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Abstract


We describe a system for specifying the effects of actions. Unlike those commonly
used in AI planning, our system uses an action description language that allows one to
specify the effects of actions using domain rules, which are state constraints that can
entail new action effects from old ones. Declaratively, an action domain in our language
corresponds to a nonmonotonic causal theory in the situation calculus. Procedurally, such
an action domain is compiled into a set of logical theories, one for each action in the domain,
from which fully instantiated successor state-like axioms and STRIPS-like systems are then
generated. We expect the system to be a useful tool for knowledge engineers writing action
specifications for classical AI planning systems, GOLOG systems, and other systems where
formal specifications of actions are needed.


1. Introduction


We describe a system for generating action effect specifications from a set of domain rules
and direct action effect axioms, among other things. We expect the system to be a useful
tool for knowledge engineers writing action specifications for classical AI planning systems,
GOLOG systems (Levesque et al., 1997), and other systems where formal specifications of
actions are needed.


To motivate, consider the language used by STRIPS (Fikes & Nilsson, 1971) for de-
scribing the effects of actions. Briefly speaking, an action is described in this language by
a first-order formula, called its precondition that describes the condition under which the
action is executable, an add list that enumerates the propositions that the action will make
true when successfully executed in a situation, and a delete list that enumerates the propo-
sitions that the action will make false when successfully executed in a situation. While the
original STRIPS allowed the precondition and the elements of the two lists to be complex
formulas, STRIPS actions now refer only to those whose precondition is given by a con-
junction of atomic formulas and whose add and delete lists are lists of atomic formulas.
It is widely acknowledged that this language is inadequate for describing actions in the
real world. One of the limitations, the one that we address in this paper, is that with the
language, one has to enumerate all possible effects of an action, a difficult if not impossible
task for complex domains. For example, given a large C program, it is hard to figure out the
effects of changing the value of a pointer on the values of all other pointers in the program.
However, the underlying principle is very simple: when the value of a pointer changes, the
values of all other pointers that point to the same memory location change as well. Put
another way, the direct effect of the action of changing the value of a pointer to x is that the
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value of the pointer will be x. The indirect or side effects of this action are those derived
from the constraint which says that if two pointers point to a common location, then their
values must be the same.


This idea of specifying the effects of actions using domain constraints is like “engineering
from first principle”, and has many advantages. First of all, constraints are action inde-
pendent, and work on all actions. Secondly, if the effects of actions derived from domain
constraints agree with one’s expectation, then this will be a good indication that one has
axiomatized the domain correctly. Finally, domain constraints can be used for other pur-
poses as well. For instance, they can be used to check the consistency of the initial situation
database. In general, when a set of sentences violates a domain constraint, we know that no
legal situation can satisfy this set of sentences. This idea can and has been used in planning
to prune impossible states. Recently, there have even been efforts at “reverse engineering”
domain constraints from STRIPS-like systems to speed up planners (e.g. Zhang & Foo,
1997; Gerevini & Schubert, 1998; Fox & Long, 1998, and others).


While it is appealing to use domain constraints to derive the indirect effects of actions,
making the idea work formally turned out to be a challenge. The problem is commonly
known as the ramification problem, and various proposals have been made to solve it. Until
recently, however, these proposals were at best of theoretical interest only because of their
high computational complexity. The situation has since changed substantially due to the
use of causality in representing domain constraints (Lin, 1995, 1996; McCain & Turner,
1995, 1997; Thielscher, 1995, 1997; Baral, 1995; Lifschitz, 1997, and others). What we will
describe in this paper is an implemented system that builds on this recent work on causality-
based approaches to the ramification problem. Specifically, our system takes as input an
action domain description where actions are described by their precondition axioms and
direct effect axioms, and domain constraints are represented by what we call domain rules.
The system returns as output a complete action specification both in STRIPS-like format
and as a set of fully instantiated successor state axioms (Reiter, 1991).


This paper is organized as follows. We begin by introducing our action description lan-
guage. We then propose a procedure to compile an action domain specified in this language
into a complete set of successor state axioms from which a STRIPS-like description is then
extracted. We then show the soundness of this procedure with respect to a translation from
action domain descriptions to situation calculus causal theories of Lin (1995). We next
describe an implementation of this procedure, and present some experimental results. As
one will see, one of the limitations of our system is that it is essentially propositional. While
effect axioms and domain rules can have variables, they need to be fully instantiated during
the compilation process. To partially overcome this limitation, we show some results that
allow one to generalize the propositional output to the first-order case for certain classes of
action domain descriptions. We then discuss some related work, and conclude this paper
with some pointers for future work.


2. An Action Description Language


We assume a first-order language with equality. We shall call those predicates whose exten-
sions may be changed by actions fluents, and those whose extensions are not changed by
any actions static relations. We also call unary static relations types. By fluent atoms we
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mean those atomic formulas formed by fluents. An equality atom is one of the form u = v,
where u and v are variables or constants, and an inequality constraint is one of the form
u 6= v. Actions are represented by functions, and they are assumed to be the only functions
with positive arities in the language.


Our action description language includes the following components.


2.1 Type Definitions


A type definition is specified by expressions of the following form:


Domain(p, {a1, ..., an}),


where p is a type, and a1, ..., an are constants. The intuitive meaning of this expression is
that the domain (extension) of the type p is the set {a1, ..., an}. For instance, in the blocks
world, we may have a type called block, and have, say, five blocks named numerically:
Domain(block, {1, 2, 3, 4, 5}). In a logistics domain, we may have a type called loc for
locations, and have, say, 3 locations l1, l2, and l3: Domain(loc, {l1, l2, l3}).


2.2 Primitive Fluent Definitions


Primitive fluents are defined by expressions of the following form:


Fluent(f(x1, ..., xn), p1(x1) ∧ · · · ∧ pn(xn) ∧ e1 ∧ · · · ∧ em),


where f is an n-ary fluent, each pi, 1 ≤ i ≤ n, a type, and each ei, 1 ≤ i ≤ m, an
inequality constraint of the form xj 6= xk, for some 1 ≤ j < k ≤ n. The intuitive meaning
of this expression is that f(x1, ..., xn) is a legal fluent atom if the second argument is true.
For instance, in the blocks world, given the type definition Domain(block, {1, 2, 3}), the
following fluent specification:


Fluent(on(x, y), block(x) ∧ block(y) ∧ x 6= y)


would generate the following six legal fluent atoms:


on(1, 2), on(1, 3), on(2, 1), on(2, 3), on(3, 1), on(3, 2).


Clearly, there should be exactly one fluent definition for each fluent.


2.3 Complex Fluent Definitions


Given a set of primitive fluents, one may want to define some new ones. For instance,
in the blocks world, given the primitive fluent on, we can define clear in terms of on as:
(∀x)clear(x) ≡ ¬(∃y)on(y, x).


To specify complex fluents like clear, we first define fluent formulas as follows:


• t1 = t2 is a fluent formula, where t1 and t2 are terms, i.e. either a constant in the
domain of a type or a variable.


• f(t1, ..., tn) is a fluent formula, where t1, ..., tn are terms, and f is either an n-ary
primitive fluent, a complex fluent, or a static relation.
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• If ϕ and ϕ′ are fluent formula, then ¬ϕ, ϕ ∨ ϕ′, ϕ ∧ ϕ′, ϕ ⊃ ϕ′, and ϕ ≡ ϕ′ are also
fluent formulas.


• If ϕ is a fluent formula, x a variable, and p a type, then ∀(x, p)ϕ (for all x of type p,
ϕ holds) and ∃(x, p)ϕ (for some x of type p, ϕ holds) are fluent formulas. Notice that
we require types to have finite domains, so these quantifications are really shorthands:
If the domain of p is {a1, ..., an}, then ∀(x, p)ϕ stands for


ϕ(x/a1) ∧ · · · ∧ ϕ(x/an),


and ∃(x, p)ϕ stands for
ϕ(x/a1) ∨ · · · ∨ ϕ(x/an).


A complex fluent is then specified in our language by a pair of expressions of the following
form:


Complex(f(x1, ..., xn), p1(x1) ∧ · · · ∧ pn(xn) ∧ e1 · · · ∧ em),
Defined(f(x1, ..., xn), ϕ),


where pi’s and ei’s are the same as in primitive fluent definitions, and ϕ a fluent formula
that does not mention any complex fluents and whose free variables are among x1, ..., xn.
The first expression specifies the syntax and the second the semantics of the complex fluent.


For instance, the complex fluent clear in the blocks world can be specified as:


Complex(clear(x), block(x)),
Defined(clear(x),¬∃(y, block)on(y, x)).


As we mentioned above, quantifiers here are just shorthands because each type must have
a finite domain. For instance, given the following specification:


Domain(block, {1, 2, 3}),
Fluent(on(x, y), block(x) ∧ block(y))


the above fluent definition for clear will be expanded to:


Defined(clear(1),¬(on(1, 1) ∨ on(2, 1) ∨ on(3, 1))),
Defined(clear(2),¬(on(1, 2) ∨ on(2, 2) ∨ on(3, 2))),
Defined(clear(3),¬(on(1, 3) ∨ on(2, 3) ∨ on(3, 3))).


2.4 Static Relation Definitions


As we mentioned, a static relation is one that is not changed by any action in the domain.
For instance, in the robot navigation domain, we may have a proposition connected(d, r1, r2)
meaning that door d connects rooms r1 and r2. The truth value of this proposition cannot
be changed by the navigating robot that just rolls from room to room.


In our language, a static relation is defined by an expression of the following form:


Static(g(x1, ..., xn), p1(x1) ∧ · · · ∧ pn(xn) ∧ e1 ∧ · · · ∧ em),


where g is an n-ary predicate, and pi’s and ei’s are the same as in primitive fluent definitions.
The meaning of this expression is similar to a fluent definition, and there should be exactly
one definition for each static relation.
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2.5 Domain Axioms


Domain axioms are constraints on static relations. For instance, for the static proposition
connected(d, r1, r2), we may want to impose the following constraint: connected(d, r1, r2) ≡
connected(d, r2, r1). In our language, domain axioms are specified by expressions of the
form:


Axiom(ϕ),


where ϕ is a fluent formula that does not mention any fluents, i.e. it mentions only static
relations and equality. For instance, the above constraint on connected is written as:


Axiom(∀(d, door)∀(r1, room)∀(r2, room)connected(d, r1, r2) ≡
connected(d, r2, r1)),


where door and room are types.


2.6 Action Definitions


Actions are defined by expressions of the following form:


Action(a(x1, ..., xn), p1(x1) ∧ · · · ∧ pn(xn) ∧ e1 ∧ · · · ∧ em),


where a is an n-ary action, and pi’s and ei’s are the same as in primitive fluent definitions.
For instance, in the blocks world, given the type definition Domain(block, {1, 2, 3}), the
following action specification:


Action(stack(x, y), block(x) ∧ block(y) ∧ x 6= y)


would generate the following six action instances:


stack(1, 2), stack(1, 3), stack(2, 1), stack(2, 3), stack(3, 1), stack(3, 2).


There should be exactly one action definition for each action.


2.7 Action Precondition Definitions


Action precondition definitions are specified by expressions of the following form:


Precond(a(x1, ..., xn), ϕ),


where a is an n-ary action, ϕ is a fluent formula whose free variables are among x1, ..., xn.
There should be exactly one precondition definition for each action. For instance, in the


blocks world, we may have:


Precond(stack(x, y), clear(x) ∧ clear(y) ∧ ontable(x)),


which says that for the action stack(x, y) to be executable in a situation, clear(x), clear(y),
and ontable(x) must be true in it.
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2.8 Action Effect Specifications


Action effects are specified by expressions of the following form:


Effect(a(x1, ..., xn), ϕ, f(y1, ..., yk)),


or of the form:
Effect(a(x1, ..., xn), ϕ,¬f(y1, ..., yk)),


where ϕ is a fluent formula, and f a primitive fluent. The intuitive meaning of these
expressions is that if ϕ is true in the initial situation, then action a(x1, ..., xn) will cause
f(y1, ..., yk) to be true (false). For instance, in the blocks world, action stack(x, y) causes
x to be on y:


Effect(stack(x, y), true, on(x, y)).


For an example of a context dependent effect, consider action drop(x) that breaks an object
only if it is fragile:


Effect(drop(x), fragile(x), broken(x)).


Notice here that the fluent formula ϕ in the action effect specifications can have vari-
ables that are not in x1, ..., xn, y1, ..., yk. Informally, all the variables are supposed to be
“universally quantified.” More precisely, when these expressions are instantiated, one can
substitute any objects for these variables, provided the resulting formulas are well-formed.
For instance, given the action effect specification Effect(move(x), g(x1) ∧ q(x1, x2), f(y)),
one can instantiate it to: Effect(move(a), g(b) ∧ q(b, c), f(d)), as long as move(a) is a legal
action (according to the action definition for move) and g(b), q(b, c), and f(d) are legal
fluent atoms (according to the fluent definitions for g, q, and f).


2.9 Domain Rules


Domain rules are specified by expressions of the following form:


Causes(ϕ, f(x1, ..., xn)),


or of the following form:
Causes(ϕ,¬f(x1, ..., xn)),


where ϕ is a fluent formula, and f a primitive fluent. Like action effect specifications, ϕ
here can have variables that are not in x1, ..., xn. The intuitive meaning of a domain rule
is that in any situation, if ϕ holds, then the fluent atom f(x1, ..., xn) will be caused to be
true. A domain rule is stronger than material implication. Its formal semantics is given
by mapping it to a causal rule of Lin (1995) (see Section 4), thus the name “causes”. For
instance, in the blocks world, a block can be on only one other block:


Causes(on(x, y) ∧ y 6= z,¬on(x, z)).


In a logistics domain, one may want to say that if a package is inside a truck which is at
location l, then the package is at location l as well:


Causes(in(x, y) ∧ at(y, l), at(x, l)).
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2.10 Action Domain Descriptions


The following definition sums up our action description language:


Definition 1 An action domain description is a set of type definitions, primitive fluent
definitions, complex fluent definitions, static proposition definitions, domain axioms, action
definitions, action precondition definitions, action effect specifications, and domain rules.


Example 1 The following action domain description defines a blocks world with three
blocks:


Domain(block, {1, 2, 3}),
Fluent(on(x, y), block(x) ∧ block(y)),
Fluent(ontable(x), block(x)),
Complex(clear(x), block(x)),
Defined(clear(x),¬∃(y, block)on(y, x)),


Causes(on(x, y) ∧ x 6= z,¬on(z, y)),
Causes(on(x, y) ∧ y 6= z,¬on(x, z)),
Causes(on(x, y),¬ontable(x)),
Causes(ontable(x),¬on(x, y)),


Action(stack(x, y), block(x) ∧ block(y) ∧ x 6= y),
P recond(stack(x, y), ontable(x) ∧ clear(x) ∧ clear(y)),
Effect(stack(x, y), true, on(x, y)),


Action(unstack(x, y), block(x) ∧ block(y) ∧ x 6= y),
P recond(unstack(x, y), clear(x) ∧ on(x, y)),
Effect(unstack(x, y), true, ontable(x)),


Action(move(x, y, z), block(x) ∧ block(y) ∧ block(z) ∧ x 6= y ∧ x 6= z ∧ y 6= z),
P recond(move(x, y, z), on(x, y) ∧ clear(x) ∧ clear(z)),
Effect(move(x, y, z), true, on(x, z)).


3. A Procedural Semantics


Given an action domain description D, we use the following procedure called CCP (Causal
Completion Procedure) to generate a complete action effect specification:


1. Use primitive and complex fluent definitions to generate all legal fluent atoms. In the
following let F be the set of fluent atoms so generated.


2. Use action definitions to generate all legal action instances, and for each such action
instance A do the following.
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2.1. For each primitive fluent atom F ∈ F , collect all ground instances1 of A’s positive
effects:


Effect(A,ϕ1, F ), · · · , Effect(A,ϕn, F ),


all ground instances of A’s negative effects:


Effect(A,φ1,¬F ), · · · , Effect(A,φm,¬F ),


all ground instances of positive domain rules:


Causes(ϕ′1, F ), · · · , Causes(ϕ′k, F ),


all ground instances of negative domain rules:


Causes(φ′1,¬F ), · · · , Causes(φ′l,¬F ),


and generate the following pseudo successor state axiom;


succ(F ) ≡ init(ϕ1) ∨ · · · ∨ init(ϕn) ∨ succ(ϕ′1) ∨ · · · ∨ succ(ϕ′l) ∨
init(F ) ∧ ¬[init(φ1) ∨ · · · ∨ init(φm) ∨


succ(φ′1) ∨ · · · ∨ succ(φ′k)], (1)


where for any fluent formula ϕ, init(ϕ) is the formula obtained from ϕ by re-
placing every fluent atom f in ϕ by init(f), and similarly succ(ϕ) is the formula
obtained from ϕ by replacing every fluent atom f in ϕ by succ(f). Intuitively,
init(f) means that f is true in the initial situation, and succ(f) that f is true
in the successor situation of performing action A in the initial situation.


2.2. Let Succ be the set of pseudo successor state axioms, one for each primitive
fluent F , generated by the last step, Succ1 the following set of axioms:


Succ1 = {succ(F ) ≡ succ(ϕ) | Defined(F,ϕ) is a complex fluent definition},


and Init the following set of axioms:


Init = {ϕ | Axiom(ϕ) is a domain axiom} ∪
{init(ϕ) ⊃ init(F ) | Causes(ϕ, F ) is a domain rule} ∪
{init(ϕ) ⊃ ¬init(F ) | Causes(ϕ,¬F ) is a domain rule} ∪
{init(F ) ≡ init(ϕ) | Defined(F,ϕ) is a complex fluent definition} ∪
{init(φA) | Precond(A,φA) is the precondition definition for A}.


For each fluent atom F , if there is a formula ΦF such that


Init ∪ Succ ∪ Succ1 |= succ(F ) ≡ ΦF ,


and ΦF does not mention propositions of the form succ(f), then output the
axiom


succ(F ) ≡ ΦF .


1. When generating ground instances, all shorthands like ∀(x, p) are expanded. See the definition of fluent
formulas in the last section.
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Otherwise, the action A’s effect on F is indeterminate. In this case, output two
axioms:


succ(F ) ⊃ αF ,


βF ⊃ succ(F ),


where αF is a strongest formula satisfying the first implication, and βF a weakest
formula satisfying the second implication. In the following, to be explicit about
the action A for which we are computing its effects, we will write the axioms as
SuccA, InitA, and Succ1A.


Conceptually, Step 2.1 in the above procedure is most significant. In the next section,
we shall prove that this step is provably correct under a translation to the situation calculus
causal theories of Lin (1995). Computationally, Step 2.2 is the most expensive. We shall
describe the strategies that our system uses to implement it in Section 5.


For this procedure to work properly, the action domain description should satisfy the
following conditions.


1. We require that all fluent atoms in Init, Succ, and Succ1 be among those generated
in Step 1. This would rule out cases like


Fluent(on(x, y), block(x) ∧ block(y) ∧ x 6= y)


together with Defined(clear(x),¬∃(y, block)on(y, x)), as the latter would generate
fluent atoms of the form on(x, x) which are ruled out by the fluent definition for on.
Here one could either drop the inequality constraint in the definition of on or change
the complex fluent definition into Defined(clear(x),¬∃(y, block)(on(y, x) ∧ x 6= y)).
We could have built in a test in our procedure above to reject an action domain
description with incoherent fluent definitions like this. One easy way of making sure
this does not happen is not to use inequality constraints in the definition of fluents.


2. As we mentioned above, for each action there should be exactly one action precon-
dition that captures exactly the conditions under which the action is executable.
When the action precondition is given explicitly like this, one needs to be careful
in writing action effect axioms and domain rules so that no contradictory effects
would be generated. For instance, given Precond(A, true), the action effect axioms
Effect(A, true, F ) and Effect(A, true,¬F ) are clearly not realizable simultaneously.
Similarly, if Causes(true, F ) is given as a domain rule, then one should not write the
effect axiom Effect(A, true,¬F ). Had we not insisted that A be always executable, we
could simply conclude that A is not executable when its effect axioms are in contra-
diction or when some of its effect axioms contradict domain rules. It remains future
work to extend our procedure to allow for automatic generation of these implicitly
given action preconditions. For now, we shall assume that the given action domain
specification is consistent in the sense that for each action instance A generated in
Step 1, the following theory


Init ∪ Succ ∪ Succ1 ∪ {init(ϕ) ⊃ ¬succ(F ) |
Effect(A,ϕ,¬F ) is a ground instance of effect axiom}
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is consistent.


3. On a related point, our procedure assumes that information about the initial situation
is given by Init. In particular, action effect axioms should not entail any informa-
tion about the initial situation. For instance, given Causes(q,¬p), Effect(A, true, p),
and Precond(A, true), it must be that in the initial situation, q cannot be true, for
otherwise, it will persist into the next situation, causing p to be false, which contra-
dicts the action effect. Formally, this means that given any set I of atoms of the
form init(f), where f is a primitive fluent atom, if I ∪ I− ∪ Init is consistent, then
I∪I−∪Succ∪Succ1 is also consistent, where I−, the complement of I, is the following
set:


{¬init(f) | init(f) 6∈ I and
f is a primitive fluent atom generated by Step 1}


Notice that for a similar reason, Reiter needed what he called the consistency assump-
tion in order for his completion procedure to be sound and complete for generating
successor state axioms (Reiter, 1991).


While our action domain descriptions are clearly targeted at specifying deterministic actions,
some indeterminate effects can sometimes arise from cyclic domain rules. For instance,
consider the following action domain description:


Causes(p, p),
P recond(A, true)


For action A, Init is a tautology, Succ1 is empty, and Succ consists of the following pseudo-
successor state axiom for p:


succ(p) ≡ succ(p) ∨ init(p),


which is equivalent to init(p) ⊃ succ(p). So if initially p is true, then after A is performed,
we know that p will continue to be true. But if p is initially false, then after A is performed,
we do not know if p is true or not.


Example 2 Consider the blocks world description in Example 1. The set of fluent atoms
generated by Step 1 is:


F = {on(1, 1), on(1, 2), on(1, 3), on(2, 1), on(2, 2), on(2, 3),
on(3, 1), on(3, 2), on(3, 3), clear(1), clear(2), clear(3),
ontable(1), ontable(2), ontable(3)}.


Step 2 generates the following action instances:


stack(1, 2), stack(1, 3), stack(2, 1), stack(2, 3), stack(3, 1), stack(3, 2),
unstack(1, 2), unstack(1, 3), unstack(2, 1), unstack(2, 3), unstack(3, 1),
unstack(3, 2),move(1, 2, 3),move(1, 3, 2),move(2, 1, 3),move(2, 3, 1),
move(3, 1, 2),move(3, 2, 1)
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For each of these action instances, we need to go through Steps 2.1 and 2.2. For instance,
for stack(1, 2), there is only one effect axiom about on(1, 2):


Effect(stack(1, 2), true, on(1, 2)),


and the following causal rules about on(1, 2):


Causes(on(1, 1),¬on(1, 2)),
Causes(on(1, 3),¬on(1, 2)),
Causes(on(2, 2),¬on(1, 2)),
Causes(on(3, 2),¬on(1, 2)),
Causes(ontable(1),¬on(1, 2)).


Therefore Step 2.1 generates the following pseudo-successor state axiom for on(1, 2):


succ(on(1, 2)) ≡ true ∨
init(on(1, 2)) ∧ ¬[succ(on(1, 1)) ∨ succ(on(1, 3)) ∨
succ(on(2, 2)) ∨ succ(on(3, 2) ∨ succ(ontable(1))].


We can similarly generate the following pseudo-successor state axioms for the other primitive
fluent atoms:


succ(on(1, 1)) ≡ init(on(1, 1)) ∧ ¬[succ(on(1, 2)) ∨ succ(on(1, 3)) ∨
succ(on(2, 1)) ∨ succ(on(3, 1) ∨ succ(ontable(1))],


succ(on(1, 3)) ≡ init(on(1, 3)) ∧ ¬[succ(on(1, 1)) ∨ succ(on(1, 2)) ∨
succ(on(2, 3)) ∨ succ(on(3, 3)) ∨ succ(ontable(1))],


succ(on(2, 1)) ≡ init(on(2, 1)) ∧ ¬[succ(on(1, 1)) ∨ succ(on(3, 1)) ∨
succ(on(2, 2)) ∨ succ(on(2, 3)) ∨ succ(ontable(2))],


succ(on(2, 2)) ≡ init(on(2, 2)) ∧ ¬[succ(on(1, 2)) ∨ succ(on(1, 3)) ∨
succ(on(2, 1) ∨ succ(on(2, 3)) ∨ succ(ontable(2))],


succ(on(2, 3)) ≡ init(on(2, 3)) ∧ ¬[succ(on(1, 3)) ∨ succ(on(3, 3)) ∨
succ(on(2, 1) ∨ succ(on(2, 2)) ∨ succ(ontable(2))],


succ(on(3, 1)) ≡ init(on(3, 1)) ∧ ¬[succ(on(3, 2)) ∨ succ(on(3, 3)) ∨
succ(on(1, 1) ∨ succ(on(1, 3)) ∨ succ(ontable(1))],


succ(on(3, 2)) ≡ init(on(3, 2)) ∧ ¬[succ(on(3, 1)) ∨ succ(on(3, 3)) ∨
succ(on(1, 2) ∨ succ(on(2, 2)) ∨ succ(ontable(2))],


succ(on(3, 3)) ≡ init(on(3, 3)) ∧ ¬[succ(on(3, 1)) ∨ succ(on(3, 2)) ∨
succ(on(1, 3) ∨ succ(on(2, 3)) ∨ succ(ontable(3))],


succ(ontable(1)) ≡
init(ontable(1)) ∧ ¬[succ(on(1, 2)) ∨ succ(on(1, 1)) ∨ succ(on(1, 3))],


succ(ontable(2)) ≡
init(ontable(2)) ∧ ¬[succ(on(2, 1)) ∨ succ(on(2, 2)) ∨ succ(on(2, 3))],
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succ(ontable(3)) ≡
init(ontable(3)) ∧ ¬[succ(on(3, 1)) ∨ succ(on(3, 2)) ∨ succ(on(3, 3))].


For the complex fluent clear, its definition yields the following axioms:


succ(clear(1)) ≡ ¬succ(on(1, 1)) ∧ ¬succ(on(2, 1)) ∧ ¬succ(on(3, 1)),
succ(clear(2)) ≡ ¬succ(on(1, 2)) ∧ ¬succ(on(2, 2)) ∧ ¬succ(on(3, 2)),
succ(clear(3)) ≡ ¬succ(on(1, 3)) ∧ ¬succ(on(2, 3)) ∧ ¬succ(on(3, 3)).


We can then “solve” these pseudo-successor state axioms and generate the following suc-
cessor state axioms:


succ(on(1, 1)) ≡ false succ(on(1, 2)) ≡ true
succ(on(1, 3)) ≡ false succ(on(2, 1)) ≡ false
succ(on(2, 2)) ≡ false succ(on(2, 3)) ≡ init(on(2, 3))
succ(on(3, 1)) ≡ false succ(on(3, 2)) ≡ false
succ(on(3, 3)) ≡ init(on(3, 3)) succ(ontable(1)) ≡ false
succ(ontable(2)) ≡ init(ontable(2)) succ(ontable(3)) ≡ init(ontable(3))
succ(clear(1)) ≡ init(clear(1)) succ(clear(2)) ≡ false
succ(clear(3)) ≡ init(clear(3))


Once we have a set of these fully instantiated successor state axioms, we then generate
STRIPS-like descriptions like the following:


stack(1, 2)
Preconditions: ontable(1), clear(1), clear(2).
Add list: on(1, 2).
Delete list: ontable(1), clear(2).
Cond. effects: none.
Indet. effects: none.


stack(1, 3)
Preconditions: ontable(1), clear(1), clear(3).
Add list: on(1,3).
Delete list: ontable(1), clear(3).
Cond. effects: none.
Indet. effects: none.
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We have the following remarks:


• Although we generate the axiom succ(on(1, 3)) ≡ false for stack(1, 2), we do not put
on(1, 3) into its delete list. This is because we can deduce init(on(1, 3)) ≡ false from
Init as well. A fluent atom is put into the add or the delete list of an action only if
this fluent atom’s truth value is definitely changed by the action. See Section 5 for
more details about how a STRIPS-like description is generated from successor state
axioms.


• As one can see, our CCP procedure crucially depends on the fact that each type has
a finite domain so that all reasoning can be done in propositional logic. This is a
limitation of our current system, and this limitation is not as bad as one might think.
First of all, typical planning problems all assume finite domains, and changing the
domain of a type in an action description is easy - all one needs to do is to change the
corresponding type definition. More significantly, a generic action domain description
can often be obtained from one that assumes a finite domain. In our blocks world
example, the numbers “1”, “2”, and “3” are generic names, and can be replaced by
parameters. For instance, if we replace “1” by x and “2” by y in the above STRIPS-
like description of stack(1, 2), we will get a STRIPS-like description for stack(x, y)
that works for any x and y. We have found that this is a strategy that often works in
planning domains.


4. Formal Semantics


The formal semantics of an action domain description is defined by translating it into a
situation calculus causal theory of Lin (1995). We shall show that the procedure CCP given
above is sound under this semantics.


This section is mainly for those who are interested in nonmonotonic action theories. For
those who are interested only in using our action description language for describing action
domains, this section can be safely skipped.


We first briefly review the language of the situation calculus.


4.1 Situation Calculus


The language of the situation calculus is a many sorted first-order language. We assume the
following sorts: situation for situations, action for actions, fluent for propositional fluents,
truth-value for truth values true and false, and object for everything else.


We use the following domain independent predicates and functions:


• Binary function do - for any action a and any situation s, do(a, s) is the situation
resulting from performing a in s.


• Binary predicate H - for any p and any situation s, H(p, s) is true if p holds in s.


• Binary predicate Poss - for any action a and any situation s, Poss(a, s) is true if a is
possible (executable) in s.


• Ternary predicate Caused - for any fluent atom p, any truth value v, and any situation
s, Caused(p, v, s) is true if the fluent atom p is caused (by something unspecified) to
have the truth value v in the situation s.
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In the last section, we introduced fluent formulas. We now extend H to these formulas:
for any fluent formula ϕ and situation s, H(ϕ, s) is defined as follows:


• H(t1 = t2, s) is t1 = t2.


• if P is a static proposition, then H(P, s) is P .


• inductively, H(¬ϕ, s) is ¬H(ϕ, s), H(ϕ∨ϕ′, s) is H(ϕ, s)∨H(ϕ′, s), and similarly for
other connectives.


• inductively, H(∀(x, p)ϕ, s) is ∀x.[p(x) ⊃ H(ϕ, s)] and H(∃(x, p)ϕ, s) is ∃x.[p(x) ∧
H(ϕ, s)].


According to this definition, H(ϕ, s) will be expanded to a situation calculus formula where
H is applied to fluents.


4.2 A Translation to the Situation Calculus


Given a first-order language L for writing action domain descriptions, we assume that there
will be a corresponding language L′ for the situation calculus such that constants in L
will be constants of sort object in L′, types in L will be types (unary predicates) in L′,
static relations will be predicates of the same arities in L′, fluents in L will be functions
of sort fluent in L′, and actions in L will be functions of sort action in L′. Under these
conventions, the following translation will map an action domain description to a situation
calculus theory.


Let D be an action domain description. The translation of D into a situation calculus
theory is defined as follows:


• a type definition Domain(p, {a1, ..., ak}) is translated to:


(∀x).p(x) ≡ (x = a1 ∨ · · · ∨ x = ak),
a1 6= a2 6= · · · 6= ak.


• a primitive fluent definition


Fluent(f(x1, ..., xn), p1(x1) ∧ · · · ∧ pn(xn) ∧ e1 ∧ · · · ∧ em)


is translated to


(∀x1, ..., xn).Fluent(f(x1, ..., xn)) ≡ p1(x1) ∧ · · · ∧ pn(xn) ∧ e1 ∧ · · · ∧ em.


• a complex fluent definition


Complex(f(x1, ..., xn), p1(x1) ∧ · · · ∧ pn(x) ∧ e1 · · · ∧ em),
Defined(f(x1, ..., xn), ϕ),


is translated to


(∀x1, ..., xn).Fluent(f(x1, ..., xn)) ≡ p1(x1) ∧ · · · ∧ pn(x) ∧ e1 · · · ∧ em,
(∀x1, ..., xn, s).Fluent(f(x1, ..., xn)) ⊃ [H(f(x1, ..., xn), s) ≡ H(ϕ, s)].
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• a domain axiom about static propositions:


Axiom(ϕ)


is translated to ϕ with quantifiers in it treated as shorthands:


∀(x, p)φ = ∀x.p(x) ⊃ φ,


∃(x, p)φ = ∃x.p(x) ∧ φ.


• an action definition


Action(a(x1, ..., xn), p1(x1) ∧ · · · ∧ pn(xn) ∧ e1 ∧ · · · ∧ em)


is translated to


(∀x1, ..., xn).Action(a(x1, ..., xn)) ≡ p1(x1) ∧ · · · ∧ pn(xn) ∧ e1 ∧ · · · ∧ em.


We assume here that the domain description has only one action definition for each
action.


• An action precondition axiom


Precond(a(x1, ..., xn), ϕ)


is translated to


(∀~ξ, s).Action(a(x1, ..., xn)) ⊃ [Poss(a(x1, ..., xn), s) ≡ H(ϕ, s)],


where ~ξ is the list of all free variables in a(x1, ..., xn) and ϕ. We mentioned earlier
that one of the limitations of our current system is that action preconditions have to
be given explicitly. This is reflected in the above translation.


• An action effect axiom:


Effect(a(x1, ..., xn), ϕ, f(y1, ..., yk)),


is translated to


(∀~ξ, s).Action(a(x1, ..., xn)) ∧ Fluent(f(y1, ..., yk)) ∧ Poss(a(x1, ..., xn), s) ⊃
{H(ϕ, s) ⊃ Caused(f(y1, ..., yk), true, do(a(x1, ..., xn), s))},


where ~ξ is the list of all free variables in a(x1, ..., xn), f(y1, ..., yk), and ϕ.


Similarly, an effect axiom


Effect(a(x1, ..., xn), ϕ,¬f(y1, ..., yk)),


is translated to


(∀~ξ, s).Action(a(x1, ..., xn)) ∧ Fluent(f(y1, ..., yk)) ∧ Poss(a(x1, ..., xn), s) ⊃
{H(ϕ, s) ⊃ Caused(f(y1, ..., yk), false, do(a(x1, ..., xn), s))}.


293







Lin


• A domain rule of the form


Causes(ϕ, f(x1, ..., xn))


is translated to


(∀~ξ).Fluent(f(x1, ..., xn)) ⊃ (∀s){H(ϕ, s) ⊃ Caused(f(x1, ..., xn), true, s)},


where ~ξ is the list of all free variables in f(x1, ..., xn) and ϕ. Similarly, a domain rule
of the form


Causes(ϕ,¬f(x1, ..., xn))


is translated to


(∀~ξ).Fluent(f(x1, ..., xn)) ⊃ (∀s){H(ϕ, s) ⊃ Caused(f(x1, ..., xn), false, s)}.


Now given an action domain description D, let T be its translation in the situation
calculus. The semantics of T is then determined by its completion comp(T ) that is defined
as the set of following sentences:


1. The circumscription of Caused in T with all other predicates fixed.


2. The following basic axioms about Caused that says that if a fluent atom is caused to
be true (false), then it is true (false):


Caused(p, true, s) ⊃ Holds(p, s), (2)
Caused(p, false, s) ⊃ ¬Holds(p, s). (3)


3. For the truth values, the following unique names and domain closure axiom:


true 6= false ∧ (∀v)(v = true ∨ v = false). (4)


4. The unique names assumptions for fluents and actions. Specifically, if F1,..., Fn are
all the fluents, then we have:


Fi(~x) 6= Fj(~y), i and j are different,


Fi(~x) = Fi(~y) ⊃ ~x = ~y.


Similarly for actions.


5. For each primitive fluent atom F , the following generic successor state axiom:


∀a, s.Poss(a, s) ⊃ H(F, do(a, s)) ≡ (5)
[Caused(F, true, do(a, s)) ∨H(F, s) ∧ ¬Caused(F, false, do(a, s))].


6. The foundational axioms (Lin & Reiter, 1994b) for the discrete situation calculus.
These axioms characterize the structure of the space of situations. For the purpose
of this paper, it is enough to mention that they include the following unique names
axioms for situations:


s 6= do(a, s),
do(a, s) = do(a′, s′) ⊃ (a = a′ ∧ s = s′).
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The following theorem shows that the procedural semantics given in the previous section
is sound with respect to the semantics given here.


Theorem 1 Let D be an action domain description, and T its translation in the situation
calculus. Let A be any ground action instance, s a situation variable, and ϕ(s) a situation
calculus formula that satisfies the following two conditions (1) it contains at most the two
situation terms s and do(A, s); and (2) it does not mention any predicate other than H,
equality, and static relations. Let ϕ̂ be obtained from ϕ by replacing each H(f, s) in it by
init(f), and each H(f, do(A, s)) in it by succ(f). Then


comp(T ) |= ∀s.Poss(A, s) ⊃ ϕ(s) (6)


if
Init ∪ Succ ∪ Succ1 |= ϕ̂, (7)


where Init, Succ, and Succ1 are the sets of axioms generated for A according to the proce-
dure in Section 3


Proof: Suppose S is a situation and M is a model of comp(T ) ∪ {Poss(A,S)}. Construct
MS,A as follows:


• the domain of MS,A is the object domain of M .


• the interpretations of non-situational function and predicate symbols in MS,A are the
same as those in M .


• for any fluent atom f , MS,A |= init(f) iff M |= H(f, S) and MS,A |= succ(f) iff
M |= H(f, do(A,S)).


Clearly, M |= ϕ(S) iff MS,A |= ϕ̂. We show below that MS,A is a model of the left hand
side of (7). From this, we see that if (7), then (6).


Notice first that a ground fluent atom F is generated by the procedure CCP iff Fluent(F )
is true in M . Notice also that all fluent atoms in Init∪Succ∪Succ1 must be generated by
the procedure.


We show first that MS,A is a model of Init:


1. If Axiom(ψ) is a domain axiom, then ψ is in T . Thus M satisfies ψ. Since ψ has no
fluent symbols in it, MS,A satisfies it too.


2. If Causes(ψ, f(x1, ..., xn)) is a domain rule, then


(∀~ξ).Fluent(f(x1, ..., xn)) ⊃ (∀s){H(ψ, s) ⊃ Caused(f(x1, ..., xn), true, s)}


is in T . Thus M satisfies


(∀~ξ).Fluent(f(x1, ..., xn)) ⊃ (∀s){H(ψ, s) ⊃ H(f(x1, ..., xn), s)}.


Thus if init(ψ′) ⊃ init(F ) is a corresponding formula in Init, where ψ′ and F is
some ground instantiation of ψ and f(x1, ..., xn), respectively, then Fluent(F ) must
be true in M (otherwise the above formula would not be in Init), so M satisfies
H(ψ′, S) ⊃ H(F, S). By the construction of MS,A, it satisfies init(ψ′) ⊃ init(F ). The
case for Causes(ψ,¬f) is similar.


295







Lin


3. Suppose Defined(F,ψ) is an instantiation of a complex fluent definition such that
F ≡ ψ is in Init. For it to be in Init, Fluent(F ) must be true. Thus M must satisfy
H(F, S) ≡ H(ψ, S). By the construction of MS,A, it satisfies init(F ) ≡ init(ψ, S).


4. Suppose Precond(A,φA) is the precondition axiom forA. SinceM satisfies Poss(A,S)
and Action(A) (because A is one of the action instances generated by the procedure),
thus M satisfies H(φA, S). So MS,A satisfies init(φA).


We now show that MS,A is a model of Succ, that is, for each primitive fluent atom F
generated by the procedure in Step 1, the pseudo-successor state axiom (1) holds. Referring
to the notation in the axiom, we need to show that M satisfies the following formula:


H(F, do(A,S)) ≡ H(ϕ1, S) ∨ · · · ∨H(ϕn, S) ∨
H(ϕ′1, do(A,S)) ∨ · · · ∨H(ϕ′l, do(A,S)) ∨
H(F, S) ∧ ¬[H(φ1, S) ∨ · · · ∨H(φm, S) ∨


H(φ′1, do(A,S)) ∨ · · · ∨H(φ′k, do(A,S))].


First of all, instantiating the generic successor state axiom (5) over A and S, we get:


Poss(A,S) ⊃ H(F, do(A,S)) ≡
[Caused(F, true, do(A,S)) ∨H(F, S) ∧ ¬Caused(F, false, do(A,S))].


Since M is a model of Poss(A,S), we have


H(F, do(A,S)) ≡ (8)
[Caused(F, true, do(A,S)) ∨H(F, S) ∧ ¬Caused(F, false, do(A,S))].


Now consider the circumscription of Caused in T with all other predicates fixed. Notice that
all axioms about Caused in T have the form W ⊃ Caused(x, y, z), where W is a formula
that does not mention Caused. Therefore the circumscription of Caused is equivalent to
the predicate completion of Caused. Suppose F is f(t), and that all of the axioms about
Caused(f(x), v, s) in T are as follows:


W1 ⊃ Caused(f(x), v, s), · · · ,Wi ⊃ Caused(f(x), v, s).


Because of the unique names axioms about fluents, the result of predicate completion on
Caused will entail:


Caused(f(x), v, s) ≡W1 ∨ · · · ∨Wi.


Now W1,...,Wi are from action effect axioms and domain rules about f . By the way that
(1) is generated, and noting that Action(A), Fluent(F ), and Poss(A,S) are true, one can
see that when the above equivalence is instantiated by replacing t for x, true for v, and S
for s, we will get


Caused(F, true, do(A,S)) ≡ H(ϕ1, S) ∨ · · · ∨H(ϕn, S) ∨
H(ϕ′1, do(A,S)) ∨ · · · ∨H(ϕ′l, do(A,S)).
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Similarly, we have the following axiom about Caused(F, false, do(A,S)):


Caused(F, false, do(A,S)) ≡ H(φ1, S) ∨ · · · ∨H(φm, S) ∨
H(φ′1, do(A,S)) ∨ · · · ∨H(φ′k, do(A,S)).


From these two axioms and (8), we get:


H(F, do(A,S)) ≡ H(ϕ1, S) ∨ · · · ∨H(ϕn, S) ∨
H(ϕ′1, do(A,S)) ∨ · · · ∨H(ϕ′l, do(A,S)) ∨
H(F, S) ∧ ¬[H(φ1, S) ∨ · · · ∨H(φm, S) ∨


H(φ′1, do(A,S)) ∨ · · · ∨H(φ′k, do(A,S))].


Since M is a model of Comp(T ), M satisfies the above formula. By the construction of
MS,A, it satisfies the pseudo-successor state axiom (1).


Finally, the fact that MS,A is a model of Succ1 should be apparent. 2


In general, (6) does not imply (7). There are several reasons:


• As we mentioned after the procedure CCP, we assume that all information about the
initial situation is given by Init.


• Our procedure works on actions one at a time. The situation calculus theory T
captures the effects of all actions in a single theory. So it is possible that a bad spec-
ification of an action causes the entire theory to become inconsistent. For instance,
if we have Causes(true, p), Precond(A, true), and Effect(A, false, p), then the corre-
sponding situation calculus theory will be inconsistent because of action A. But for
our procedure, it will generate an inconsistent theory only on A.


5. An Implementation


Except for Step 2.2, the procedure CCP in Section 3 is straightforward to implement. This
section describes the strategy that our system uses for implementing Step 2.2. The main
idea comes from the work of Lin (2001a) on strongest necessary and weakest sufficient
conditions.


Given a propositional theory T , a proposition q, and a set B of propositions, a formula
ϕ is said to be a sufficient condition of q on B under T if ϕ consists of propositions in B
and T |= ϕ ⊃ q. It is said to be the weakest sufficient condition if for any such sufficient
condition ϕ′, we have that T |= ϕ′ ⊃ ϕ. Similarly, a formula ϕ is said to be a necessary
condition of q on B under T if ϕ consists of propositions in B and T |= q ⊃ ϕ. It is said
to be the strongest necessary condition if for any such necessary condition ϕ′, we have that
T |= ϕ ⊃ ϕ′.


It is easy to see that the weakest sufficient condition and the strongest necessary condi-
tion are unique up to logical equivalence under the background theory. It was shown (Lin,
2001a) that these two notions are closely related, and can be computed using the technique
of forgetting (Lin & Reiter, 1994a). In particular, for action theories, an effective strat-
egy is to first compute the strongest necessary condition, add it to the background theory,
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and then compute the weakest sufficient condition under the new theory. This strategy is
justified by the following proposition Lin (2001a):


Proposition 1 Let T be a theory, q a proposition, and B a set of propositions. If ϕ is a
necessary condition of q on B under T , and ψ the weakest sufficient condition of q on B
under T ∪ {ϕ}, then ϕ ∧ ψ is the weakest sufficient condition of q on B under T .


We can now describe our strategy for implementing Step 2.2 of the procedure CCP. In
the following, given an action instance A, as in Step 2.2, let Succ be the set of pseudo-
successor state axioms for primitive fluent atoms, Succ1 the set of pseudo-successor state
axioms for complex fluent atoms, and Init the set of initial situation axioms derived from
the action precondition axiom for A, domain axioms, domain rules, and complex fluent
definitions. Also in the following, a succ-proposition is one of the form succ(f), and an
init-proposition is one of the form init(f).


1. Transform Init into a clausal form and derive from it a set of unit clauses Unit.


2. Use Unit to simplify the axioms in Succ and for each resulting axiom in it:


succ(f) ≡ Φf , (9)


if Φf does not mention succ-propositions, then delete it from Succ, output it and
replace succ(f) in the rest of the axioms by Φf .


3. For each fluent atom f whose pseudo-successor state axiom (9) is in Succ, if Φf has
the form init(f)∧ ... (a candidate of a frame axiom), then check to see if succ(f) can
be derived from Succ, Unit, and init(f) by unit resolution. If so, delete it from Succ,
output succ(f) ≡ init(f), and replace succ(f) in Succ by init(f).


4. For each fluent atom f whose pseudo-successor state axiom (9) is in Succ, compute
the strongest necessary condition αf of succ(f) on the init-propositions under the
theory Init ∪ Succ, and the weakest sufficient condition βf of succ(f) on the init-
propositions under the theory {αf} ∪ Init ∪ Succ. If βf is a tautology, then delete
(9) from Succ, output succ(f) ≡ αf , and replace succ(f) in Succ by αf . If β is not
a tautology, then output succ(f) ⊃ αf and αf ∧ βf ⊃ succ(f), but do not delete (9)
from Succ. The correctness of this step follows from Proposition 1.


5. The previous steps solve the equations in Succ, and generate appropriate output for
primitive fluent atoms. For each complex fluent atom F :


Defined(F,ϕ),


if every primitive fluent atom in ϕ has a successor state axiom, then do the following:


(a) if no primitive fluent atoms in ϕ are changed by the action, then this complex
fluent atom is not changed by the action either, so output succ(F ) ≡ init(F );


(b) otherwise, output succ(F ) ≡ Φ, where Φ is obtained from succ(ϕ) by replacing
every succ-proposition in it by the right side of its successor state axiom.
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Otherwise, if some of the primitive fluent atoms in ϕ do not have a successor state
axiom, which means the action may have an indeterminate effect on them, then this
action may have an indeterminate effect on F as well. Compute the strongest neces-
sary and weakest sufficient conditions of succ(F ) under Init∪ Succ∪ Succ1 as in the
last step, and output them.


6. This step will try to generate a STRIPS-like description for the action instance A
based on the results of Steps 4 and 5. For each fluent atom F , do according to one of
the following cases:


(a) if its successor state axiom is succ(F ) ≡ true, then put F into the add list unless
init(F ) is entailed by Init;


(b) if its successor state axiom is succ(F ) ≡ false, then put F into the delete list
unless ¬init(F ) is entailed by Init;


(c) if its successor state axiom is succ(F ) ≡ Φ, and Φ is not the same as true, false,
or init(F ), then put F in the conditional effect list and output its successor state
axiom.


(d) If F does not have a successor state axiom, then put it in the list of indeterminate
effects.


Clearly, if F is not put into any of the lists, then its truth value is not affected by A.


Steps 4 and 5 of the above procedure are the bottleneck as in the worst case, computing
the strongest necessary condition of a proposition is coNP-hard. However, it has been our
experience that if action A has a context-free effect on fluent atom F , then its successor
state axiom can be computed without going through Step 4.


We have implemented the procedure CCP using the above strategy in SWI-Prolog 3.2.92.
The url for this system is as follows:


http://www.cs.ust.hk/~flin/ccp.html


Using the system, we have encoded in our action description language many of the planning
domains that come with the original release of PDDL (McDermott, 1998), and compiled
them to STRIPS-like specifications. Our encodings of the domains and the results returned
by the system are included in the online appendix. In the following, we illustrate some
interesting features of our system using the following two domains: the blocks world and
the monkey and bananas domain.


5.1 The Blocks World


We have used the blocks world as the running example. Here we shall give an alterna-
tive specification of the domain using the following better known set of actions: stack,
unstack, pickup, and putdown. We shall use this domain to show that changing slightly
the precondition of one of the actions can result in a very different action specification.


2. SWI-Prolog is developed by Jan Wielemaker at University of Amsterdam
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We begin with a description that corresponds to the standard STRIPS encoding of the
domain.


Fluent(on(x, y), block(x) ∧ block(y)),
Fluent(ontable(x), block(x)),
Fluent(holding(x), block(x)),
Complex(clear(x), block(x),
Defined(clear(x), (¬∃(y, block)on(y, x)) ∧ ¬holding(x)),
Complex(handempty, true),
Defined(handempty,¬∃(x, block)holding(x)),


Causes(on(x, y) ∧ x 6= z,¬on(z, y)),
Causes(on(x, y) ∧ y 6= z,¬on(x, z)),
Causes(on(x, y),¬ontable(x)),
Causes(ontable(x),¬on(x, y)),
Causes(on(x, y),¬holding(x)),
Causes(on(x, y),¬holding(y)),
Causes(holding(x),¬ontable(x)),
Causes(holding(x),¬on(x, y)),
Causes(holding(x),¬on(y, x)),
Causes(holding(x) ∧ y 6= x,¬holding(y)),


Action(stack(x, y), block(x) ∧ block(y) ∧ x 6= y),
P recond(stack(x, y), holding(x) ∧ clear(y)),
Effect(stack(x, y), true, on(x, y)),


Action(unstack(x, y), block(x) ∧ block(y) ∧ x 6= y),
P recond(unstack(x, y), clear(x) ∧ on(x, y) ∧ handempty),
Effect(unstack(x, y), true, holding(x)),


Action(putdown(x), block(x)),
P recond(putdown(x), holding(x)),
Effect(putdown(x), true, ontable(x)),


Action(pickup(x), block(x)),
P recond(pickup(x), handempty ∧ ontable(x) ∧ clear(x)),
Effect(pickup(x), true, holding(x)).


Notice that compared to the description in Example 1, there are two more fluents, holding
and handempty here. Thus we have a few more domain rules about them, and the definition
of clear is changed to take into account that when a block is held, it is not considered to
be clear.
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Now assuming a domain with three blocks Domain(block, {1, 2, 3}), our system will
generate 19 fluent atoms, and 18 action instances. For each action instance, it returns
both a complete set of successor state axioms and a STRIPS-like representation. The total
computation time for all actions is 835K inferences and 0.5 seconds.3 This is a pure STRIPS
domain, i.e. all actions are context free. For this type of domains, as we mentioned earlier,
Step 4 in our implementation procedure is not needed, and Step 5 is easy.


The results are as expected. For instance, for action pickup(1), the STRIPS-like repre-
sentation returned by the system looks like the following: track 1 to track 2), the STRIPS-
like representation looks like:


pickup(1):
Preconditions: clear(1), handempty, ontable(1)
Add list: holding(1)
Delete list: ontable(1), clear(1), handempty
Conditional effects:
Indeterminate effects:


The complete output is given in the online appendix. Now let us consider what happen
if we drop ontable(x) from the precondition of pickup(x):


Precond(pickup(x), handempty ∧ clear(x)).


This means that as long as a block is clear, it can be picked up. With this new precondition,
our system returns the following STRIPS-like representation for action pickup(1);


pickup(1):
Preconditions: clear(1), handempty
Add list: holding(1)
Delete list: clear(1), handempty, on(1, 2), on(1, 3), ontable(1)
Conditional effects:


succ(clear(2))<-> - (init(on(2, 2))\/init(on(3, 2)))
succ(clear(3))<-> - (init(on(2, 3))\/init(on(3, 3)))


Indeterminate effects:


Here “-” is negation, and “\/” is disjunction. An ADL-like description for this action
would be something like the following:


pickup(x):
Preconditions: clear(x), handempty
Add list: holding(x),


clear(y) when on(x,y)
Delete list: clear(x), handempty,


on(x,y) when on(x,y)
ontable(x) when ontable(x)


3. All times in this paper refer to CPU times on a Pentium III 1GHz machine with 512MB RAM running
SWI-Prolog 3.2.9 under Linux. The number of inferences is the one reported by SWI-Prolog, and
roughly corresponds to the number of resolution steps carried out by the Prolog interpreter, and is
machine independent.


301







Lin


5.2 The Monkey and Bananas Domain


This domain is again adapted from McDermott’s PDDL library of planning domains, which
attributes it to the University of Washington’s UCPOP collection of action domains, which
in turn attributes it to Prodigy. While some of the action effects generated by our system
are context-dependent, they are all context-free in the other systems. We shall elaborate
on this difference later.


In this domain, there are two types, loc for locations (we assume there are three locations
here), and object for things like monkey, banana, box, etc.:


Domain(loc, {1, 2, 3}),
Domain(object, {monkey, box, banana, knife, glass, fountain}).


The following are fluent definitions:


Fluent(onF loor),
Fluent(at(M,X), object(M) ∧ loc(X)),
Fluent(hasknife),
Fluent(onbox(X), loc(X)),
Fluent(hasbanana),
Fluent(haswater),
Fluent(hasglass).


The following are domain rules about these fluents:


Causes(onbox(X), at(monkey,X)), (10)
Causes(onbox(X), at(box,X)), (11)
Causes(onbox(X),¬onF loor), (12)
Causes(onF loor,¬onbox(X)), (13)
Causes(at(M,X) ∧X 6= Y,¬at(M,Y )), (14)
Causes(hasglass ∧ at(monkey,X), at(glass,X)), (15)
Causes(hasknife ∧ at(monkey,X), at(knife,X)), (16)
Causes(hasbanana ∧ at(monkey,X), at(banana,X)). (17)


The following are action definitions along with their respective preconditions and effect
axioms:


• goto(x, y) - the monkey goes to x from y:


Action(goto(X,Y ), loc(X) ∧ loc(Y ) ∧X 6= Y ),
P recond(goto(X,Y ), at(monkey, Y ) ∧ onF loor),
Effect(goto(X,Y ), true, at(monkey,X)).
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• climb(X) - the monkey climbs onto the box at location X:


Action(climb(X), loc(X)),
P recond(climb(X), at(box,X) ∧ onF loor ∧ at(monkey,X)),
Effect(climb(X), true, onbox(X)).


• pushbox(X,Y ) - the monkey pushes the box from Y to X.


Action(pushbox(X,Y ), loc(X) ∧ loc(Y ) ∧X 6= Y ),
P recond(pushbox(X,Y ), at(monkey, Y ) ∧ at(box, Y )) ∧ onF loor),
Effect(pushbox(X,Y ), true, at(monkey,X)),
Effect(pushbox(X,Y ), true, at(box,X)).


• getknife(X) - get knife at location X.


Action(getknife(X), loc(X)),
P recond(getknife(X), at(knife,X) ∧ at(monkey,X) ∧ ¬hasknife),
Effect(getknife(X), true, hasknife).


• getbanana(X) - grab banana at loc X, provided the monkey is on the box.


Action(getbanana(X), loc(X)),
P recond(getbanana(X), onbox(X) ∧ at(banana,X) ∧ ¬hasbanana),
Effect(getbanana(X), true, hasbanana).


• pickglass(X) - pick up glass at loc X.


Action(pickglass(X), loc(X)),
P recond(pickglass(X), at(glass,X) ∧ at(monkey,X) ∧ ¬hasglass),
Effect(pickglass(X), true, hasglass).


• getwater(X) - get water from fountain at loc X, provided the monkey is on the box,
and has a glass in hand.


Action(getwater(X), loc(X)),
P recond(getwater(X), at(fountain,X) ∧ onbox(X) ∧ hasglass ∧ ¬haswater),
Effect(getwater(X), true, haswater).


This domain has 27 actions and 26 fluent atoms. Again, for each action, our system
generates both a complete set of fully instantiated successor state axioms and a STRIPS-
like representation. For instance, for action goto(1, 2), the following is the STRIPS-like
representation generated by the system:
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Action goto(1, 2)


Preconditions: at(monkey, 2), onFloor


Add list: at(monkey, 1)


Delete list: at(monkey, 2)


Conditional effects:


succ(at(banana, 1)) <-> init(hasbanana) \/ init(at(banana, 1))
succ(at(knife, 1)) <-> init(hasknife) \/ init(at(knife, 1))
succ(at(glass, 1)) <-> init(hasglass) \/ init(at(glass, 1))
succ(at(banana, 2)) <-> - init(hasbanana) & init(at(banana, 2))
succ(at(knife, 2)) <-> - init(hasknife) & init(at(knife, 2))
succ(at(glass, 2)) <-> - init(hasglass) & init(at(glass, 2))


The total running time for all actions is 8 seconds while performing 20 million inferences.
About 90 percent of time is spent on Step 4, i.e. on computing the strongest necessary
and weakest sufficient conditions of fluent atoms on which the given action has context-
dependent effects. For instance, for action goto(1, 2) above, the majority of time was spent
on generating the above 6 conditional effects.


For this action, actually for all the actions in this domain, we could use an ADL-like
description (Pednault, 1989) for conditional effects:


Add list: at(banana,1) when hasbanana
at(knife,1) when hasknife
at(glass,1) when hasglass


Delete list: at(banana,2) when hasbanana
at(knife,2) when hasknife
at(glass,2) when hasglass


However, it is not clear whether this can always be done in the general case.
We mentioned earlier that the specifications for this domain given in McDermott’s col-


lection as well as others are all context-free. For instance, the following is a specification
for action goto in PDDL in McDermott’s collection:


(:action GO-TO
:parameters (?x ?y)
:precondition (and (location ?x) (location ?y)


(not (= ?y ?x)) (on-floor) (at monkey ?y))
:effect (and (at monkey ?x) (not (at monkey ?y))))


This corresponds to a context-free action that does not change any other fluent except at.
It is clear that the design of this action does not take into account domain rules (15) - (17).
With this specification, if initially banana is at location 1, then the goal of having banana
at location 2 would not be achievable.
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5.3 Summary


The other domains that we have experimented including a scheduling domain that includes
Pednault’s dictionary and paycheck domain as a special case, the rocket domain, the SRI
robot domain, the machine shop assembling domain, the ferry domain, the grid domain,
the sokoban domain, and the gear domain. They are all included in the online appendix.
We summarize below some of the common features of these domains:


• In all the domains that we tried, it is quite straightforward to decide what effects of
an action should be encoded as direct effects (those given by the predicate Effect) and
what effects as indirect effects (those derived from domain rules).


• The most common domain rules are functional dependency constraints. For instance,
in the blocks world, the fluent atom on(x, y) is functional on both arguments; in
the monkey and banana domain, the fluent atom at(object, loc) is functional on the
second argument (each object can be at only one location). It makes sense then that
we would have a special shorthand for these domain rules, and perhaps a special
procedure for handling them as well. But more significantly, given the prevalence
of these functional dependency constraints in action domains, it is worthwhile to
investigate the possibility of a general purpose planner making good use of these
constraints.


• As we mentioned earlier, our system is propositional. The generated successor state
axioms and STRIPS-like systems are all fully instantiated. However, it is often easy
for the user to generalize these propositional specifications to first-order ones. We
shall investigate the generality of this observation next.


6. Generalizing Propositional STRIPS-Like Systems to Ones With
Parameters


As we mentioned, for many action domain descriptions, the successor state axioms and
STRIPS-like systems generated for a specific domain can be generalized to arbitrary ones.


More precisely, let D be a domain description, and


Domain(p1, Dp1), · · · , Domain(pk, Dpk
)


its type specification. Suppose in D for action A we have that InitA ∪ SuccA |= ϕ. Now
suppose D′ is another domain description that is just like D except that it has a different
type specification:


Domain(p1, D
′
p1


), · · · , Domain(pk, D
′
pk


).


The question that we are interested in is this: given any one-to-one mapping from the type
specification of D to that of D′, will InitA′ ∪SuccA′ |= ϕ′ be true in D′? Here A′ (resp. ϕ′)
is the result of replacing all objects in A (resp. ϕ) according to the mapping.


For instance, if the above is true for the blocks world, then we can generalize the results
for the domain description in Example 1 as follows. As we have shown, for action stack(1, 2),
both succ(on(1, 2)) and ¬succ(on(1, 3)) are true. Now if we change the type specification
to Domain(block, {a, b, c, d, e}), and if we map 1 to a, 2 to c, and 3 to e, in the new domain
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specification, we will have that for action stack(a, c), succ(on(a, c)) and ¬succ(on(a, e)) are
true. Furthermore, by changing the mapping for 3, we see that for any x that is different
from a and c (the mapping needs to be one-to-one), ¬succ(on(a, x)) is true.


Obviously, this is to be expected of the blocks world. We now proceed to show that for
some general classes of domain descriptions, we can do this as well. We first make precise
the mapping from one type specification to another.


Definition 2 Given two type specifications O:


Domain(p1, Dp1), · · · , Domain(pk, Dpk
),


and O′:
Domain(p1, D


′
p1


), · · · , Domain(pk, D
′
pk


),


an embedding from O to O′ is a one-to-one mapping τ from Dp1∪· · ·∪Dpk
to D′


p1
∪· · ·∪D′


pk


such that for any 1 ≤ i ≤ k, and any a ∈ Dpi, f(a) ∈ D′
pi


.


Clearly, if there is an embedding of O to O′, then for each type p, the size of the domain
for p in O′ must be at least the size of the domain for p in O. Given such an embedding
τ , any expression β (actions, propositions, formulas) in an action domain description D
with O as its type specification can be mapped to τ(β) in the language of D′: one simply
replaces each object a in β by τ(a), where D′ differs from D only in that it uses O′ as its
type specification. Notice that only objects (those in the domain of some type) are to be
replaced, not constants that may occur in the effect axioms or domain rules.


Definition 3 An action domain description belongs to simple-I class if it does not mention
any function of positive arity, does not mention any complex fluents except in complex fluent
definitions, and satisfies the following conditions:


1. If Precond(A,φA) is an action precondition definition, then φA has the form
(∀x, p)...(∀y, q)W , where W is a fluent formula that does not have any quantifiers.


2. If Effect(A,ϕ, F ) or Effect(A,ϕ,¬F ) is an action effect axiom, then ϕ does not have
any quantifiers, and the variables in ϕ and F are among those in A. That is, one
cannot have something like


Effect(explodeAt(x), nearby(y, x), dead(y)).


3. If Causes(ϕ, F ) or Causes(ϕ,¬F ) is a domain rule, then ϕ does not have any quan-
tifiers, and all the variables in ϕ must be in F .


Theorem 2 Let D be a simple-I action domain description, and A an action instance in
D. Let D′ be just like D except for the type specification. Then for any formula ψ that
does not mention any complex fluent and has no quantifiers, and any embedding τ from
the type specification of D to that of D′, we have that if InitA ∪ SuccA |= ψ in D. then
Initτ(A) ∪ Succτ(A) |= τ(ψ) in D′.


306







From Causal Theories to STRIPS-Like Systems


Proof: Suppose Initτ(A) ∪Succτ(A) |= τ(ψ) is not true, and that M1 is a truth assignment
in the language of D′ that satisfies Initτ(A) ∪ Succτ(A) and ¬τ(ψ). Now construct a truth
assignment M2 in the language of D as follows: for any proposition P in the language of
D that does not mention any complex fluent, M2 |= P iff M1 |= τ(P ) (P is really either
a static proposition, succ(F ),or init(F ), where F is a primitive fluent atom). The truth
values of complex fluent atoms in M2 are defined according to their definitions. Clearly,
M2 |= ψ. We now need to show that M2 also satisfies InitA and SuccA. For InitA, there
are three cases:


1. M2 |= init(F ) ≡ init(ϕ) when Defined(F,ϕ) is a complex fluent definition. This
follows from the construction of M2.


2. M2 |= init(φA) when Precond(A,φA) is the precondition definition for A. By our
assumption, φA has the form (∀x, p)...(∀y, q).W , where W is a formula without any
quantifiers. Without loss of generality, let us assume it is (∀x, p)W . Then this formula
is equivalent to ∨


a∈Dp


W (x/a)


under D, where Dp is the domain of type p in D. So M2 |= (∀x, p)W iff


M2 |=
∨


a∈Dp


W (x/a)


iff
M1 |=


∨
a∈Dp


W (x/τ(a)),


which is true since M1 |= (∀x, p)W .


3. All other formulas in InitA do not mention complex fluents and have no quantifiers.
They are true in M2 because the corresponding ones are true in M1.


For SuccA, suppose F is a primitive fluent atom, and its pseudo-successor state axiom ΦF


as constructed according to the procedure CCP given in Section 3 is as follows:


succ(F ) ≡ init(ϕ1) ∨ · · · ∨ init(ϕn) ∨ succ(ϕ′1) ∨ · · · ∨ succ(ϕ′l) ∨
init(F ) ∧ ¬[init(φ1) ∨ · · · ∨ init(φm) ∨ succ(φ′1) ∨ · · · ∨ succ(φ′k)].


Because of the following properties about D:


• each effect axiom Effect(A,ϕ, F ) or Effect(A,ϕ,¬F ) has the property that ϕ has no
quantifier, and that the variables in ϕ are also in F ;


• each domain rule of the form Causes(ϕ, F ) or Causes(ϕ,¬F ) has the property that
ϕ has no quantifier, and that the variables in ϕ are also in F ;


so the pseudo-successor state axiom for τ(succ(F )) under D′ is just τ(ΦF ). Thus M2 |= ΦF


since M1 |= τ(ΦF ). This proves that M2 is a model of SuccA, thus the theorem. 2
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However, most of the examples that we have in the paper do not belong to this simple-I
class, for two reasons: action preconditions, like those in the blocks world, can mention
complex fluents; and some of the negative domain rules Causes(ϕ,¬F ) may have some
variables not in F . The first problem is not a problem in principle as complex fluents can
be replaced by their definitions. The second problem is more serious, and that leads to a
new type of simple action theories.


Definition 4 An action domain description belongs to simple-II class if it does not mention
any function of positive arity, does not mention any complex fluents except in complex fluent
definitions, and satisfies the following conditions:


1. If Precond(A,φA) is an action precondition definition, then φA has the form
(∀x, p)...(∀y, q)W , where W is a fluent formula that does not have any quantifiers.


2. If Effect(A,ϕ, F ) or Effect(A,ϕ,¬F ) is an action effect axiom, then ϕ does not have
any quantifiers, and the variables in ϕ and F are among those in A.


3. There are no positive domain rules of the form Causes(ϕ, F ).


4. If Causes(ϕ,¬F ) is a domain rule, then ϕ must be of the form ϕ1 ∧ ϕ2, where ϕ1 is
any formula that does not mention any fluents and ϕ2 is a fluent atom. Notice that
there is no restriction on variables in ϕ2.


Simple-II class action domain descriptions seem to be very limited in that there can be no
positive domain rules, and the only negative domain rules allowed are binary. Nevertheless,
they still capture many context-free action domains. For instance, both the blocks world
and meet-and-pass domains in this paper belong to this class: for the blocks world, notice
that while it uses the complex fluent clear in some of its action precondition definitions, as in
Precond(stack(x, y), ontable(x)∧clear(x)∧clear(y)), these definitions can be reformulated
as follows using clear’s definition:


Precond(stack(x, y),
ontable(x) ∧ (∀x1, block)(∀y1, block)(¬on(x1, x) ∧ ¬on(y1, y))).


This will then satisfy the condition about Precond in the above definition of simple-II
action domain descriptions. While we have not verified it formally, it seems that all the
context-free action domains in McDermott’s PDDL library of action domains, including the
logistics domain, belong to the simple-II class.


Theorem 3 Let D be a simple-II action domain description, and A an action instance in
D. Let D′ be just like D except for the type specification. Then for any formula ψ that
does not mention any complex fluent and has no quantifiers, and any embedding τ from
the type specification of D to that of D′, we have that if InitA ∪ SuccA |= ψ in D then
Initτ(A) ∪ Succτ(A) |= τ(ψ) in D′.


Proof: Suppose Initτ(A) ∪Succτ(A) |= τ(ψ) is not true, and that M1 is a truth assignment
in the language of D′ that satisfies Initτ(A) ∪ Succτ(A) and ¬τ(ψ). Now construct a truth
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assignment M2 in the language of D as follows: for any proposition P in the language of
D that does not mention any complex fluent, M2 |= P iff M1 |= τ(P ) (P is really either
a static proposition, succ(F ),or init(F ), where F is a primitive fluent atom). The truth
values of complex fluent atoms in M2 are defined according to their definitions. Clearly,
M2 |= ψ. We now need to show that M2 also satisfies InitA and SuccA. For InitA, there
are three cases:


1. M2 |= init(F ) ≡ init(ϕ) when Defined(F,ϕ) is a complex fluent definition. This
follows from the construction of M2.


2. M2 |= init(φA) when Precond(A,φA) is the precondition definition for A. By our
assumption, φA has the form (∀x, p)...(∀y, q).W , where W is a formula without any
quantifiers. Without loss of generality, let us assume it is (∀x, p1)W . Then this
formula is equivalent to


W (x/a11) ∨ · · · ∨W (x/a1n1)


under D. So M2 |= (∀x, p1)W iff


M2 |= W (x/a11) ∨ · · · ∨W (x/a1n1)


iff
M1 |= W (x/τ(a11)) ∨ · · · ∨W (x/τ(a1n1)),


which is true since M1 |= (∀x, p1)W .


3. All other formulas in InitA do not mention complex fluents and have no quantifiers.
They are true in M2 because the corresponding ones are true in M1.


For SuccA, suppose F is a primitive fluent atom. Since there is no positive domain rule of
the form Causes(ϕ, F ), the pseudo-successor state axiom for F as constructed according to
the procedure CCP given in Section 3 must be of the following form:


succ(F ) ≡ init(ϕ1) ∨ · · · ∨ init(ϕn) ∨
init(F ) ∧ ¬[init(φ1) ∨ · · · ∨ init(φm) ∨ succ(φ′1) ∨ · · · ∨ succ(φ′k)],


where for each 1 ≤ i ≤ k, Causes(φ′i,¬F ) is an instance of a domain rule in D.
Because in D and D′, each effect axiom Effect(ϕ, F ) or Effect(ϕ,¬F ) has the property


that ϕ has no quantifier, and that the variables in ϕ are also in F , the pseudo-successor
state axiom for τ(succ(F )) under D′ must have the form:


succ(τ(F )) ≡ init(τ(ϕ1)) ∨ · · · ∨ init(τ(ϕn)) ∨
init(τ(F )) ∧ ¬[init(τ(φ1)) ∨ · · · ∨ init(τ(φm)) ∨ (18)
succ(τ(φ′1)) ∨ · · · ∨ succ(τ(φ′k)) ∨ succ(φ)],


where φ is a disjunction such that each disjunct α must be such that Causes(α,¬τ(F )) is
an instance in D′ and that the fluent atom in α contains an object not in τ(A) and τ(F ).


There are two cases:
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• Suppose M2 |= succ(F ). Then M1 |= succ(τ(F )). Since M1 is a model of Succτ(A),
M1 satisfies the above axiom about succ(τ(F )). Therefore M1 satisfies the following
formula:


init(τ(ϕ1)) ∨ · · · ∨ init(τ(ϕn)) ∨
init(τ(F )) ∧ ¬[init(τ(φ1)) ∨ · · · ∨ init(τ(φm)) ∨


succ(τ(φ′1)) ∨ · · · ∨ succ(τ(φ′k))].


Since the above formula does not mention any complex fluents and has no quantifiers,
M2 satisfies the corresponding formula:


init(ϕ1) ∨ · · · ∨ init(ϕn) ∨ (19)
init(F ) ∧ ¬[init(φ1) ∨ · · · ∨ init(φm) ∨ succ(φ′1) ∨ · · · ∨ succ(φ′k)],


which is the right side of the equivalence of the pseudo-successor state axiom for
succ(F ) in SuccA.


• Now suppose M2 satisfies (19). We’ll show that M1 satisfies the right side of (18),
thus M1 |= succ(τ(F )) so M2 |= succ(F ). There are two cases:


– M2 satisfies the following formula:


init(ϕ1) ∨ · · · ∨ init(ϕn). (20)


In this case, since the above formula does not mention any complex fluents and
has no quantifier, M1 satisfies the following corresponding formula:


init(τ(ϕ1)) ∨ · · · ∨ init(τ(ϕn)). (21)


Thus M1 satisfies the right side of (18).


– M2 does not satisfy (20) but satisfies the following formula:


init(F ) ∧ ¬[init(φ1) ∨ · · · ∨ init(φm) ∨ succ(φ′1) ∨ · · · ∨ succ(φ′k)].


Thus M1 satisfies the following formula:


init(τ(F )) ∧ ¬[init(τ(φ1)) ∨ · · · ∨ init(τ(φm)) ∨
succ(τ(φ′1)) ∨ · · · ∨ succ(τ(φ′k))].


So to show that the right side of the equivalence of (18) is satisfied by M1, we
need to show that M1 |= ¬succ(φ). Recall that φ is a disjunction such that each
disjunct α must correspond to a domain rule of the form Causes(α,¬τ(F )), and
that α is of the form α1 ∧ G such that α1 does not mention fluents, and G is
a fluent atom that mentions an object that does not occur in τ(A). Note that
init(α) ⊃ ¬init(τ(F )) is an axiom in Succτ(A), which is satisfied by M1. Thus
M1 |= ¬init(α). This means that either α1 or init(G) is false in M1. If α1


is false, then succ(α) is false since succ(α1) is the same as α1. Suppose that
init(G) is false in M1. Notice that since there are no positive domain rules, and
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that G has an object not in τ(A) and τ(F ), the pseudo-successor state axiom
for G in Succτ(A) must be of the form succ(G) ≡ init(G) ∧ Φ. Therefore from
M1 |= ¬init(G) we get M1 |= ¬succ(α). Since α is any disjunct of φ, we have
proved that M1 |= ¬succ(φ). Therefore M1 |= succ(τ(F )). Thus M2 |= succ(F ).


2


7. Related Work


In planning, the most closely related work is the causal reasoning module in Wilkins’s SIPE
system (Wilkins, 1988). Wilkins writes (page 85, Wilkins, 1988): “Use of the STRIPS
assumptions has made operators unacceptably difficult to describe in previous classical
planners... One of the primary reasons for this is that all effects of an action must be ex-
plicitly stated... Deductive causal theories are one of the most important mechanisms used
by SIPE to alleviate problems in operator representation caused by the STRIPS assump-
tion.” This is certainly one of the motivations for our system as well. In SIPE, domain rules
have triggers, preconditions, conditions, and effects. Informally, when the triggers become
true in the new situation, SIPE would then check in sequence to see if the preconditions
were true in the old situation, and the conditions are true in the new situation. If all these
conditions are true, it will then deduce the effects. For instance, a SIPE causal rule for
on(x, y) in the blocks world would look like:


Causal-rule: Not-on
Arguments: x, y, z;
Trigger: on(x,y);
Precondition: on(x,z);
Effects: not on(x,z);


In comparison, our domain rules are much simpler. For instance, our corresponding rule
for the above SIPE rule is simply: Causes(on(x, y) ∧ y 6= z, on(x, z)). We do not need
procedural directives like triggers. To a large degree, we can see our system as a rational
reconstruction of the causal reasoning module in SIPE. As we have shown in Theorem 1,
the procedure used by our system is sound under a translation to causal theories in the
situation calculus. While Wilkins also gave a translation of his causal rules to formulas in
the situation calculus, he did not specify an underlying logic to reason about such formulas.
In fact, as shown by Lin (1995), such translations would not work.


For those familiar with PDDL, the original version by McDermott and the AIPS-98
Planning Competition Committee allows domain axioms over stratified theories. According
to the manual of PDDL 1.2 (McDermott, 1998), “axioms are logical formulas that assert
relationships among propositions that hold within a situation.” The format for writing
axioms in PDDL is as follows:


(:axiom
:vars (?x ?y ...)
:context W
:implies P)
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where W is a formula and P a literal. Axioms are treated directionally, from W to P . The
following is the rule and intention for using the axioms according to the manual:


“The rule is that action definitions are not allowed to have effects that mention
predicates that occur in the :implies field of an axiom. The intention is that
action definitions mention ‘primitive’ predicates like on, and that all changes in
truth value of ‘derived’ predicates like above occur through axioms. Without
axioms, the action definitions will have to describe changes in all predicates that
might be affected by an action, which leads to a complex software engineering
(or ’domain engineering’) problem.”


It is clear from this quotation that axioms in PDDL are intended for defining “derived”
predicates. They are similar to our complex fluent definitions. New versions of PDDL have
extended the original version by allowing actions with durations and continuous changes.
They have not considered using axioms to derive changes to “primitive” predicates like what
we have done here with domain rules.


Our action domain description language, while having a very different syntax that is
strongly influenced by Prolog syntax, shares much of the same ideas behind action languages
(Gelfond & Lifschitz, 1999). However, unlike action languages, ours does not provide facil-
ities for expressing the truth value of a fluent atom in a particular situation like the initial
situation. Rather, it is aimed at specifying the generic effects of actions. On the other hand,
it has facilities for specifying types and static relations. Most importantly, to date, action
languages are either implemented directly or mapped to a nonmonotonic logic programming
system rather than by compilation into a monotonic system where action effects are given
explicitly, as is done here. For instance, a new SAT-based planning method would have to
be implemented (e.g. McCain & Turner, 1998) for action languages. In comparison, once
an action domain description is compiled to a STRIPS-like description, existing planning
systems such as Blackbox (Selman & Kautz, 1999) or System R (Lin, 2001b) can be directly
called.


8. Concluding Remarks


We have described a system for generating the effects of actions from direct action effect
axioms and domain rules, among other things. We have shown the soundness of the proce-
dure used by the system and tested it successfully in many benchmark action domains used
by current AI planners. For future work, we are considering how to generalize the simple
action theories in Section 6 to include context-dependent action domain descriptions like
the monkey and bananas domain.
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