COSTS


optimal secure planning, on the other hand, the candidate answer set generation of the DLV kernel
has to be “intercepted”: The kernel proceeds computing candidate answer sets, returning an answer
set with minimal violation cost value, by running through all candidates. Here, in order to generate
optimal secure plans, the planning frontend interrupts computation, allowing only answer sets which
represent secure plans to be considered as candidates.


Checking plan security is done by rewriting the translated program wrt. the candidate answer
set/plan in order to verify whether the plan is secure. The rewritten “check program” is tested by a
separate invocation of the DLV kernel. As for further details on the system architecture we refer to
(Eiter et al., 2003a)


7.1 Usage


Suppose the background knowledge and the program depicted in Figure 1 with the cost extensions
from Section 3.3 are stored in files crossing.bk and crossing.plan; then, by invoking the
program with the command line


dlv− FPcrossing.plancrossing.bk− planlength = 7


we compute all optimal plans solving this problem in seven steps. In the output we find, after a
supporting trajectory, the following optimal plan:


PLAN : crossTogether(joe, jack) : 2; cross(joe) : 1; takeLamp(william);
crossTogether(william, averell) : 10; takeLamp(jack);
cross(jack) : 2; crossTogether(joe, jack) : 2 COST : 17


For each action, its cost is shown after a colon, if it is non-zero. The switch -planlength=i can
be used to set the plan length; it overrides any plan length given in the query-part of the planing
problem. Using -planlength=5, we get plans with cost 19, as there are no cheaper plans of that
length.


The user is then asked whether to perform the optional security check and whether to look for
further (optimal) plans, respectively. The switch -FPsec can be used instead of -FP to obtain
secure plans only.


The command line option -costbound=N effects the computation of all admissible plans
with respect to cost N . For example, the resource problem described in Section 5.3 can be solved
by the following call to our prototype:


dlv− FPbuying.bkbuying.plan− N = 10− planlength = 1− costbound = 6


Correctly, no admissible plan is found. When calling the system again without cost bound, the
prototype calculates the following optimal cost plan:


PLAN : buy(newspaper, 1) : 1, buy(magazine, 2) : 6 COST : 7


The current prototype supports simple bounded integer arithmetics. The option -N=10 used
above sets an upper bound of N = 10 for the integers which may be used in a program; the built-
in predicate #int is true for all integers 0 . . . N . Setting N high enough, taking into account
the outcome of built-in arithmetic predicates A = B + C and A = B ∗ C , is important to get
correct results. Further details on the prototype are given on the DLVK web site at http://www.
dlvsystem.com/K/.


51







EITER, FABER, LEONE, PFEIFER & POLLERES


7.2 Experiments


Performance and experimental results for DLVK (without action costs and optimal planning) were
reported in previous work (Eiter et al., 2003a). In this section, we present some encouraging exper-
imental results for planning with action costs, in particular for parallel Blocks World and TSP. All
experiments were performed on a Pentium III 733MHz machine with 256MB of main memory run-
ning SuSE Linux 7.2. We set a time limit of 4000 seconds for each tested instance where exceeding
this limit is indicated by “-” in the result tables.


Where possible, we also report results for CCALC and CMBP, two other logic-based planning
systems whose input languages (C+ resp. AR) have capabilities similar to K resp. Kc.


CCALC. The Causal Calculator (CCALC) is a model checker for the languages of causal theories
(McCain & Turner, 1997). It translates programs in the action language C+ into the language of
causal theories which are in turn transformed into SAT problems; these are then solved using a SAT
solver (McCain & Turner, 1998). The current version of CCALC uses mChaff (Moskewicz et al.,
2001) as its default SAT solver. Minimal length plans are generated iteratively increasing the plan
length up to an upper bound. CCALC is written in Prolog. For our tests, we used version 2.04b of
CCALC which we obtained from <URL:http://www.cs.utexas.edu/users/tag/cc/
> and a trial version of SICStus Prolog 3.9.1. We used encodings taken from (Lee & Lifschitz,
2001) for parallel Blocks World adapted for CCALC 2.0. These encodings are included in the
current download version of the system. For sequential Blocks World we adapted the encodings
by adding the C+ command “noConcurrency.” which resembles the respective K command. All
results for CCALC include 2.30sec startup time.


CMBP. The Conformant Model Based Planner (CMBP) (Cimatti & Roveri, 2000) is based on the
model checking paradigm and exploits symbolic Boolean function representation techniques such
as Binary Decision Diagrams (Bryant, 1986). CMBP allows for computing sequential minimal
length plans, where the user has to declare an upper bound for the plan length. Its input language
is an extension of AR (Giunchiglia, Kartha, & Lifschitz, 1997). Unlike K or action languages
such as C+ (Lee & Lifschitz, 2001), this language only supports propositional actions. CMBP is
tailored for conformant planning. The results reported complement a previous comparison which
also shows the encoding for sequential Blocks World in CMBP (Eiter et al., 2003a). For our tests,
we used CMBP 1.0, available at <URL:http://sra.itc.it/people/roveri/cmbp/>.


7.2.1 BLOCKS WORLD


Tables 1–4 show the results for our different Blocks World encodings in Section 5.1 on several
configurations: P0 denotes our simple instance from Figure 3, while P1–P5 are instances used in
previous work (Eiter et al., 2003a; Erdem, 1999).


Table 1 shows the results for finding a shortest sequential plan. The second and third column
show the number of blocks and the length of a shortest plan (i.e., the least number of moves) solving
the respective blocks world instance. The execution time for solving the problem using the shortest-
plan encoding Pβ in Section 5.1 is shown in column five, using the upper bound shown in the fourth
column on the plan length. Column six shows the execution time for finding the shortest plan in
an incremental plan length search starting from 0, similar to the method used for CCALC. The
remaining two columns show the results for CCALC and CMBP.


52







ANSWER SET PLANNING UNDER ACTION COSTS


Problem #blocks min. #moves (=#steps) upper bound #steps DLVK DLVK
inc CCALC CMBP


P0 6 5 6 0.48s 0.29s 4.65s 21.45s
P1 4 4 4 0.05s 0.08s 3.02s 0.13s
P2 5 6 7 0.24s 0.27s 4.02s 8.44s
P3 8 8 10 25.32s 2.33s 10.07s -
P4 11 9 16 - 8.28s 27.19s -
P5 11 11 16 - 12.63s 32.27s -


Table 1: Sequential Blocks World - shortest plans


Problem #blocks #steps(fixed) min. #moves DLVK


P0 6 2 6 0.05s
P0 6 3 5 0.09s
P1 4 3 4 0.04s
P2 5 5 6 0.10s
P3 8 4 9 0.21s
P4 11 5 13 0.81s
P5 11 7 15 327s


Table 2: Parallel Blocks World - cheapest plans: Minimal number of moves at fixed plan length (α)


Table 2 shows the execution times for parallel blocks world with fixed plan length where the
number of moves is minimized, i.e. problem (α) in Section 5.1. We used the encoding in Figure 2,
which generates parallel serializable plans. As CCALC and CMBP do not allow for optimizing
other criteria than plan length, we only have results for DLVK here.


Next, Table 3 shows some results for finding a shortest parallel plan, i.e. problem (β) in Sec-
tion 5.1. First, the minimal possible number of steps is given. We processed each instance (i) using
the encoding Pβ from Section 5.1, (ii) without costs by iteratively increasing the plan length and
(iii) using CCALC, by iteratively increasing the plan length until a plan is found. For every result,
the number of moves of the first plan computed is reported separately. As CMBP only supports
sequential planning, it is not included in this comparison.


Finally, Table 4 shows the results for the combined optimizations (γ) and (δ) for parallel Blocks
World as outlined in Section 5.1. The second column again contains the upper bound for the plan


upper bound min. #steps DLVK DLVK
inc CCALC


#moves time #moves time #moves time
P0 6 2 6 0.52s 6 0.09s 6 4.05s
P1 4 3 5 0.07s 5 0.08s 4 2.95s
P2 7 5 9 0.39s 9 0.21s 6 3.70s
P3 10 4 - - 12 0.43s 9 7.69s
P4 16 5 - - 18 1.54s 13 20.45s
P5 16 7 - - 26 3.45s 15 23.22s


Table 3: Parallel Blocks World - shortest plan (β)


53







EITER, FABER, LEONE, PFEIFER & POLLERES


(γ) (δ)


upper bound steps/moves DLVK DLVK
inc CCALC steps/moves DLVK DLVK


inc


P0 6 3/5 38.5s 0.18s 5.89s 2/6 0.26s 0.09s
P1 4 3/4 0.07s 0.11s 3.47s 3/4 0.08s 0.08s
P2 7 5/6 2.08s 0.21s 5.65s 5/6 0.78s 0.28s
P3 10 5/8 - 1.57s 15.73s 4/9 177s 0.45s
P4 16 9/9 - - 73.64s 5/13 - 1.86s
P5 16 11/11 - - 167s 7/15 - 323s


Table 4: Parallel Blocks World - (γ),(δ)


length of the respective instance. The following three columns present the results on finding a
shortest among the cheapest plans, i.e. problem (γ) in Section 5.1:


DLVK refers to the results for our combined minimal encoding Pγ and as described in Section 5.1;


DLVKinc refers to the results for incrementally searching for the shortest among the cheapest plans:
This is done by means of the -costbound=i command line option taking the minimal
sequential costs (i.e., the shortest sequential plan length as computed in Table 1) as an upper
cost limit. As our encodings compute serializable plans, the minimal sequential length can be
used as cost limit in this special case.


CCALC A similar technique can be used with CCALC when encoding bound costs through “ad-
ditive fluents” (Lee & Lifschitz, 2001).


Note that the incremental strategy (used by DLVKinc and CCALC) takes advantage of our spe-
cific formulation of the parallel Blocks World problem: In general, when allowing parallel actions
which are not necessarily serializable and have arbitrary costs, the optimal parallel cost might differ
from the optimal sequential solution. In particular, plans which are longer than the cheapest se-
quential plans (which, in this example, coincide with the shortest sequential plans) may need to be
considered. This makes incremental search for a solution of problem (γ) infeasible in general.


The last test is finding a cheapest among the shortest plans, that is, problem (δ) in Section 5.1.
Again we have tested the integrated encoding with an upper bound (Pδ) resp. incrementally finding
the shortest plan. Unlike for problem (γ), we cannot derive a fixed cost limit from the sequential
solution here; we really need to optimize costs, which makes an encoding in CCALC infeasible.


Blocks World – Results The Blocks World experiments show that DLVK can solve various opti-
mization tasks in a more effective and flexible way than the systems compared. On the other hand,
as already stated above, for the minimal plan length encodings in Section 5.1, we can only solve
the problems where a tight upper bound for the plan length is known. Iteratively increasing the plan
length is more effective, especially if the upper bound is much higher than the actual optimal solu-
tion. This becomes drastically apparent when execution times seem to explode from one instance
to the next, in a highly non-linear manner as in Table 1 where a solution for P3 can be found in
reasonable time whereas P4 and P5 could not be solved within the time limit of 4000 seconds. This
observation is also confirmed in the other tables (instance P5 in Table 2, etc.) and is partly explained
by the behavior of the underlying DLV system, which is not geared towards plan search, and as a
general purpose problem solver uses heuristics which might not work out well in some cases. In
particular, during the answer set generation process in DLV, no distinction is made between actions


54







ANSWER SET PLANNING UNDER ACTION COSTS


and fluents, which might be useful for planning tasks to control the generation of answer sets resp.
plans; this may be part of further investigations.


Interestingly, CCALC finds “better quality” parallel solutions for problem (β) (cf. Table 3), i.e.
solutions with fewer moves, although it is significantly slower than our system on these instances.
For the incremental encoding of problem (γ), CCALC seems even more effective than our system.
However, CCALC offers no means of optimization; it allows for admissible but not for optimal
planning. This makes our approach more flexible and general. As stated above, we could fortunately
exploit the fixed cost bound in this particular example for CCALC, which is not possible in general
instances of problem (γ).


Problem (γ) is also intuitively harder than simply finding a shortest plan or a cheapest among
all shortest plans in general: While these problems can always be solved incrementally, for (γ) we
must consider all plans of all lengths. A longer plan may be cheaper, so we cannot freeze the plan
length once a (shortest) plan has been incrementally found.


7.2.2 TSP


Some experimental results on TSP with variable costs are reported in Tables 5 and 6. Unlike for
blocks world, no comparable systems were available; none of the systems from above supports cost
optimal planning as needed for solving this problem. Here, the plan length is always given by the
number of cities.


Table 5 shows the results for our TSP instance on the Austrian province capitals as in Figure 5
(nine cities, 18 connections), with and without the exceptional costs as in Section 5.2 (with and with-
out subscript exc in the table). Further instances reported in this table with different cost exceptions
(we, lwe, rnd) are described below.


Results for some bigger TSP instances, given by the capitals of the 15 members of the European
Union (EU) with varying connection graphs and exceptional costs are shown in Table 6. We have
used the flight distances (km) between the cities as connection costs. Instances TSPEU1–TSPEU6


have been generated by randomly choosing a given number of connections from all possible con-
nections between the 15 cities. Note that TSPEU1 has no solution; the time reported here is until
DLVK terminated, and for all other instances until the first optimal plan was found.


We have also tested some instances of more practical relevance than simply randomly choosing
connections: TSPEU7 is an instance where we have taken the flight connections of three carriers
(namely, Star Alliance, Alitalia, and Luxair), and in TSPEU8 we have included only direct connec-
tions of at most 1500km. Such a “capital hopping” is of interest for a small airplane with limited
range, for instance.


For each instance in Tables 5–6 we have measured the execution time:


• without exceptional costs,


• with 50% costs for all connections on Saturdays and Sundays (weekends, we)


• with 50% costs for all connections on Fridays, Saturdays and Sundays (long weekends, lwe),


• for some random cost exceptions (rnd): We have added a number of randomly generated ex-
ceptions with costs between 0 and 10 for TSPAustria and between 0 and 3000 for the instances
EU1 to EU8.


55







EITER, FABER, LEONE, PFEIFER & POLLERES


Instance #cost exceptions cost/time
TSPAustria 0 15/0.31s
TSPAustria,exc 2 15/0.32s
TSPAustria,we 36 12/0.34s
TSPAustria,lwe 54 11/0.35s
TSPAustria,rnd 10 14/0.30s
TSPAustria,rnd 50 15/0.31s
TSPAustria,rnd 100 23/0.35s
TSPAustria,rnd 200 36/0.37s


Table 5: TSP – Results for TSPAustria with varying exceptions


Instance #conn. #except. cost/time
TSPEU1 30 0 -/9.11s
TSPEU1,we 30 60 -/11.93s
TSPEU1,lwe 30 90 -/13.82s
TSPEU1,rnd 30 100 -/11.52s
TSPEU1,rnd 30 200 -/12.79s
TSPEU1,rnd 30 300 -/14.64s
TSPEU1,rnd 30 400 -/16.26s
TSPEU2 30 0 16213/13.27s
TSPEU2,we 30 60 13195/16.41s
TSPEU2,lwe 30 90 11738/18.53s
TSPEU2,rnd 30 100 15190/15.54s
TSPEU2,rnd 30 200 13433/16.31s
TSPEU2,rnd 30 300 13829/18.34s
TSPEU2,rnd 30 400 13895/20.59s
TSPEU3 35 0 18576/24.11s
TSPEU3,we 35 70 15689/28.02s
TSPEU3,lwe 35 105 14589/30.39s
TSPEU3,rnd 35 100 19410/26.75s
TSPEU3,rnd 35 200 22055/29.64s
TSPEU3,rnd 35 300 18354/31.54s
TSPEU3,rnd 35 400 17285/32.66s
TSPEU4 35 0 16533/36.63s
TSPEU4,we 35 70 12747/41.72s
TSPEU4,lwe 35 105 11812/43.12s
TSPEU4,rnd 35 100 15553/39.17s
TSPEU4,rnd 35 200 13216/41.19s
TSPEU4,rnd 35 300 16413/43.51s
TSPEU4,rnd 35 400 13782/45.69s
TSPEU5 40 0 15716/91.83s
TSPEU5,we 40 80 12875/97.73s
TSPEU5,lwe 40 120 12009/100.14s
TSPEU5,rnd 40 100 13146/85.69s
TSPEU5,rnd 40 200 12162/83.44s
TSPEU5,rnd 40 300 12074/76.81s
TSPEU5,rnd 40 400 12226/82.97s
TSPEU5,rnd 40 500 13212/82.53s


Instance #conn. #except. cost/time
TSPEU6 40 0 17483/142.7s
TSPEU6,we 40 80 14336/150.3s
TSPEU6,lwe 40 120 13244/154.7s
TSPEU6,rnd 40 100 15630/142.5s
TSPEU6,rnd 40 200 14258/137.2s
TSPEU6,rnd 40 300 11754/120.5s
TSPEU6,rnd 40 400 11695/111.4s
TSPEU6,rnd 40 500 12976/120.8s
TSPEU7 55 0 15022/102.6s
TSPEU7,we 55 110 12917/112.2s
TSPEU7,lwe 55 165 11498/116.2s
TSPEU7,rnd 55 100 13990/104.2s
TSPEU7,rnd 55 200 12461/100.8s
TSPEU7,rnd 55 300 13838/106.9s
TSPEU7,rnd 55 400 12251/96.58s
TSPEU7,rnd 55 500 16103/109.2s
TSPEU7,rnd 55 600 14890/110.3s
TSPEU7,rnd 55 700 17070/110.7s
TSPEU8 64 0 10858/3872s
TSPEU8,we 64 128 9035/3685s
TSPEU8,lwe 64 192 8340/3324s
TSPEU8,rnd 64 100 10283/2603s
TSPEU8,rnd 64 200 9926/1372s
TSPEU8,rnd 64 300 10028/1621s
TSPEU8,rnd 64 400 8133/597.7s
TSPEU8,rnd 64 500 8770/573.3s
TSPEU8,rnd 64 600 8220/360.7s
TSPEU8,rnd 64 700 6787/324.6s
TSPEU8,rnd 64 800 11597/509.5s


Table 6: TSP – Various instances for the capitals of the 15 EU members


56







ANSWER SET PLANNING UNDER ACTION COSTS


TSP – Results Instance TSPEU8 shows the limits of our system: the given data allows for many
possible tours, so finding an optimal one gets very tricky. On the other hand, a realistic instance like
TSPEU7 with real airline connections is solved rather quickly, which is not very surprising: Most
airlines have a central airport (for instance Vienna for Austrian Airlines) and few direct connections
between the destinations served. This allows for much fewer candidate answer sets, when (as in
reality) the number of airlines we consider is limited. E.g., TSPEU7 has no solution at all if only
two out of Star Alliance, Alitalia, and Luxair are allowed. Of course, we cannot compete with
dedicated TSP solvers/algorithms, which are able to solve much bigger TSP instances and have not
been considered here. However, to our knowledge, none of these solvers can deal with features such
as incomplete knowledge, defaults, time dependent exceptional costs, etc. directly. Our results even
show that execution times are stable yet in case of many exceptions. In contrast, instance TSPEU8


shows that exceptions can also cause a significant speedup. This is due to the heuristics used by the
underlying DLV system, which can single out better solutions faster if costs are not spread evenly
like in TSPEU8 without exceptional costs.


Note that, we have also experimented with the alternative Smodels translation sketched in Sec-
tion 6.3. We refrain from detailed discussion here, since the (i) translation is optimized for DLV and
Smodels performance was worse (around factor 10 for the tested TSP instances) than DLV and (ii)
there is no integrated planning frontend available for Smodels providing a high-level planning lan-
guage. Nevertheless, we have shown that our approach can, with minor modifications, be adopted
in a planning system based on Smodels.


8. Related Work


In the last years, it has been widely recognized that plan length alone is only one criterion to be
optimized in planning. Several attempts have been made to extend planners to also consider action
costs.


The PYRRHUS system (Williams & Hanks, 1994) is an extension of UCPOP planning which
allows for optimal planning with resources and durations. Domain-dependent knowledge can be
added to direct the heuristic search. A “utility model” has to be defined for a planning problem
which can be used to express an optimization function. This system supports a language extension
of ADL (Pednault, 1989), which is a predecessor of PDDL (Ghallab et al., 1998). The algorithm is
a synthesis of branch-and-bound optimization with a least-commitment, plan-space planner.


Other approaches based on heuristic search include the use of an A* strategy together with
action costs in the heuristics (Ephrati, Pollack, & Mihlstein, 1996) and work by Refanidis and
Vlahavas who use multi-criteria heuristics to obtain near-optimal plans, considering multiple criteria
apart from plan length alone (Refanidis & Vlahavas, 2001). However, the described heuristics is not
fully admissible, and only guarantees optimal plans under certain restrictions (Haslum & Geffner,
2000). In fact, most heuristic state-space planners are not able to guarantee optimality.


A powerful approach has been suggested by Nareyek, who describes planning with resources
as a structural constraint satisfaction problem (SCSP), and then solves that problem by local search
combined with global control. However, this work promotes the inclusion of domain-dependent
knowledge; the general problem has an unlimited search space, and no declarative high-level lan-
guage is provided (Nareyek, 2001).


Among other related approaches, Kautz and Walser generalize the “Planning as Satisfiability”
approach to use integer optimization techniques for encoding optimal planning under resource pro-


57







EITER, FABER, LEONE, PFEIFER & POLLERES


duction/consumption (Kautz & Walser, 1999). First, they recall that integer logic programming
generalizes SAT, as a SAT formula can be translated to a system of inequalities. Second, they ex-
tend effects and preconditions of actions similar to a STRIPS extension proposed by Koehler for
modeling resource consumption/production (Koehler, 1998). Kautz and Walser allow for arbitrary
optimization functions but they use a non-declarative, low-level representation based on the alge-
braic modeling language AMPL (Fourer, Gay, & Kernighan, 1993). They mention that Koehler’s
STRIPS-like formalization can be mapped to their approach. However, they can not express non-
determinism or incomplete knowledge. There is an implementation of this approach called ILP-
PLAN, which uses the AMPL package (http://www.ampl.com/). Unfortunately, AMPL is
not freely available, so we could not compare the system with our approach experimentally.


Lee and Lifschitz describe the extension C+ of the action language C which allows for an in-
tuitive encoding of resources and costs by means of so called “additive fluents” (Lee & Lifschitz,
2001). This way admissible planning can be realized, but optimization has not been considered in
that framework so far. An implementation of a planner based on this language is CCALC (McCain,
1999) which has already been described in the previous section. Another implementation of a plan-
ning system based on the action language C is Cplan (Giunchiglia, 2000; Ferraris & Giunchiglia,
2000). The Cplan system mainly focuses on conformant planning and does not support the advanced
features of C+. Furthermore, the code is no longer maintained.


Son and Pontelli propose to translate action language B to prioritized default theory and answer
set programming. They allow to express preferences between actions and rules at the object level
in an interpreter but not as a part of the input language (Son & Pontelli, 2002). However, these
preferences are orthogonal to our approach as they model qualitative preferences as opposed to our
overall value function of plans/trajectories.


9. Conclusion and Outlook


This work continues a research stream which pursues the usage of answer set programming for
building planning systems which offer declarative planning languages based on action languages,
where planning tasks are specified at a high level of abstraction (Lifschitz, 1999a, 1999b). For
representation of practical planning problems, such languages must have high expressiveness and
provide convenient constructs and language elements.


Towards this goal, we have presented the planning language Kc, which extends the declarative
planning language K (Eiter et al., 2000b, 2003a) by action costs which are taken into account for
generating optimal plans, i.e., plans that have least total execution cost, and for admissible plans
wrt. a given cost bound, i.e., plans whose total execution cost stays within a given limit. As a basis
for implementation issues, we have investigated the computational complexity of the major plan-
ning tasks in this language, where we have derived complexity results sharply characterizing their
computational cost. Furthermore, we have presented a transformation of optimal and admissible
planning problems in Kc to logic programming under the optimal answer set semantics (Buccafurri
et al., 1997, 2000), and we have described the DLVK prototype implemented on top of the KR tool
DLV, which computes this semantics.


As we have shown, Kc allows for the representation of intricate planning problems. In particular,
we have demonstrated this for a variant of the Traveling Salesperson Problem (TSP), which could
be conveniently specified in Kc. A strength of Kc is that, via the underlying language K, states of
knowledge, i.e., incomplete states, can be suitably respected in secure plans, i.e., conformant plans


58







ANSWER SET PLANNING UNDER ACTION COSTS


which work under all circumstances, including nondeterministic action effects. Kc is a flexible
language which, by exploiting time-dependent action costs, allows for the representation of planning
under various optimality criteria such as cheapest plans, shortest plans, and combinations thereof.


Our experiments have shown that various instances of the problems we considered, including
realistic instances of the TSP variant, could be decently solved. On the other hand, the current
version of DLVK does not scale to large problem instances in general, and, unsurprisingly, can not
compete with high-end planning tools or specialized algorithms for a particular problem such as
TSP. We do not see this as a shortcoming, though, since our main goal at this point was to demon-
strate the usefulness of the expressive capabilities of our formalism to easily represent non-trivial
planning and optimization tasks, which are especially involved from the viewpoint of knowledge
representation. In this way, non-trivial instances of such problems of medium size (which one may
often encounter) can be solved with little effort.


Several issues remain for further work. As for the implementation, performance improvements
may be gained via improvements of the underlying DLV engine, which are subject of current work.
Furthermore, alternative, more efficient transformations of Kc to logic programming might be re-
searched, e.g. ones that involve preprocessing of the planning problem performing means-end anal-
ysis to simplify the logic program constructed.


Another issue is further language extensions. For example, a crucial difference between our
approach and resource-based approaches is that the former hinges on action costs, while the latter
build on fluent values, which is a somewhat different view of the quality of a plan. A possible way to
encompass this in our language is to allow that dynamic fluent values contribute to action costs; this
needs to be carefully elaborated, though: While for deterministic planning under complete knowl-
edge this extension is straightforward, in non-deterministic domains with incomplete knowledge it
would possibly result in ambiguities. Different trajectories of the same plan possibly yield different
costs when fluent values contribute to action costs. In favor of an intuitive definition of plan costs
and optimality we refrained from this extension at the current state.


A further possible extension are negative action costs, which are useful for modeling pro-
ducer/consumer relations among actions and resources. Allowing for different priorities among
actions, i.e., different cost levels, would increase the flexibility and allow for optimizing different
criteria at once. Finally, the duration of actions is an important issue. In the current language, the
effects of actions are assumed to materialize in the next state. While by coding techniques, we
may express delayed effects over several states in time and/or interleaving actions, constructs in the
language would be desirable. Investigating these issues is part of our ongoing and future work.


Acknowledgments


We are are grateful to Joohyung Lee for his help on using CCALC and to Paul Walser for his useful
informations on ILPPLAN. Furthermore, we thank Michael Gelfond for interesting discussions and
suggestions, and the anonymous reviewers for their detailed and helpful comments.


This work was supported by FWF (Austrian Science Funds) under the projects P14781 and
Z29-N04 and the European Commission under project FET-2001-37004 WASP and IST-2001-
33570 INFOMIX.


A preliminary, shorter version of this paper was presented at the 8th European Conference on
Logics in Artificial Intelligence (JELIA’02), Cosenza, Italy, September 2002.


59







EITER, FABER, LEONE, PFEIFER & POLLERES


Appendix A. The Language K


This appendix contains, in shortened form, the definition of the language K and a translation of K
to answer set programs; see (Eiter et al., 2003b, 2003a) for more details and examples.


A.1 Basic Syntax


We assume σact, σfl, and σtyp disjoint sets of action, fluent and type names, respectively, i.e.,
predicate symbols of arity ≥ 0, and disjoint sets σcon and σvar of constant and variable symbols.
Here, σfl, σact describe dynamic knowledge and σtyp describes static background knowledge. An
action (resp. fluent, type) atom is of form p(t1, . . . , tn), where p ∈ σact (resp. σfl, σtyp) has arity n


and t1, . . . , tn ∈ σcon ∪ σvar . An action (resp. fluent, type) literal l is an action (resp. fluent, type)
atom a or its negation ¬a, where “¬” (alternatively, “–”) is the true negation symbol. We define
¬.l = a if l = ¬a and ¬.l = ¬a if l = a, where a is an atom. A set L of literals is consistent, if
L ∩ ¬.L = ∅. Furthermore, L+ (resp. L−) is the set of positive (resp. negative) literals in L. The
set of all action (resp. fluent, type) literals is denoted as Lact (resp. Lfl, Ltyp). Furthermore, Lfl,typ


= Lfl ∪ Ltyp, Ldyn= Lfl ∪ L+
act, and L = Lfl,typ ∪ L+


act.
All actions and fluents must be declared using statements as follows.


Definition A.1 (action, fluent declaration) An action (resp. fluent) declaration, is of the form:


p(X1, . . . , Xn) requires t1, . . . , tm (8)


where p ∈ L+
act (resp. p ∈ L+


fl), X1, . . . , Xn ∈ σvar where n ≥ 0 is the arity of p, t1, . . . , tm ∈
Ltyp, m ≥ 0, and every Xi occurs in t1, . . . , tm.


If m = 0, the keyword requires may be omitted. Causation rules specify dependencies of
fluents on other fluents and actions.


Definition A.2 (causation rule) A causation rule (rule, for short) is an expression of the form


caused f if b1, . . . , bk, not bk+1, . . . , not bl after a1, . . . , am, not am+1, . . . , not an (9)


where f ∈Lfl∪{false}, b1, . . . , bl∈Lfl,typ, a1, . . . , anL, l≥k≥ 0, and n≥m≥ 0.


Rules where n = 0 are static rules, all others dynamic rules. When l = 0 (resp. n = 0), “if” (resp.
“after”) is omitted; if both l = n = 0, “caused” is optional.


We access parts of a causation rule r by h(r) = {f}, post+(r) = {b1, . . . , bk}, post−(r) =
{bk+1, . . . , bl}, pre+(r) = {a1, . . . , am}, pre−(r) = {am+1, . . . , an}, and lit(r) = {f, b1, . . . , bl,


a1, . . . , an}. Intuitively, pre(r) = pre+(r) ∪ pre−(r) (resp. post(r) = post+(r) ∪ post−(r))
accesses the state before (resp. after) some action(s) happen.


Special static rules may be specified for the initial states.


Definition A.3 (initial state constraint) An initial state constraint is a static rule of the form (9)
preceded by “initially.”


The language K allows conditional execution of actions, where several alternative executability
conditions may be specified.


60







ANSWER SET PLANNING UNDER ACTION COSTS


Definition A.4 (executability condition) An executability condition e is an expression of the form


executable a if b1, . . . , bk, not bk+1, . . . , not bl (10)


where a ∈ L+
act and b1, . . . , bl ∈ L, and l ≥ k ≥ 0.


If l = 0 (i.e., executability is unconditional), “if” is skipped. The parts of e are accessed by h(e) =
{a}, pre+(e) = {b1, . . . , bk}, pre−(e) = {bk+1, . . . , bl}, and lit(e) = {a, b1, . . . , bl}. Intuitively,
pre(e) = pre+(e) ∪ pre−(e) refers to the state at which some action’s suitability is evaluated. The
state after action execution is not involved; for convenience, we define post+(e) = post−(e) = ∅.


All causal rules and executability conditions must satisfy the following condition, which is
similar to safety in logic programs: Each variable in a default-negated type literal must also occur in
some literal which is not a default-negated type literal. No safety is requested for variables appearing
in other literals. The reason is that variables appearing in fluent and action literals are implicitly safe
by the respective type declarations.


Notation. For any causal rule, initial state constraint, and executability condition r and ν ∈ {post, pre, b},
we define ν(r) = ν+(r) ∪ ν−(r), where bs(r) = posts(r) ∪ pres(r).


A.1.1 PLANNING DOMAINS AND PLANNING PROBLEMS


Definition A.5 (action description, planning domain) An action description 〈D,R〉 consists of a
finite set D of action and fluent declarations and a finite set R of safe causation rules, safe initial
state constraints, and safe executability conditions which do not contain positive cyclic dependen-
cies among actions. A K planning domain is a pair PD = 〈Π, AD〉, where Π is a disjunction-free
normal Datalog program (the background knowledge) which is safe and has a total well-founded
model (cf. (van Gelder, Ross, & Schlipf, 1991))8 and AD is an action description. We call PD


positive, if no default negation occurs in AD.


Definition A.6 (planning problem) A planning problem P = 〈PD, q〉 is a pair of a planning do-
main PD and a query q, i.e.,


g1, . . . , gm, not gm+1, . . . , not gn ? (i) (11)


where g1, . . . , gn ∈ Lfl are variable-free, n ≥ m ≥ 0, and i ≥ 0 denotes the plan length.


A.2 Semantics


We start with the preliminary definition of the typed instantiation of a planning domain. This is
similar to the grounding of a logic program, with the difference being that only correctly typed
fluent and action literals are generated.


Let PD = 〈Π, 〈D,R〉〉 be a planning domain, and let M be the (unique) answer set of Π (Gel-
fond & Lifschitz, 1991). Then, θ(p(X1, . . . , Xn)) is a legal action (resp. fluent) instance of an ac-
tion (resp. fluent) declaration d ∈ D of the form (8), if θ is a substitution defined over X1, . . . , Xn


such that {θ(t1), . . . , θ(tm)} ⊆ M . By LPD we denote the set of all legal action and fluent in-
stances. The instantiation of a planning domain respecting type information is as follows.


8. A total well-founded model, if existing, corresponds to the unique answer set of a datalog program. Allowing for
multiple answer sets of Π would eventually lead to ambiguities in our language.


61







EITER, FABER, LEONE, PFEIFER & POLLERES


Definition A.7 (typed instantiation) For any planning domain PD = 〈Π, 〈D,R〉〉, its typed in-
stantiation is given by PD↓ = 〈Π↓, 〈D,R↓〉〉, where Π↓ is the grounding of Π (over σcon) and
R↓ = {θ(r) | r ∈ R, θ ∈ Θr}, where Θr is the set of all substitutions θ of the variables in r using
σcon, such that lit(θ(r)) ∩ Ldyn ⊆ LPD ∪ (¬.LPD ∩ L−


fl).


In other words, in PD↓ we replace Π and R by their ground versions, but keep of the latter only
rules where the atoms of all fluent and action literals agree with their declarations. We say that a
PD = 〈Π, 〈D,R〉〉 is ground, if Π and R are ground, and moreover that it is well-typed, if PD and
PD↓ coincide.


A.2.1 STATES AND TRANSITIONS


Definition A.8 (state, state transition) A state w.r.t a planning domain PD is any consistent set
s ⊆ Lfl ∩ (lit(PD) ∪ lit(PD)−) of legal fluent instances and their negations. A state transition
is any tuple t = 〈s,A, s′〉 where s, s′ are states and A ⊆ Lact ∩ lit(PD) is a set of legal action
instances in PD.


Observe that a state does not necessarily contain either f or ¬f for each legal instance f of a
fluent, and may even be empty (s = ∅). State transitions are not constrained; this will be done in the
definition of legal state transitions below. We proceed in analogy to the definition of answer sets
(Gelfond & Lifschitz, 1991), considering first positive (i.e., involving a positive planning domain)
and then general planning problems.


In what follows, we assume that PD = 〈Π, 〈D,R〉〉 is a well-typed ground planning domain
and that M is the unique answer set of Π. For any other PD, the respective concepts are defined
through its typed grounding PD↓.


Definition A.9 (legal initial state) A state s0 is a legal initial state for a positive PD, if s0 is the
least set (w.r.t. ⊆) such that post(c) ⊆ s0 ∪ M implies h(c) ⊆ s0, for all initial state constraints
and static rules c ∈ R.


For a positive PD and a state s, a set A ⊆ L+
act is called executable action set w.r.t. s, if for each


a ∈ A there exists an executability condition e ∈ R such that h(e) = {a}, pre+(e)∩Lfl,typ ⊆ s∪M ,
pre+(e)∩L+


act ⊆ A, and pre−(e)∩(L+
act∪s∪M) = ∅. Note that this definition allows for modeling


dependent actions, i.e. actions which depend on the execution of other actions.


Definition A.10 (legal state transition) Given a positive PD, a state transition t = 〈s,A, s ′〉 is
called legal, if A is an executable action set w.r.t. s and s′ is the minimal consistent set that satisfies
all causation rules w.r.t. s∪A∪M . That is, for every causation rule r ∈ R, if (i) post(r) ⊆ s ′∪M ,
(ii) pre(r) ∩ Lfl,typ ⊆ s ∪ M , and (iii) pre(r) ∩ Lact ⊆ A all hold, then h(r) 6= {false} and
h(r) ⊆ s′.


This is now extended to general a well-typed ground PD containing default negation using a
Gelfond-Lifschitz type reduction to a positive planning domain (Gelfond & Lifschitz, 1991).


Definition A.11 (reduction) Let PD be a ground and well-typed planning domain, and let t =
〈s,A, s′〉 be a state transition. Then, the reduction PDt = 〈Π, 〈D,Rt〉〉 of PD by t is the planning
domain where Rt is obtained from R by deleting


62







ANSWER SET PLANNING UNDER ACTION COSTS


1. each r ∈ R, where either post−(r)∩(s′ ∪ M) 6= ∅ or pre−(r)∩(s∪A∪M) 6= ∅, and


2. all default literals not L (L ∈ L) from the remaining r ∈ R.


Note that PDt is positive and ground. We extend further definitions as follows.


Definition A.12 (legal initial state, executable action set, legal state transition) For any planning
domain PD, a state s0 is a legal initial state, if s0 is a legal initial state for PD〈∅,∅,s0〉; a set A is an
executable action set w.r.t. a state s, if A is executable w.r.t. s in PD 〈s,A,∅〉; and, a state transition
t = 〈s,A, s′〉 is legal, if it is legal in PDt.


A.2.2 PLANS


Definition A.13 (trajectory) A sequence of state transitions T = 〈〈s0, A1, s1〉, 〈s1, A2, s2〉, . . .,
〈sn−1, An, sn〉〉, n ≥ 0, is a trajectory for PD, if s0 is a legal initial state of PD and all 〈si−1, Ai, si〉,
1 ≤ i ≤ n, are legal state transitions of PD.


If n = 0, then T = 〈〉 is empty and has s0 associated explicitly.


Definition A.14 (optimistic plan) A sequence of action sets 〈A1, . . . , Ai〉, i ≥ 0, is an optimistic
plan for a planning problem P = 〈PD, q〉, if a trajectory T = 〈〈s0, A1, s1〉, 〈s1, A2, s2〉, . . . ,
〈si−1, Ai, si〉〉 exists in PD which accomplishes the goal, i.e., {g1, . . . gm} ⊆ si and {gm+1, . . . , gn}∩
si = ∅.


Optimistic plans amount to “plans”, “valid plans” etc as defined in the literature. The term
“optimistic” should stress the credulous view in this definition, with respect to incomplete fluent
information and nondeterministic action effects. In such cases, the execution of an optimistic plan
P might fail to reach the goal. We thus resort to secure plans.


Definition A.15 (secure plans (alias conformant plans)) An optimistic plan 〈A1, . . . , An〉 is a se-
cure plan, if for every legal initial state s0 and trajectory T = 〈〈s0, A1, s1〉, . . . , 〈sj−1, Aj , sj〉〉 such
that 0 ≤ j ≤ n, it holds that (i) if j = n then T accomplishes the goal, and (ii) if j < n, then Aj+1


is executable in sj w.r.t. PD, i.e., some legal transition 〈sj, Aj+1, sj+1〉 exists.


Note that plans admit in general the concurrent execution of actions. We call a plan 〈A1, . . . , An〉
sequential (or non-concurrent), if |Aj | ≤ 1, for all 1 ≤ j ≤ n.


A.3 Macros


K includes several macros as shorthands for frequently used concepts. Let a ∈ L+
act denote an


action atom, f ∈ Lfl a fluent literal, B a (possibly empty) sequence b1, . . . , bk, not bk+1, . . . ,


not bl where each bi ∈ Lfl,typ, i = 1, . . . , l, and A a (possibly empty) sequence a1, . . . , am,


not am+1, . . . , not an where each aj ∈ L, j = 1, . . . , n.
Inertia To allow for an easy representation of fluent inertia, K provides


inertial f if B after A. ⇔ caused f if not ¬.f, B after f, A.


Defaults A default value of a fluent can be expressed by the shortcut
default f. ⇔ caused f if not ¬.f.


It is in effect unless some other causation rule provides evidence to the opposite value.


63







EITER, FABER, LEONE, PFEIFER & POLLERES


Totality For reasoning under incomplete, but total knowledge K provides (f positive):


total f if B after A. ⇔
caused f if not −f, B after A.


caused −f if not f, B after A.


This is is for instance useful to model non-deterministic action effects. For a discussion of the
full impact of this statement in modeling planning under incomplete knowledge and non-determinism,
we refer to our previous paper on the language K (Eiter et al., 2003b).


State Integrity For integrity constraints that refer to the preceding state, K provides
forbidden B after A. ⇔ caused false if B after A.


Non-executability For specifying that some action is not executable, K provides
nonexecutable a if B. ⇔ caused false after a, B.


By this definition, nonexecutable overrides executable in case of conflicts.
Sequential Plans To exclude simultaneous execution of actions, K provides


noConcurrency. ⇔ caused false after a1, a2.


where a1 and a2 range over all possible actions such that a1, a2 ∈ LPD ∩ Lact and a1 6= a2.


In all macros, “if B” (resp. “after A”) can be omitted, if B (resp. A) is empty.


Appendix B. Proofs


Proof of Theorem 4.4: Membership (i): The problems are in NP resp. NPMV, since if l is poly-
nomial in the size of P, any optimistic plan P = 〈A1, . . . , Al〉 for P with a supporting trajectory
T = 〈t1, . . . , ti〉 for P can be guessed and, by Proposition 4.1, verified in polynomial time. Fur-
thermore, costP(P ) ≤ b can be efficiently checked, since costP(P ) is easily computed (all costs
are constants).
Hardness (i): K is a fragment of Kc, and each K planning problem can be viewed as the problem
of deciding the existence of resp. finding an admissible plan wrt. cost 0. As was previously shown
(Eiter et al., 2003b), deciding existence of an optimistic plan for a given K planning problem is
NP-hard for fixed plan length l; hence, it is also NP-hard for Kc.


We show that finding an optimistic plan is hard for NPMV by a reduction from the well-known
SAT problem, cf. (Papadimitriou, 1994), whose instances are CNFs φ = c1∧· · ·∧ck of clauses ci =
Li,1 ∨ · · · ∨Li,mi


, where each Li,j is a classical literal over propositional atoms X = {x1, . . . , xn}.
Consider the following planning domain PDφ for φ:
fluents : x1. . . . xn. state0. state1.


actions : c1 costs 1. . . . ck costs 1.


ax1. . . . axn.


initially : total x1. . . . total xn.


caused state0.


always : caused state1 after state0.


executable c1 after ¬.L1,1, . . . , ¬.L1,m1
.


forbidden after ¬.L1,1, . . . , ¬.L1,m1
, not c1.


· · ·
executable ck after ¬.Lk,1, . . . , ¬.Lk,mk


.


forbidden after ¬.Lk,1, . . . , ¬.Lk,mk
, not ck.


executable ax1 after x1. forbidden after x1, not ax1.


· · ·
executable axn after xn. forbidden after xn, not axn.


64







ANSWER SET PLANNING UNDER ACTION COSTS


The fluents xi and state0 and the total statements in the initially-section encode the can-
didate truth assignments. The subsequent statements force cj to be executed iff the corresponding
clause is violated by the truth assignment encoded in the initial state. The final pairs of executable
and forbidden statements force actions axi to be executed iff the corresponding fluents xi hold.
This is because it is necessary to directly extract the computed truth assignments from the plan,
since we are dealing with a function class. The fluent state1 identifies the state at time 1.


Consider now the planning problem Pφ = 〈PDφ, state1?(1)〉. Clearly, each optimistic plan
P for P corresponds to a truth assignment σP of X and vice versa, and costPφ


(P ) is the number
of clauses violated by σP . Thus, the admissible optimistic plans for Pφ wrt. cost 0 correspond 1-1
to the satisfying assignments of φ. Clearly, constructing Pφ from φ is efficiently possible, as is
constructing a satisfying truth assignment σ from a corresponding plan P (because of the actions
axi). This concludes the hardness proof.
Membership (ii): Since the security of each optimistic plan admissible wrt. cost k can be checked,
by Proposition 4.1, with a call to a ΠP


2 -oracle, membership in ΣP
3 resp. in ΣP


3 MV follows by
analogous considerations as in (i) (where no oracle was needed).
Hardness (ii): For the decision variant, ΣP


3 -hardness is again immediately inherited from the ΣP
3 -


completeness of deciding the existence of a secure plan of a problem in the language K, with
hardness even for fixed plan length (Eiter et al., 2003b). For the plan computation variant, we give
a reduction from the following ΣP


3 MV-complete problem: An instance I is an open QBF


Q[Z] = ∀X∃Y Φ[X,Y,Z]


where X = x1, . . . , xl, Y = y1, . . . , ym, and Z = z1, . . . , zn, respectively, and Φ[X,Y,Z] is
(w.l.o.g.) a 3CNF formula over X , Y , and Z . The solutions S(I) are all truth assignments over Z


for which Q[Z] is satisfied.
Suppose that Φ[X,Y,Z] = c1∧ . . .∧ck where ci = ci,1∨ci,2∨ci,3. Now consider the following


planning domain PDQ[Z] for Q[Z], which is a variant of the planning domain given in the proof of
Theorem 5.5 in (Eiter et al., 2003b):


fluents : x1. . . . xl. y1. . . . ym. z1. . . . zn. state0. state1.


actions : az1 costs 0. . . . azn costs 0.


initially : total x1. . . . total xl.


caused state0.


always : caused state1 after state0.


executable az1. executable az2. . . . executable azn.


caused x1 after x1. caused − x1 after − x1.


· · ·
caused xl after xl. caused − xl after − xl.


total y1 after state0. . . . total ym after state0.


caused z1 after az1. caused − z1 after not az1.


· · ·
caused zn after azn. caused − zn after not azn.


forbidden ¬.C1,1,¬.C1,2,¬.C1,3 after state0.


· · ·
forbidden ¬.Ck,1,¬.Ck,2,¬.Ck,3 after state0.


There are 2|X| many legal initial states s1, . . . , s2|X|
for PDQ[Z], which correspond 1-1 to the


possible truth assignments to X and all these initial states contain state0. Starting from any initial
state si, executing a set of actions represents a truth assignment to the variables in Z . Since all


65







EITER, FABER, LEONE, PFEIFER & POLLERES


actions are always executable, there are 2|Z| executable action sets A1, . . . , A2|Z| , which represent
all truth assignments to Z .


For each pair si and Aj there exist 2|Y | many successor state candidates si,1, . . . , si,2|Y |
, which


contain fluents according to the truth assignment to X represented by si, fluents according to the
truth assignment to Z represented by Aj , and fluents according to a truth assignment to Y , and the
fluent state1. Of these candidate states, only those satisfying all clauses in Φ[X,Y,Z] are legal,
by virtue of the forbidden statements.


It is not hard to see that an optimistic plan of form P = 〈A1〉 (where A1 ⊆ {azi | zi ∈ Z}) for
the goal state1 exists wrt. PDQ[Z] iff there is an assignment to all variables in X ∪ Y ∪ Z such
that the formula Φ[X,Y,Z] is satisfied. Furthermore, P is secure iff A1 represents an assignment
to the variables in Z such that, regardless of which assignment to the variables in X is chosen
(corresponding to a legal initial state si), there is some assignment to the variables in Y such that all
clauses of Φ[X,Y,Z] are satisfied (i.e., there is at least one state si,k reachable from si by executing
A1); any such si,k contains state1. In other words, P is secure iff Φ[X,Y,Z] is true. Thus, the
admissible secure plans of PDQ[Z] wrt. cost 0, correspond 1-1 with the assignments to Z for which
Q[Z] is true.


Since PDQ[Z] is constructible from Φ[X,Y,Z] in polynomial time, it follows that computing a
secure plan for P = 〈PDQ[Z], q〉, where q = state1 ? (1), is ΣP


3 MV-hard. 2


Proof of Theorem 4.5: Membership (i): Concerning membership, by performing a binary search
on the range [0,max] (where max is an upper bound on the plan costs for a plan of polynomial
length l given by l times the sum of all action costs) we can find out the least integer v such that
any optimistic plan P for P which is admissible wrt. cost v exists (if any optimistic plan exists);
clearly, we have costP(P ) = v and cost∗P = v, and thus any such plan P is optimal. Since max


is single exponential in the representation size of P, the binary search, and thus computing cost∗P ,
is, by Theorem 4.4, feasible in polynomial time with an NP oracle. Subsequently, we can construct
an optimistic plan P such that costP(P ) = cost∗P by extending a partial plan Pi = 〈A1, . . . , Ai〉,
i = 0, . . . , l − 1 step by step as follows. Let A = {a1, . . . , am} be the set of all legal action
instances. We initialize Bi+1 := A and ask the oracle whether Pi can be completed to an optimistic
plan P = 〈A1, . . . , Al〉 admissible wrt. cost∗P such that Ai+1 ⊆ (Bi+1 \ {a1}). If the answer is
yes, then we update Bi+1 := Bi+1 \ {a1}, else we leave Bi+1 unchanged. We then repeat this test
for aj , j = 2, 3, . . . ,m; the resulting Bi+1 is an action set such that Pi+1 = 〈A1, . . . , Ai, Ai+1〉
where Ai+1 = Bi+1 can be completed to an optimistic plan admissible wrt. cost∗P . Thus, Ai+1 is
polynomial-time constructible with an NP oracle.
In summary, we can construct an optimal optimistic plan in polynomial time with an NP oracle.
Thus, the problem is in F∆P


2 .
Hardness (i): We show hardness for plan length l = 1 by a reduction from problem MAX WEIGHT
SAT (Papadimitriou, 1994), where an instance is a SAT instance φ = c1 ∧ · · · ∧ ck as in the proof
of Theorem 4.4.(i), plus positive integer weights wi, where i = 1, . . . , k. Then, S(I) contains those
truth assignments σ of X for which wsat(σ) =


∑


i : ciσ=true wi is maximal.
To that end, we take the planning domain PDφ as in the proof of Theorem 4.4 and modify the


cost of ci to wi, for i = 1, . . . , k, thus constructing a new planning domain PDI . Consider now the
planning problem PI = 〈PDI , state1?(1)〉. Since the actions cj are the only actions with nonzero
cost, any plan (corresponding to a truth assignment σ) will be associated with the sum of weights
of violated clauses, wvio(σ) = (


∑k
i=1 wi) − wsat(σ). Since


∑k
i=1 wi is constant for I , minimizing


66







ANSWER SET PLANNING UNDER ACTION COSTS


wvio(σ) is equivalent to maximizing wsat(σ). Hence, there is a one-to-one correspondence between
optimal optimistic plans of PI (for which wvio(σ) is minimal) and maximal truth assignments for I .
Furthermore, computing PI from I and extracting a MAX-WEIGHT SAT solution from an optimal
plan P is efficiently possible. This proves F∆P


2 -hardness.
Membership (ii): The proof is similar to the membership proof of (i), but uses an oracle which asks
for completion of a partial secure plan Pi = 〈A1, . . . , Ai〉 to a secure plan P = 〈A1, . . . , Al〉 such
that Ai+1 ⊆ (Bi+1 \ {aj}) and P is admissible wrt. cost∗P , rather than of a partial optimistic plan.
This oracle is, as easily seen, in ΣP


3 . Thus, computing an optimal secure plan is in F∆P
4 .


Hardness (ii): We show hardness by a reduction from the following problem, which is F∆P
4 -


complete (cf. (Krentel, 1992)): Given an open QBF Q[Z] = ∀X∃Y Φ[X,Y,Z] like in the proof
of Theorem 4.4.(ii), compute the lexicographically first truth assignment of Z for which Q[Z] is
satisfied.


This can be accomplished by changing the cost of each action azi in PDQ[Z] from 0 to 2n−i,
i = 1, . . . , n. Let PD′[Q[Z]] be the resulting planning domain. Since the cost of azi (i.e., assigning
zi the value true) is greater than the sum of the costs of all azj for i + 1 ≤ j ≤ n, an optimal
secure plan for the planning problem 〈PD ′[Q[Z]], state1 ? (1)〉 amounts to the lexicographically
first truth assignment for Z such that Q[Z] is satisfied. Thus, F∆P


4 -hardness of the problem follows.
2


Proof of Theorem 6.1: We prove the result by applying the well-known Splitting Set Theorem for
logic programs (Lifschitz & Turner, 1994). This theorem applies to logic programs π that can be
split into two parts such that one of them, the “bottom” part, does not refer to predicates defined in
the “top” part at all. The answer sets of the “bottom” part can then be extended to the answer sets
of the whole program by looking at the remaining (“top”) rules. Informally, a splitting set of π is
a set U of ground literals defining the “bottom” part bU (π) of a program. Each answer set Sb of
bU (π) can then be used to reduce the remaining rules π \ bU (π) to a program eU (π \ bU (π), Sb)
involving only classical literals which do not occur in bU (π), by evaluating the literals from bU (π)
wrt. Sb. For each answer set Se of eU (π \ bU (π), Sb), the set S = Sb ∪ Se then is an answer set of
the original program.


Disregarding weak constraints, we can split the program lpw(P) into a bottom part consisting
of lp(Pnc), where Pnc is P with the cost information stripped off, and a top part containing the
remaining rules; we then derive the correspondence between optimistic plans for P and answer sets
of lpw(P) from a similar correspondence result for lp(Pnc) (Eiter et al., 2003a).


In detail, Theorem 3.1 in (Eiter et al., 2003a) states for any K-planning problem P a corre-
spondence between the answer sets S of lp(P) and supporting trajectories T of optimistic plans
P = 〈A1, . . . , Al〉 as in items (i) and (ii), with costs discarded. Thus, any answer set S ′ of lp(Pnc)
corresponds to some trajectory T ′ of an optimistic plan P ′ for Pnc and vice versa.


In what follows, when talking about lp(Pnc) and lpw(P), we mean the respective grounded
logic programs. lpw(P) augments lp(Pnc) by rules (4) and weak constraints (5). Let now U =
lit(lp(Pnc)) be the set of all literals occurring in lp(Pnc). Clearly, U splits lpw(P) as defined in
(Lifschitz & Turner, 1994), where we disregard weak constraints in lpw(P), since the rules of form
(4) introduce only new head literals. Consequently, we get bU (lpw(P)) = lp(Pnc). Then, for any
answer set S ′ of lp(Pnc), each rule in eU (lpw(P) \ bU (lpw(P)), S′) is of the form


costa(x1, . . . , xn, t, c) :- Body.


67







EITER, FABER, LEONE, PFEIFER & POLLERES


From the fact that all these rules are positive, we can conclude that with respect to the split by U ,
any answer set S ′ of lp(Pnc) induces a unique answer set S ⊇ S ′ of lpw(P). Therefore, modulo
costs, a correspondence between supporting trajectories T and candidate answer sets S as claimed
follows directly from Theorem 3.1 in (Eiter et al., 2003a).


It remains to prove that costP(P ) = costlpw(P)(S) holds for all candidate answer sets S corre-
sponding to an optimistic plan P = 〈A1, . . . , Al〉 for P. By the correspondence shown above,
any action p(x1, . . . , xn) ∈ Aj corresponds to exactly one atom p(x1, . . . , xn, j − 1) ∈ AS


j ,
j ∈ {1, . . . , l}. Therefore, if p(x1, . . . , xn) is declared with a non-empty cost part, by (4) and
well-definedness, modulo x1, . . . , xn, there is exactly one fact costp(x1, . . . , xn, j − 1, c) in the
model of eU (lpw(P) \ bU (lpw(P)), S).


Furthermore, by definition of (4), we have that c = costj(p(x1, . . . , xn)), i.e., the cost of action
instance p(x1, . . . , xn) at time j. Consequently, the violation value of the weak constraint wc of
form (5) for p in lpw(P) is costwc(S) =


∑l
j=1


∑


p(x1,...,xn)∈Aj
costj(p(x1, . . . , xn)). Since all


violation values stem from weak constraints (5), in total we have cost lpw(P)(S) = costP(P ). This
proves the result. 2


References


Blum, A. L., & Furst, M. L. (1997). Fast Planning Through Planning Graph Analysis. Artificial
Intelligence, 90, 281–300.


Bonet, B., & Geffner, H. (2000). Planning with Incomplete Information as Heuristic Search in
Belief Space. In Chien, S., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the
Fifth International Conference on Artificial Intelligence Planning and Scheduling (AIPS’00),
pp. 52–61, Breckenridge, Colorado, USA.


Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8), 677–691.


Buccafurri, F., Leone, N., & Rullo, P. (1997). Strong and Weak Constraints in Disjunctive Datalog.
In Dix, J., Furbach, U., & Nerode, A. (Eds.), Proceedings of the 4th International Conference
on Logic Programming and Non-Monotonic Reasoning (LPNMR’97), No. 1265 in Lecture
Notes in AI (LNAI), pp. 2–17, Dagstuhl, Germany. Springer Verlag.


Buccafurri, F., Leone, N., & Rullo, P. (2000). Enhancing Disjunctive Datalog by Constraints. IEEE
Transactions on Knowledge and Data Engineering, 12(5), 845–860.


Cimatti, A., & Roveri, M. (2000). Conformant Planning via Symbolic Model Checking. Journal of
Artificial Intelligence Research, 13, 305–338.


Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and Expressive Power of
Logic Programming. ACM Computing Surveys, 33(3), 374–425.


Dimopoulos, Y., Nebel, B., & Koehler, J. (1997). Encoding Planning Problems in Nonmonotonic
Logic Programs. In Proceedings of the European Conference on Planning 1997 (ECP-97),
pp. 169–181. Springer Verlag.


Eiter, T., Faber, W., Leone, N., & Pfeifer, G. (2000a). Declarative Problem-Solving Using the
DLV System. In Minker, J. (Ed.), Logic-Based Artificial Intelligence, pp. 79–103. Kluwer
Academic Publishers.


68







ANSWER SET PLANNING UNDER ACTION COSTS


Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2000b). Planning under Incomplete
Knowledge. In Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Palamidessi, C.,
Pereira, L. M., Sagiv, Y., & Stuckey, P. J. (Eds.), Computational Logic - CL 2000, First In-
ternational Conference, Proceedings, No. 1861 in Lecture Notes in AI (LNAI), pp. 807–821,
London, UK. Springer Verlag.


Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2002a). Answer Set Planning under
Action Costs. In Flesca, S., Greco, S., Ianni, G., & Leone, N. (Eds.), Proceedings of the
8th European Conference on Artificial Intelligence (JELIA), No. 2424 in Lecture Notes in
Computer Science, pp. 186–197.


Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2002b). Answer Set Planning under Ac-
tion Costs. Tech. rep. INFSYS RR-1843-02-13, Institut für Informationssysteme, Technische
Universität Wien.


Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2003a). A Logic Programming Approach
to Knowledge-State Planning, II: the DLVK System. Artificial Intelligence, 144(1–2), 157–
211.


Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2003b). A Logic Programming Approach
to Knowledge-State Planning: Semantics and Complexity. To appear in ACM Transactions
on Computational Logic.


Ephrati, E., Pollack, M. E., & Mihlstein, M. (1996). A Cost-directed Planner: Preliminary Report.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence (AAAI-96),
pp. 1223 – 1228. AAAI Press.


Erdem, E. (1999). Applications of Logic Programming to Planning: Computational Experiments.
Unpublished draft. http://www.cs.utexas.edu/users/esra/papers.html.


Faber, W., & Pfeifer, G. (since 1996). DLV homepage.. http://www.dlvsystem.com/.


Ferraris, P., & Giunchiglia, E. (2000). Planning as Satisfiability in Nondeterministic Domains. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI’00), July
30 – August 3, 2000, Austin, Texas USA, pp. 748–753. AAAI Press / The MIT Press.


Fourer, R., Gay, D. M., & Kernighan, B. W. (1993). AMPL: A Modeling Language for Mathematical
Programming. Duxbury Press.


Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9, 365–385.


Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld,
D., & Wilkins, D. (1998). PDDL — The Planning Domain Definition lan-
guage. Tech. rep., Yale Center for Computational Vision and Control. Available at
http://www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz.


Giunchiglia, E. (2000). Planning as Satisfiability with Expressive Action Languages: Concurrency,
Constraints and Nondeterminism. In Cohn, A. G., Giunchiglia, F., & Selman, B. (Eds.), Pro-
ceedings of the Seventh International Conference on Principles of Knowledge Representation
and Reasoning (KR 2000), April 12-15, Breckenridge, Colorado, USA, pp. 657–666. Morgan
Kaufmann.


69







EITER, FABER, LEONE, PFEIFER & POLLERES


Giunchiglia, E., Kartha, G. N., & Lifschitz, V. (1997). Representing Action: Indeterminacy and
Ramifications. Artificial Intelligence, 95, 409–443.


Giunchiglia, E., & Lifschitz, V. (1998). An Action Language Based on Causal Explanation: Prelim-
inary Report. In Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI ’98), pp. 623–630.


Haslum, P., & Geffner, H. (2000). Admissible Heuristics for Optimal Planning. In Chien, S., Kamb-
hampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth International Conference on
Artificial Intelligence Planning and Scheduling (AIPS’00), pp. 140–149, Breckenridge, Col-
orado, USA. AAAI Press.


Kautz, H., & Walser, J. P. (1999). State-space planning by integer optimization. In Proceedings of
the 16th National Conference on Artificial Intelligence (AAAI-99), pp. 526–533.


Koehler, J. (1998). Planning Under Resource Constraints. In Proceedings of the 13th European
Conference on Artificial Intelligence (ECAI’98), pp. 489–493.


Krentel, M. (1992). Generalizations of Opt P to the Polynomial Hierarchy. Theoretical Computer
Science, 97(2), 183–198.


Lee, J., & Lifschitz, V. (2001). Additive Fluents. In Provetti, A., & Cao, S. T. (Eds.), Proceedings
AAAI 2001 Spring Symposium on Answer Set Programming: Towards Efficient and Scalable
Knowledge Representation and Reasoning, pp. 116–123, Stanford, CA. AAAI Press.


Lifschitz, V., & Turner, H. (1994). Splitting a Logic Program. In Van Hentenryck, P. (Ed.), Pro-
ceedings of the 11th International Conference on Logic Programming (ICLP’94), pp. 23–37,
Santa Margherita Ligure, Italy. MIT Press.


Lifschitz, V., & Turner, H. (1999). Representing Transition Systems by Logic Programs. In Gelfond,
M., Leone, N., & Pfeifer, G. (Eds.), Proceedings of the 5th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’99), No. 1730 in Lecture Notes in AI
(LNAI), pp. 92–106, El Paso, Texas, USA. Springer Verlag.


Lifschitz, V. (1996). Foundations of Logic Programming. In Brewka, G. (Ed.), Principles of Knowl-
edge Representation, pp. 69–127. CSLI Publications, Stanford.


Lifschitz, V. (1999a). Action Languages, Answer Sets and Planning. In Apt, K., Marek, V. W.,
Truszczyński, M., & Warren, D. S. (Eds.), The Logic Programming Paradigm – A 25-Year
Perspective, pp. 357–373. Springer Verlag.


Lifschitz, V. (1999b). Answer Set Planning. In Schreye, D. D. (Ed.), Proceedings of the 16th
International Conference on Logic Programming (ICLP’99), pp. 23–37, Las Cruces, New
Mexico, USA. The MIT Press.


McCain, N. (1999). The Causal Calculator Homepage.. http://www.cs.utexas.edu/
users/tag/cc/.


McCain, N., & Turner, H. (1997). Causal Theories of Actions and Change. In Proceedings of the
15th National Conference on Artificial Intelligence (AAAI-97), pp. 460–465.


McCain, N., & Turner, H. (1998). Satisfiability Planning with Causal Theories. In Cohn, A. G.,
Schubert, L., & Shapiro, S. C. (Eds.), Proceedings Sixth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’98), pp. 212–223. Morgan Kaufmann
Publishers.


70







ANSWER SET PLANNING UNDER ACTION COSTS


Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering an
Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference, DAC 2001,
Las Vegas, NV, USA, June 18-22, 2001, pp. 530–535. ACM.


Nareyek, A. (2001). Beyond the Plan-Length Criterion. In Local Search for Planning and Schedul-
ing, ECAI 2000 Workshop, Vol. 2148 of Lecture Notes in Computer Science, pp. 55–78.
Springer.


Niemelä, I. (1998). Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. In Niemelä, I., & Schaub, T. (Eds.), Proceedings of the Workshop on Computa-
tional Aspects of Nonmonotonic Reasoning, pp. 72–79, Trento, Italy.


Papadimitriou, C. H. (1994). Computational Complexity. Addison-Wesley.


Pednault, E. P. D. (1989). Exploring the Middle Ground between STRIPS and the Situation Calcu-
lus. In Proceedings of the 1st International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’89), pp. 324–332, Toronto, Canada. Morgan Kaufmann Publishers,
Inc.


Refanidis, I., & Vlahavas, I. (2001). A Framework for Multi-Criteria Plan Evaluation in Heuristic
State-Space Planning. In IJCAI-01 Workshop on Planning with Resources.


Selman, A. L. (1994). A Taxonomy of Complexity Classes of Functions. Journal of Computer and
System Sciences, 48(2), 357–381.


Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and Implementing the Stable Model
Semantics. Artificial Intelligence, 138, 181–234.


Smith, D. E., & Weld, D. S. (1998). Conformant Graphplan. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, (AAAI’98), pp. 889–896. AAAI Press / The
MIT Press.


Son, T. C., & Pontelli, E. (2002). Reasoning About Actions in Prioritized Default Theory. In Flesca,
S., Greco, S., Ianni, G., & Leone, N. (Eds.), Proceedings of the 8th European Conference on
Artificial Intelligence (JELIA), No. 2424 in Lecture Notes in Computer Science, pp. 369–381.


Subrahmanian, V., & Zaniolo, C. (1995). Relating Stable Models and AI Planning Domains. In
Sterling, L. (Ed.), Proceedings of the 12th International Conference on Logic Programming,
pp. 233–247, Tokyo, Japan. MIT Press.


van Gelder, A., Ross, K., & Schlipf, J. (1991). The Well-Founded Semantics for General Logic
Programs. Journal of the ACM, 38(3), 620–650.


Weld, D. S., Anderson, C. R., & Smith, D. E. (1998). Extending Graphplan to Handle Uncertainty
& Sensing Actions. In Proceedings of the Fifteenth National Conference on Artificial Intelli-
gence, (AAAI’98), pp. 897–904. AAAI Press / The MIT Press.


Williams, M., & Hanks, S. (1994). Optimal Planning with a Goal-Directed Utility Model. In
Hammond, K. J. (Ed.), Proceedings of the Second International Conference on Artificial In-
telligence Planning Systems (AIPS-94), pp. 176–181. AAAI Press.


71






