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Abstract


We consider the two-fold problem of representing collective beliefs and aggregating
these beliefs. We propose a novel representation for collective beliefs that uses modular,
transitive relations over possible worlds. They allow us to represent conflicting opinions
and they have a clear semantics, thus improving upon the quasi-transitive relations often
used in social choice. We then describe a way to construct the belief state of an agent
informed by a set of sources of varying degrees of reliability. This construction circumvents
Arrow’s Impossibility Theorem in a satisfactory manner by accounting for the explicitly
encoded conflicts. We give a simple set-theory-based operator for combining the informa-
tion of multiple agents. We show that this operator satisfies the desirable invariants of
idempotence, commutativity, and associativity, and, thus, is well-behaved when iterated,
and we describe a computationally effective way of computing the resulting belief state.
Finally, we extend our framework to incorporate voting.


1. Introduction


We are interested in the multi-agent setting where agents are informed by sources of varying
levels of reliability, and where agents can iteratively combine their belief states. This setting
introduces three problems: (1) Finding an appropriate representation for collective beliefs;
(2) Constructing an agent’s belief state by aggregating the information from informant
sources, accounting for the relative reliability of these sources; and, (3) Combining the
information of multiple agents in a manner that is well-behaved under iteration.


In addressing the first problem, we take as a starting point total preorders over possible
worlds (i.e., interpretations of a specified language) used in the belief revision community to
represent individuals’ beliefs. The relations describe opinions on the relative likelihood of
worlds and can be viewed as encoding all of an agent’s conditional beliefs, i.e., not only what
he believes now, but what he would believe under all other conditions. This representation
is based on the semantical work (cf. Grove, 1988; Katsuno & Mendelzon, 1991) supporting
the Alchourrón, Gärdenfors, and Makinson proposal (Alchourrón, Gärdenfors, & Makinson,
1985; Gärdenfors, 1988) (known as the AGM theory) for belief revision.


The social choice community has dealt extensively with the problem of representing
collective preferences (cf. Sen, 1986). However, the problem is formally equivalent to that
of representing collective beliefs, so the results are applicable. The classical approach has
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been to use quasi-transitive relations – relations whose asymmetric restrictions are transitive
– over the set of objects. (Total preorders are a special subclass of these relations.) However,
these relations do not distinguish between group indifference and group conflict, and this
distinction can be crucial. Consider, for example, a situation in which all members of a
group are indifferent between movie a and movie b. If some passerby expresses a preference
for a, the group may very well choose to adopt this opinion for the group and borrow a.
However, if the group was already divided over the relative merits of a and b, we would be
wise to hesitate before choosing one over the other just because a new supporter of a appears
on the scene. We propose a representation in which the distinction is explicit. Specifically,
we propose modular, transitive relations and argue that they solve some of the unpleasant
semantical problems suffered by the earlier approach. (We define modularity precisely later,
but it can be viewed intuitively as a sufficient relaxation of the totality requirement on total
preorders to make the distinction between indifference and conflict possible.)


The second problem addresses how an agent should actually go about combining the
information received from a set of sources to create a belief state. Such a mechanism should
favor the opinions held by more reliable sources, yet allow less reliable sources to voice opin-
ions when higher ranked sources have no opinion. True, under some circumstances it would
not be advisable for an opinion from a less reliable source to override the agnosticism of a
more reliable source, but often it is better to accept these opinions as default assumptions
until better information is available. We define a mechanism that does just this, relying on
our generalized representation to circumvent Arrow’s (1963) Impossibility Theorem when
there are sources of equal reliability.


To motivate the third problem, consider the following dynamic scenario: A robot control-
ling a ship in space receives from a number of communication centers on Earth information
about the status of its environment and tasks. Each center receives information from a
group of sources of varying credibility or accuracy (e.g., nearby satellites and experts) and
aggregates it. Timeliness of decision-making in space is often crucial, so we do not want
the robot to have to wait while each center sends its information to some central location
for it to be first combined before being forwarded to the robot. Instead, each center sends
its aggregated information directly to the robot. Not only does this scheme reduce dead
time, it also allows for “anytime” behavior on the robot’s part: the robot incorporates new
information as it arrives and makes the best decisions it can with whatever information it
has at any given point. This distributed approach is also more robust since the degradation
in performance is much more graceful should information from individual centers get lost
or delayed.


In such a scenario, the robot needs a mechanism for combining or fusing the belief states
of multiple agents potentially arriving at different times. Moreover, the belief state output
by the mechanism should be invariant with respect to the order of agent arrivals. We will
describe a simple set-theoretic mechanism that satisfies these requirements as well as a
computationally effective way of computing the resulting belief state.


The aggregation and fusion mechanisms described so far take into account quality of
support for opinions, but completely ignore quantity of support. However, the latter of-
ten provides sufficient information to resolve apparent conflicts. Take, for example, the
situation where all the sources for the robot above have equal credibility and all except a
small minority suggest the robot move the spaceship to avoid a potential collision with an
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oncoming asteroid. In such a situation, we often prefer to resolve the conflict by siding with
the majority. To this end, we describe how to extend our framework to allow for voting,
introducing a novel modular closure operation in the process.


After some preliminary definitions, we address each of these topics in turn.


2. Preliminaries


We begin by defining various well-known properties of binary relations1; they will be useful
to us throughout the paper.


Definition 1 Suppose ≤ is a relation over a finite set Ω, i.e., ≤⊆ Ω× Ω.2 We will use
x ≤ y to denote (x, y) ∈≤ and x 6≤ y to denote (x, y) 6∈≤. The relation ≤ is:


1. reflexive iff x ≤ x for all x ∈ Ω. It is irreflexive iff x 6≤ x for all x ∈ Ω.


2. symmetric iff x ≤ y ⇒ y ≤ x for all x, y ∈ Ω. It is asymmetric iff x ≤ y ⇒ y 6≤ x for
all x, y ∈ Ω. It is anti-symmetric iff x ≤ y ∧ y ≤ x ⇒ x = y for all x, y ∈ Ω.


3. the asymmetric restriction of a relation ≤′ over Ω iff x ≤ y ⇔ x ≤′ y ∧ y 6≤′ x for
all x, y ∈ Ω. It is the symmetric restriction of ≤′ iff x ≤ y ⇔ x ≤′ y ∧ y ≤′ x for all
x, y ∈ Ω.


4. total iff x ≤ y ∨ y ≤ x for all x, y ∈ Ω.


5. modular iff x ≤ y ⇒ x ≤ z ∨ z ≤ y for all x, y, z ∈ Ω.


6. transitive iff x ≤ y ∧ y ≤ z ⇒ x ≤ z for all x, y, z ∈ Ω.


7. quasi-transitive iff its asymmetric restriction is transitive.


8. the transitive closure of a relation ≤′ over Ω iff, for some integer n,


x ≤ y ⇔ ∃w0, . . . , wn ∈ Ω. x = w0 ≤′ · · · ≤′ wn = y


for all x, y ∈ Ω. (We generally use ≤+ to denote the transitive closure of a relation
≤.)


9. acyclic iff ∀w0, . . . , wn ∈ Ω. w0 < · · · < wn implies wn 6< w0 for all integers n, where
< is the asymmetric restriction of ≤.


10. a total preorder iff it is total and transitive. It is a total order iff it is also anti-
symmetric.


11. an equivalence relation iff it is reflexive, symmetric, and transitive.


12. fully connected iff x ≤ y for all x, y ∈ Ω. It is fully disconnected iff x 6≤ y for all
x, y ∈ Ω.


Proposition 1


1. The transitive closure of a modular relation is modular.


1. We only use binary relations in this paper, so we will refer to them simply as relations.
2. For the reader’s convenience, we have included in Appendix B a key to most of the notational symbols


used throughout the paper.
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2. Every transitive relation is quasi-transitive.


3. (Sen, 1986) Every quasi-transitive relation is acyclic.


Given a relation over a set of alternatives and a subset of these alternatives, we often
want to pick the subset’s “best” elements with respect to the relation. We define this set
of “best” elements to be the subset’s choice set:


Definition 2 If ≤ is a relation over a finite set Ω, < is its asymmetric restriction, and
X ⊆ Ω, then the choice set of X with respect to ≤ is


ch(X,≤) = {x ∈ X :6 ∃x′ ∈ X. x′ < x}.


A choice function is one which assigns to every (non-empty) subset X a (non-empty) subset
of X:


Definition 3 A choice function over a finite set Ω is a function f : 2Ω \ ∅ → 2Ω \ ∅ such
that f(X) ⊆ X for every non-empty X ⊆ Ω.


Now, every acyclic relation defines a choice function, one which assigns to each subset its
choice set:


Proposition 2 (Sen, 1986) Given a relation ≤ over a finite set Ω, the choice set operation
ch defines a choice function iff ≤ is acyclic.3


If a relation is not acyclic, elements involved in a cycle are said to be in a conflict because
we cannot order them:


Definition 4 Given a relation < over a finite set Ω, x and y are in a conflict wrt < iff there
exist w0, . . . , wn, z0, . . . , zm ∈ Ω such that x = w0 < · · · < wn = y = z0 < · · · < zm = x, where
x, y ∈ Ω.


Finally, the cardinality of a set Ω will be denoted ‖Ω‖.
Assume we are given some language L with a satisfaction relation |= for L. Let


W be a finite, non-empty set of possible worlds (interpretations) over L. For a world
w ∈ W and a sentence p ∈ L, w |= p iff p evaluates to true in w. Given a sentence p,
|p| = {w ∈ W | w |= p}.


3. Representing Collective Beliefs


Our representation of collective beliefs generalizes the representation developed in the belief
revision community for the conditional beliefs of an individual, so we briefly review it. We
then consider implications from social choice for representing collective beliefs. Finally, we
describe our proposal and argue for its desirability.


3. Sen’s uses a slightly stronger definition of choice sets, but the theorem still holds in our more general
case.
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3.1 Belief Revision Representation of Conditional Beliefs


Much of the belief revision field has built on the seminal work by Alchourrón, Gärdenfors,
and Makinson (Alchourrón et al., 1985; Gärdenfors, 1988) refered to as the AGM theory.
This work sought to formalize an “Occam’s razor”-like principle of minimal change: the set
of beliefs resulting from a revision should be one produced by modifying the original beliefs
minimally to accomodate the new information. To capture this principle precisely, they
proposed the famous AGM postulates which impose restrictions on belief change operators.
Subsequent model-theoretic work (Grove, 1988; Katsuno & Mendelzon, 1991; Maynard-
Reid II & Shoham, 2001) showed that accepting these postulates amounts to assuming that
an individual’s belief state is represented by a total preorder ¹ over W; revision of the
individual’s beliefs by a sentence p ∈ L then consists of computing ch(|p|,¹).


Kraus, Lehmann, and Magidor (1990) and Lehmann and Magidor (1992) developed a
similar central role for ordered structures in the semantics of nonmonotonic logics, and
Gärdenfors and Makinson (1994) established the relation between the two topics. Seman-
tically, ¹ represents the weak relative likelihood of possible worlds: x ¹ y means possible
world x is considered to be at least as likely as possible world y.4 If x ¹ y and y ¹ x, then
x and y are considered equally likely. We can also interpret ¹ sententially using the famous
Ramsey Test (Ramsey, 1931): it encodes a set of conditional beliefs, i.e., not only what
is believed now (called the belief set), but all counterfactual beliefs as well (what would
be believed if other conditions were the case). According to this criteria, the conditional
belief “if p then q” holds if p and q are sentences in L and q is satisfied by all the worlds in
ch(|p|,¹); we write Bel(p?q). If neither the belief p?q nor the belief p?¬q hold in the belief
state, it is said to be agnostic with respect to p?q, written Agn(p?q). The belief set induced
by the belief state consists of all those sentences q such that Bel(true?q) holds.


3.2 Social Choice Implications


Our first inclination, then, would be to use total preorders to represent collective beliefs
since they work so well for individuals’ beliefs. Unfortunately, such an approach is inherently
problematic as was discovered early on in the social choice community. That community’s
interest lies in representing collective preferences rather than collective beliefs; however, the
results are equally relevant since the classical representation of an individual’s preferences is
also a total preorder. Instead of relative likelihood, relations represent relative preference;
instead of equal likelihood, indifference.


Arrow’s (1963) celebrated Impossibility Theorem showed that no aggregation operator
over total preorders exists satisfying the following small set of desirable properties:


Definition 5 Let f be an aggregation operator over the relations ¹1, . . . , ¹n of n individ-
uals, respectively, over a finite set of alternatives Ω, and let ¹ = f(¹1, . . . ,¹n).


• Restricted Range: The range of f is the set of total preorders over Ω.


• Unrestricted Domain: The domain of f is the set of n-tuples of total preorders over
Ω.


4. The direction of the relation symbol is unintuitive, but standard practice in the belief revision community.
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• Pareto Principle: If x ≺i y for all i, then x ≺ y.5


• Independence of Irrelevant Alternatives (IIA): Suppose ¹′ = f(¹′1, . . . ,¹′n). If, for
x, y ∈ Ω, x ¹i y iff x ¹′i y for all i, then x ¹ y iff x ¹′ y.


• Non-Dictatorship: There is no individual i such that, for every tuple in the domain
of f and every x, y ∈ Ω, x ≺i y implies x ≺ y.


Proposition 3 (Arrow, 1963) There is no aggregation operator that satisfies restricted
range, unrestricted domain, Pareto principle, independendence of irrelevant alternatives,
and nondictatorship.


This impossibility theorem led researchers to look for weakenings to Arrow’s framework that
would circumvent the result. One was to weaken the restricted range condition, requiring
that the result of an aggregation only satisfy totality and quasi-transitivity rather than the
full transitivity of a total preorder. This weakening was sufficient to guarantee the existence
of an aggregation function satisfying the other conditions, while still producing relations
that defined choice functions (Sen, 1986). However, this solution was not without its own
problems.


First, and perhaps most obviously, the domain and the range of the aggregation operator
are different, violating what is known in the belief revision literature as the principle of
categorical matching (cf. Gardenfors and Rott’s 1995 survey). This problem is closely related
to the second which is that total, quasi-transitive relations have unsatisfactory semantics.
If ¹ is total and quasi-transitive but not a total preorder, its indifference relation is not
transitive:


Proposition 4 Let ¹ be a relation over a finite set Ω and let ∼ be its symmetric restriction.
If ¹ is total and quasi-transitive but not transitive, then ∼ is not transitive.


There has been much discussion as to whether or not indifference should be transitive.
In many cases one feels indifference should be transitive; if Deb is indifferent between
plums and mangoes and also indifferent between mangoes and peaches, we would be greatly
surprised were she to profess a strong preference for plums over peaches.6 Thus, it seems
that total quasi-transitive relations that are not total preorders cannot be understood easily
as preference or indifference. Since the existence of a choice function is generally sufficient
for classical social choice problems, these issues were at least ignorable. However, in iterated
aggregation, the result of the aggregation must not only be usable for making decisions, but
must be interpretable as a new preference relation that may be involved in later aggregations
and, consequently, must maintain clean semantics.


Third, the totality assumption is excessively restrictive for representing aggregate pref-
erences. In general, a binary relation ¹ can express four possible relationships between a
pair of alternatives a and b: a ¹ b and b 6¹ a, b ¹ a and a 6¹ b, a ¹ b and b ¹ a, and a 6¹ b
and b 6¹ a. Totality reduces this set to the first three which, under the interpretation of


5. Technically, this is known as the weak Pareto principle. The strong Pareto principle states that x ≺ y
if there exists i such that x ≺i y and x ¹i y for all i. Obviously, the strong version implies the weak
version, so Arrow’s theorem applies to it as well.


6. However, see Luce’s (1956) work on semiorders for some of the opposing arguments in the transitivity
of indifference debate.
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relations as representing weak preference, correspond to the two strict orderings of a and b,
and indifference. However, consider the situation where a couple is trying to choose between
an Italian and an Indian restaurant, but one strictly prefers Italian food to Indian food,
whereas the second strictly prefers Indian to Italian. The couple’s opinions are in conflict,
a situation that does not fit into any of the three categories. Thus, the totality assumption
is essentially an assumption that conflicts do not exist. This, one may argue, is appropriate
if we want to represent preferences of one agent (but see Kahneman and Tversky’s (1979)
persuasive arguments that individuals are often ambivalent). However, the assumption is
inappropriate if we want to represent aggregate preferences since individuals will almost
certainly have differences of opinion.


3.3 Generalized Belief States


Because belief aggregation is formally similar to preference aggregation, it is also suscepti-
ble to the problems faced by the social choice community. We take the view that much of
the difficulty encountered in previous attempts to define acceptable aggregation policies has
been the lack of explicit representations of conflicts among the individuals. We generalize
the total preorder representation so as to capture information about conflicts. This gener-
alization opens the way for semantically clear aggregation policies, with the added benefit
of focusing attention on the culprit sets of worlds.


3.3.1 Modular, Transitive States


We take strict likelihood as primitive. Since strict likelihood is not necessarily total, it
is possible to represent agnosticism and conflicting opinions in the same structure. This
choice deviates from that of most authors, but is similar to that of Kreps (1990, p. 19) who is
interested in representing both indifference and incomparability. Unlike Kreps, rather than
use an asymmetric relation to represent strict likelihood (e.g., the asymmetric restriction of
a weak likelihood relation), we impose the less restrictive condition of modularity.


We formally define generalized belief states:


Definition 6 A generalized belief state ≺ is a modular, transitive relation over W. The
set of possible generalized belief states over W is denoted B.


We interpret a ≺ b to mean “there is reason to consider a as strictly more likely than b.”
We represent equal likelihood, which we also refer to as “agnosticism,” with the relationship
∼ defined such that x ∼ y if and only if x 6≺ y and y 6≺ x. We define the conflict relation
corresponding to ≺, denoted ./, so that x ./ y iff x ≺ y and y ≺ x. It describes situations
where there are reasons to consider either of a pair of worlds as strictly more likely than
the other. In fact, one can easily check that ./ precisely represents conflicts in a belief state
in the sense of Definition 4.


For convenience, we will refer to generalized belief states simply as belief states except
when to do so would cause confusion.


3.3.2 Discussion


Let us consider why our choice of representation is justified. First, we agree with the social
choice community that strict likelihood should be transitive.


161







Maynard-Zhang & Lehmann


As we discussed above, there is often no compelling reason why agnosticism/indifference
should not be transitive; we also adopt this view. However, transitivity of strict likelihood
by itself does not guarantee transitivity of agnosticism. A simple example is the following:
W = {a, b, c} and ≺= {(a, c)}, so that ∼= {(a, b), (b, c)}. However, if we buy that strict like-
lihood should be transitive, then agnosticism is transitive identically when strict likelihood
is also modular:


Proposition 5 Suppose a relation ≺ is transitive and ∼ is the corresponding agnosticism
relation. Then ∼ is transitive iff ≺ is modular.


In summary, transitivity and modularity are necessary if strict likelihood and agnosticism
are both required to be transitive.


We should point out that conflicts are also transitive in our framework. At first glance,
this may appear undesirable: it is entirely possible for a group to disagree on the relative
likelihood of worlds a and b, and b and c, yet agree that a is more likely than c. However, we
note that this transitivity follows from the cycle-based definition of conflicts (Definition 4),
not from our belief state representation. It highlights the fact that we are not only concerned
with conflicts that arise from simple disagreements over pairs of alternatives, but those that
can be inferred from a series of inconsistent opinions as well.


Now, to argue that modular, transitive relations are sufficient to capture relative likeli-
hood, agnosticism, and conflicts among a group of information sources, we first point out
that adding irreflexivity would give us the class of relations that are asymmetric restrictions
of total preorders, i.e., conflict-free. Let T be the set of total preorders over W, T<, the set
of their asymmetric restrictions.


Proposition 6 T< ⊂ B and is the set of irreflexive relations in B.


Secondly, the following representation theorem shows that each belief state partitions
the possible worlds into sets of worlds either all equally likely or all potentially involved in
a conflict, and totally orders these sets; worlds in distinct sets have the same relation to
each other as do the sets.


Proposition 7 ≺∈ B iff there is a partition W = 〈W0, . . . ,Wn〉 of W such that:


1. For every x ∈ Wi and y ∈ Wj, i 6= j implies i < j iff x ≺ y.


2. Every Wi is either fully connected (w ≺ w′ for all w, w′ ∈ Wi) or fully disconnected
(w 6≺ w′ for all w, w′ ∈ Wi).


Figure 1 shows three examples of belief states: one which is a total preorder, one which
is the asymmetric restrictions of a total preorder, and one which is neither. (Each circle
represents all the worlds in W which satisfy the sentence inside. An arc between circles
indicates that w ≺ w′ for every w in the head circle and w′ in the tail circle; no arc indicates
that w 6≺ w′ for each of these pairs. In particular, the set of worlds represented by a circle
is fully connected if there is an arc from the circle to itself, fully disconnected otherwise.)


Thus, generalized belief states are not a big change from the asymmetric restrictions
of total preorders. They merely generalize these by weakening the assumption that sets of
worlds not strictly ordered are equally likely, allowing for the possibility of conflicts. Now
we can distinguish between agnostic and conflicting conditional beliefs. A belief state ≺ is
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(c)


P P P


P P


(b)(a)


P


Figure 1: Three examples of generalized belief states: (a) a total preorder, (b) the asym-
metric restriction of a total preorder, (c) neither.


agnostic about conditional belief p?q (i.e., Agn(p?q)) if the choice set of worlds satisfying
p contains both worlds which satisfy q and ¬q and is fully disconnected. It is in conflict
about this belief, written Con(p?q), if the choice set is fully connected.


Finally, we compare the representational power of our definitions to those discussed in
the previous section. First, as a companion result to Proposition 6, it is obvious that B
subsumes the class of total preorders T and, in fact, T is the set of reflexive relations in B.
Proposition 8 T ⊂ B and is the set of reflexive relations in B.


Secondly, B neither subsumes nor is subsumed by the set of total, quasi-transitive relations,
and the intersection of the two classes is T . Let Q be the set of total, quasi-transitive
relations over W, and Q<, the set of their asymmetric restrictions.


Proposition 9
1. Q∩ B = T .


2. B 6⊆ Q.


3. Q 6⊆ B if W has at least three elements.


4. Q ⊂ B if W has one or two elements.


Because modular, transitive relations represent strict preferences, it is probably fairer to
compare them to the class of asymmetric restrictions of total, quasi-transitive relations.
Again, neither class subsumes the other, but this time the intersection is T<:
Proposition 10


1. Q< ∩ B = T<.


2. B 6⊆ Q<.


3. Q< 6⊆ B if W has at least three elements.


4. Q< ⊂ B if W has one or two elements.


Note that generalized belief states as described are extremely rich and would require
optimization in practice to avoid high maintenance cost. Although this issue is somewhat
outside the scope of this paper, we do address (in the respective sections) ways to minimize
the further explosion of this complexity when the complications of fusion and voting are
introduced.


In the next section, we define a natural aggregation policy based on this new represen-
tation that admits clear semantics and obeys appropriately modified versions of Arrow’s
conditions.
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4. Single-Agent Belief State Construction


Suppose an agent is informed by a set of sources, each with its individual belief state.
Suppose, further, that the agent has ranked the sources by level of credibility. We propose
an operator for constructing the agent’s belief state by aggregating the belief states of the
sources while accounting for the credibility ranking of the sources.


Example 1 We will use a running example from our space robot domain to help provide
intuition for our definitions. The robot sends to earth a stream of telemetry data gathered
by the spacecraft, as long as it receives positive feedback that the data is being received. At
some point it loses contact with the automatic feedback system, so it sends a request for
information to an agent on earth to find out if the failure was caused by a failure of the
feedback system or by an overload of the data retrieval system. In the former case, it would
continue to send data, in the latter, desist. As it so happens, there has been no overload,
but the computer running the feedback system has hung. The agent consults the following
three experts, aggregates their beliefs, and sends the results back to the robot:


1. sp, the computer programmer that developed the feedback program, believes nothing
could ever go wrong with her code, so there must have been an overload problem.
However, she admits that if her program had crashed, the problem could ripple through
to cause an overload.


2. sm, the manager for the telemetry division, unfortunately has out-dated information
that the feedback system is working. She was also told by the engineer who sold her
the system that overloading could never happen. She has no idea what would happen
if there was an overload or the feedback system crashed.


3. st, the technician working on the feedback system, knows that the feedback system
crashed, but doesn’t know whether there was a data-overload. Not being familiar with
the retrieval system, she is also unable to speculate whether the data retrieval system
would have overloaded if the feedback system had not failed.


Let F and D be propositional variables representing that the feedback and data retrieval
systems, respectively, are okay. The belief states for the three sources are shown in Figure 2.


F


FD


FD


FD


FD DF


FD F


s ssp m t


Figure 2: The belief states of sp, sm, and st in Example 1.
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4.1 Sources


Let us begin the formal development by defining sources and their belief states:


Definition 7 S is a finite set of sources. With each source s ∈ S is associated a belief state
<s∈ B.


We denote the agnosticism and conflict relations of a source s by ≈s and ./s, respectively. It
is possible to assume that the belief state of a source is conflict-free, i.e., acyclic. However,
this is not necessary if we allow sources to suffer from the human malady of “being torn
between possibilities.”


We assume that the agent’s credibility ranking over the sources is a total preorder built
on a totally ordered set of ranks (e.g., integers).


Definition 8 R is a totally ordered finite set of ranks.


Definition 9 rank : S → R assigns to each source a rank. Also, for S ⊆ S, ranks(S) de-
notes the set {r ∈ R : ∃s ∈ S. rank(s) = r}.


Definition 10 The total preorder over S induced by the ordering over R will be denoted
w. That is, s w s′ iff rank(s) ≥ rank(s′); we say s is as credible as s′. The restriction of w
to S ⊆ S will be denoted wS.


We use A and ≡ to denote the asymmetric and symmetric restrictions of w, respectively.7


The finiteness of S (R) ensures that a maximal source (rank) always exists, which is nec-
essary for some of our results. Weaker assumptions are possible, but at the price of un-
necessarily complicating the discussion. Also observe that R can be any arbitrary totally
ordered set. Thus, not only does it allow for numeric ranking systems (such as the integers),
but non-numeric systems as well (e.g., military ranks). Furthermore, this generality allows
our proposal to easily accommodate applications where new ranks need to be dynamically
added and it is inconvenient or impossible to change the rank labels of existing sources
(e.g., a large workers’ union where members are ranked by relative level and quality of
experience).


We are now ready to consider the source aggregation problem. In the following, assume
an agent is informed by a set of sources S ⊆ S. We look at two special cases—aggregation
of equally ranked and strictly ranked sources—before considering the general case.


4.2 Aggregating Equally Ranked Sources


Suppose all the sources have the same rank so that wS is fully connected. Intuitively, we
want to take all offered opinions seriously, so we take the union of the relations:


Definition 11 If S ⊆ S, then Un(S) is the relation
⋃


s∈S <s.


By simply taking the union of the source belief states, we may lose transitivity. However,
we do not lose modularity:


Proposition 11 If S ⊆ S, then Un(S) is modular but not necessarily transitive.


7. Note that, unlike the relations representing belief states, ≥ and w are read in the intuitive way, that is,
“greater” corresponds to “better.”
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Thus, we know from Proposition 1 that we need only take the transitive closure of Un(S)
to get a belief state:


Definition 12 If S ⊆ S, then AGRUn(S) is the relation Un(S)+.


Proposition 12 If S ⊆ S, then AGRUn(S) ∈ B.


Intuitively, we are simply inferring opinions implied by the conflicts introduced by the
aggregation. We will show this formally when we consider the more general aggregation
operator below.


Not surprisingly, by taking all opinions of all sources seriously, we may generate many
conflicts, manifested as fully connected subsets of W.


Example 2 Suppose all three sources in the space robot scenario of Example 1 are con-
sidered equally credible, then the aggregate belief state will be the fully connected relation
indicating that there are conflicts over every belief.


4.3 Aggregating Strictly Ranked Sources


Next, consider the case where the sources are strictly ranked, i.e., wS is a total order. We
define a lexicographic operator such that lower ranked sources refine the belief states of
higher ranked sources. That is, in determining the ordering of a pair of worlds, the opinions
of higher ranked sources generally override those of lower ranked sources, and lower ranked
sources are consulted when higher ranked sources are agnostic:


Definition 13 If S ⊆ S, then AGRRf(S) is the relation
{


(x, y) : ∃s ∈ S. x <s y ∧
(
∀s′ ∈ S. s′ AS s ⇒ x ≈s′ y


)}
.


As with AGRUn(S), AGRRf(S) is not guaranteed to be transitive, but it is always modular:


Proposition 13 If S ⊆ S, then AGRRf(S) is modular but not necessarily transitive.


However, in the case that wS is a total order, the result of applying AGRRf is guaranteed
to be a belief state.


Proposition 14 If S ⊆ S and wS is a total order, then AGRRf(S) ∈ B.


Example 3 Suppose, in the space robot scenario of Example 1, the technician is consid-
ered more credible than the manager who, in turn, is considered more credible than the
programmer. The aggregate belief state, shown in Figure 3, informs the robot (correctly)
that the feedback system has crashed, but that it shouldn’t worry about an overload problem
and should keep sending data.


4.4 General Aggregation


In the general case, we may have several ranks represented and multiple sources of each rank.
It will be instructive to first consider the following seemingly natural strawman operator,
AGR∗: First combine equally ranked sources using AGRUn, then aggregate the strictly
ranked results using what is essentially AGRRf.
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Figure 3: The belief state after aggregation in Example 3 when st A sm A sp.


Definition 14 Let S ⊆ S. For any r ∈ R, let <r= AGRUn({s ∈ S : rank(s) = r}) and
≈r, the corresponding agnosticism relation. AGR∗(S) is the relation


{
(x, y) : ∃r ∈ R. x <r y ∧ (∀r′ ∈ ranks(S). r′ > r ⇒ x ≈r′ y


)}
.


AGR∗ indeed defines a legitimate belief state:


Proposition 15 If S ⊆ S, then AGR∗(S) ∈ B.


Unfortunately, a problem with this “divide-and-conquer” approach is it assumes the
result of aggregation is independent of potential interactions between the individual sources
of different ranks. Consequently, opinions that will eventually get overridden may still have
an indirect effect on the final aggregation result by introducing superfluous opinions during
the intermediate equal-rank aggregation step, as the following example shows:


Example 4 Let W = {a, b, c}. Suppose S ⊆ S such that S = {s0, s1, s2} with belief states
<s0= {(b, a), (b, c)} and <s1=<s2= {(a, b), (c, b)}, and where s2 A s1 ≡ s0. Then AGR∗(S)
is {(a, b), (c, b), (a, c), (c, a), (a, a), (b, b), (c, c)}. All sources are agnostic over a and c, yet
(a, c) and (c, a) are in the result because of the transitive closure in the lower rank involving
opinions ((b, c) and (b, a)) which actually get overridden in the final result.


Because of these undesired effects, we propose another aggregation operator which cir-
cumvents this problem by applying refinement (as defined in Definition 13) to the set of
source belief states before inferring new opinions via closure:


Definition 15 The rank-based aggregation of a set of sources S ⊆ S, denoted AGR(S), is
AGRRf(S)+.


Encouragingly, AGR outputs a valid belief state:


Proposition 16 If S ⊆ S, then AGR(S) ∈ B.


The output for our running space robot example is also reasonable:


Example 5 Suppose, in the space robot scenario of Example 1, the technician is still consid-
ered more credible than the manager and the programmer, but the latter two are considered
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Figure 4: The belief state after aggregation in Example 5 when st A sm ≡ sp.


equally credible. The aggregate belief state, shown in Figure 4, still gives the robot the cor-
rect information about the state of the system. The robot also learns for future reference
that there is some disagreement over whether or not there would have been a data overload
if the feedback system were working.


Furthermore, we observe that AGR, when applied to the set of sources in Example 4, does
indeed bypass the problem described above of extraneous opinion introduction:


Example 6 Assume W, S, and w are as in Example 4; AGR(S) = {(a, b), (c, b)} as de-
sired. The concerned reader may note that s2 is a “dictator” in the sense that s2’s opinions
override all opposing opinions. However, this is reasonable in the context because all other
sources have strictly lower rank.


We observe that AGR behaves well in the special cases we’ve considered, reducing to
AGRUn when all sources have equal rank, and to AGRRf when the sources are totally
ranked:


Proposition 17 Suppose S ⊆ S.


1. If wS is fully connected, AGR(S) = AGRUn(S).


2. If wS is a total order, AGR(S) = AGRRf(S).


Another property of AGR is that its transitive closure part minimally extends the result of
AGRRf to make it complete (i.e., all conflicts represented explicitly) in the sense that new
opinions are only added between worlds already involved in a conflict:


Proposition 18 Suppose S ⊆ S, ≺∗= AGRRf(S), ≺= AGR(S), and x 6≺∗ y for x, y ∈ W.
If x ≺ y, then x ./ y.


One small observation: AGR(∅) = ∅ is a property of our definition, reflecting the fact that
we should not generate opinions out of nothing.


4.5 Arrow, Revisited


Finally, a strong argument in favor of AGR is that it satisfies Arrow’s conditions. Tech-
nically, our setting is slightly different from that of Arrow’s, so we need to modify each
condition so that it is appropriate for our setting, yet retains the intended spirit of the
original condition. Let f be an operator which aggregates the belief states <s1 , . . . , <sn


over W of n sources s1, . . . , sn ∈ S ⊆ S, respectively, let ≺ = f(<s1 , . . . , <sn), and let wS


be a total preorder over S. We consider each condition separately.
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Restricted range For our setting, the output of the aggregation function will be a mod-
ular, transitive belief state rather than a total preorder considered by Arrow.


Definition 16 (modified) Restricted Range: The range of f is B.


Unrestricted domain Similarly, the input to the aggregation function will be modular,
transitive belief states of sources rather than total preorders.


Definition 17 (modified) Unrestricted Domain: For each i, <si can be any member of B.


Pareto principle In Arrow’s setting, the relations represented non-strict relative likeli-
hood (preference, actually) so that the asymmetric restrictions of the relations were used
to define the Pareto principle. However, in our setting, generalized belief states already
represent strict likelihood. Consequently, we use the actual input and output relations
of the aggregation function in place of their asymmetric restrictions to define the Pareto
principle. Obviously, because of AGR’s ability to introduce conflicts, it will not satisfy the
original formal Pareto principle which would essentially require that if all sources have an
unconflicted belief of one world being strictly more likely than another, this must also be
true in the aggregate belief state. Neither condition is necessarily stronger than the other.


Definition 18 (modified) Pareto Principle: If x <si y for all i, then x ≺ y.


Independence of irrelevant alternatives Conflicts are defined in terms of cycles, not
necessarily binary. By allowing the existence of conflicts, we effectively have made it possible
for outside worlds to affect the relation between a pair of worlds, viz., by involving them in
a cycle. As a result, we need to weaken IIA to say that the relation between worlds should
be independent of other worlds unless these other worlds put them in conflict. This makes
intuitive sense: if two worlds are put into conflict after aggregation due to a cycle involving
other worlds, we may need to access these other worlds to be able to detect the conflict.


Definition 19 (modified) Independence of Irrelevant Alternatives (IIA): Suppose
s′1, . . . , s


′
n ∈ S such that si ≡S s′i for all i, and ≺′= f(<s′1 , . . . , <s′n). Further suppose x <si y


iff x <s′i y for all i, x6 ./ y, and x6 ./′ y. Then x ≺ y iff x ≺′ y.
Non-dictatorship As with the Pareto principle definition, we use the actual input and
output relations to define non-dictatorship since belief states represent strict likelihood.
From this perspective, our setting requires that informant sources of the highest rank be
“dictators” in the sense considered by Arrow. However, the setting originally considered
by Arrow was one where all individuals are ranked equally. Thus, we make this explicit in
our new definition of non-dictatorship by adding the pre-condition that all sources be of
equal rank. Now, AGR treats a set of equally ranked sources equally by taking all their
opinions seriously, at the price of introducing conflicts. So, intuitively, there are no dictators.
However, because Arrow did not account for conflicts in his formulation, all the sources will
be “dictators” by his definition. We need to modify the definition of non-dictatorship to
say that no source should always push opinions through without them ever being contested.


Definition 20 (modified) Non-Dictatorship: If si ≡S sj for all i, j, then there is no i such
that, for every combination of source belief states and every x, y ∈ W, x <si y and y 6<si x
implies x ≺ y and y 6≺ x.
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We now show that AGR indeed satisfies these conditions:


Proposition 19 Let S = {s1, . . . , sn} ⊆ S and AGRf (<s1 , . . . , <sn) = AGR(S). AGRf


satisfies (the modified versions of) restricted range, unrestricted domain, Pareto principle,
IIA, and non-dictatorship.


5. Multi-Agent Fusion


So far, we have only considered the case where a single agent must construct or update
her belief state once informed by a set of sources. Multi-agent fusion is the process of
aggregating the belief states of a set of agents, each with its respective set of informant
sources. We proceed to formalize this setting.


5.1 Formalization


An agent A is informed by a set of sources S ⊆ S.8 Agent A’s induced belief state is the
belief state formed by aggregating the belief states of its informant sources, i.e., AGR(S).
We will use A∅ and AS to denote special agents informed by ∅ and S, respectively.


Assume the set of agents to fuse agree upon rank (and, consequently, w).9 We define
the fusion of this set to be an agent informed by the combination of informant sources:


Definition 21 Let A = {A1, . . . , An} be a set of agents such that each agent Ai is informed
by Si ⊆ S. The fusion of A, written ⊕(A), is an agent informed by S =


⋃n
i=1 Si.


Not surprisingly given its set-theoretic definition, fusion is idempotent, commutative, and
associative. These properties guarantee the invariance required in multi-agent belief aggre-
gation applications such as our space robot domain.


5.2 Computing Fusion Efficiently


In the multi-agent space robot scenario described in Section 1, we only have a direct need
for the belief states that result from fusion. We are only interested in the belief states of the
original sources in so far as we want the fused belief state to reflect its informant history.
An obvious question is whether it is possible to compute the belief state induced by the
agents’ fusion solely from their initial belief states, that is, without having to reference the
belief states of their informant sources. This is highly desirable because of the expense
of storing—or, as in the case of our space robot example, transmitting—all source belief
states; we would like to represent each agent’s knowledge as compactly as possible.


In fact, we can do this if all sources have equal rank. We simply take the transitive
closure of the union of the agents’ belief states:


Proposition 20 Let A and S be as in Definition 21, ≺Ai, agent Ai’s induced belief state,
and wS, fully connected. If A = ⊕(A), then


(⋃
Ai∈A ≺Ai


)+ is A’s induced belief state.


8. Each source can be thought of as a primitive agent with fixed belief state.
9. We could easily extend the framework to allow for individual rankings, but we felt that the small gain


in generality would not justify the additional complexity and loss of perspicuity. Similarly, we could
consider each agent as having a credibility ordering only over its informant sources. However, it is
unclear how, for example, crediblity orderings over disjoint sets of sources should be combined into a
new credibility ordering since their union will not be total.
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Unfortunately, the equal rank case is special. If we have sources of different ranks, we
generally cannot compute the induced belief state after fusion using only the agent belief
states before fusion, as the following simple example demonstrates:


Example 7 Let W = {a, b}. Suppose two agents A1 and A2 are informed by sources s1 with
belief state <s1= {(a, b)} and s2 with belief state <s2= {(b, a)}, respectively. A1’s belief state
is the same as s1’s and A2’s is the same as s2’s. If s1 A s2, then the belief state induced by
⊕(A1, A2) is <s1, whereas if s2 A s1, then it is <s2.


Thus, just knowing the belief states of the fused agents is not sufficient for computing the
induced belief state. We need to maintain more information about each agent’s informants.
The question is whether we can do better than storing all the original sources.


We might wonder whether it is possible to somehow compute a credibility rank for each
agent based on the credibility of her informant sources, then simply apply AGR to the
agents’ induced belief states. This works fine if, for every pair of agents, all the informants
of one are more credible than those of the other. However, this does not work in general if
each agent can have informants both more and less credible than those of another agent as
the following example demonstrates:


Example 8 Let W = {a, b, c}. Suppose agent A1 is informed by source s1 with belief state
<s1= {(a, b), (b, c), (a, c)}, and suppose agent A2 is informed by sources s0 and s2 with belief
states <s0= {(c, b), (b, a), (c, a)} and <s2= {(b, a), (c, a)}, respectively. Further suppose that
s2 A s1 A s0. Then A1’s induced belief state is <s1 and A2’s is <s0. The belief state induced
by ⊕(A1, A2) is {(b, c), (c, a), (b, a)}. On the otherhand, if we rank A1 over A2 and apply
AGR to their induced belief states, we get <s1; if we rank A2 over A1, we get <s0; and,
if we rank them equally, we get the fully connected belief state. All of these are obviously
incorrect.


Hence, we need to store more information about the source of each opinion. However,
we can still do better than keeping the sources around if sources are totally preordered by
credibility. It is enough to store for each opinion of AGRRf(S) the rank of the highest
ranked source supporting it. We define pedigreed belief states which enrich belief states with
this additional information:


Definition 22 Let A be an agent informed by a set of sources S ⊆ S. A’s pedigreed belief
state is a pair (≺, l) where ≺= AGRRf(S) and l :≺→ R such that l((x, y)) = max({rank(s) :
x <s y, s ∈ S}). We use ≺A


r to denote the restriction of A’s pedigreed belief state to r, that
is, ≺A


r = {(x, y) ∈≺: l((x, y)) = r}.
We verify that a pair’s label is, in fact, the rank of the source used to determine the pair’s
membership in AGRRf(S), not that of some higher ranked source:


Proposition 21 Let A be an agent informed by a set of sources S ⊆ S and with pedigreed
belief state (≺, l). Then ≺A


r is the relation
{


(x, y) : ∃s ∈ S. x <s y ∧ r = rank(s) ∧
(
∀s′ ∈ S. s′ A s ⇒ x ≈s′ y


)}
.


The belief state induced by a pedigreed belief state (≺, l) is, obviously, the transitive closure
of ≺.
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Now, given only the pedigreed belief states of a set of agents, we can compute the
new pedigreed belief state after fusion. We simply combine the labeled opinions using our
refinement techniques. We call this operation pedigreed fusion:


Definition 23 Let S and A be as in Definition 21, wS, a total preorder, and PA, the set
of pedigreed belief states of the agents in A. The pedigreed fusion of PA, written ⊕ped(PA),
is (≺, l) where


1. ≺ is the relation
{


(x, y) : ∃Ai ∈ A, r ∈ R. x ≺Ai
r y ∧


(
∀Aj ∈ A, r′ ∈ R. r′ > r ⇒ x ∼Aj


r′ y
)}


over W, and


2. l :≺→ R such that l((x, y)) = max({r : x ≺Ai
r y,Ai ∈ A}).


Proposition 22 Let A, PA, S, and wS be as in Definition 23. Then ⊕ped(PA) is the
pedigreed belief state of ⊕(A).


From the perspective of the induced belief states, we are essentially discarding unlabeled
opinions (i.e., those derived by the closure operation) before fusion. Intuitively, we are
learning new information so we may need to retract some of our inferred opinions. After
fusion, we re-apply closure to complete the new belief state. Interestingly, in the special
case where the sources are strictly-ranked, the closure is unnecessary:


Proposition 23 If A, PA, and S are as in Definition 23, wS is a total order, and
⊕ped(PA) = (≺, l), then ≺+=≺.


Let us return once more to the space robot scenario considered in Example 1 to illustrate
pedigreed fusion.


Example 9 Suppose the arrogant programmer is not part of the telemetry team, but in-
stead works for a company on the other side of the country. Then the robot has to request
information from two separate agents, one to query the manager and technician and one to
query the programmer. Assume that the agents and the robot all rank the sources the same,
assigning the technician rank 2 and the other two agents rank 1, which induces the same
credibility ordering used in Example 5. The agents’ pedigreed belief states and the result of
their fusion are shown in Figure 5.


The first agent does not provide any information about overloading and the second agent
provides incorrect information. However, we see that after fusing the two, the robot has a
belief state that is identical to what it computed in Example 5 when there was only one agent
informed by all three sources (we’ve only separated the top set of worlds so as to show the
labeling). Consequently, it now knows the correct state of the system. And, satisfyingly, the
final result does not depend on the order in which the robot receives the agents’ reports.


The savings obtained in required storage space by this scheme can be substantial. Sup-
pose S is the set of an agent’s informant sources, n = ‖W‖, and m = ‖S‖. Explicitly storing
S (along with the rank of each source) requires O(n2m) amount of space; this worst case
bound is reached when all the sources’ belief states are fully connected relations. On the
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Figure 5: The pedigreed belief states of agent A1 informed by sm and st and of agent A2


informed by sp, and the result of their fusion in Example 9.


other hand, storing a pedigreed belief state only requires O(n2) space.10 Moreover, not only
does the enriched representation allow us to conserve space, it also provides for potential
savings in the efficiency of computing fusion since, for each pair of worlds, we only need to
consider the opinions of the agents rather than those of all the sources in the combined set
of informants.


Incidentally, if we had used the strawman AGR∗ as the basis for our general aggregation,
simply storing the rank of the maximum supporting sources would not give us sufficient
information to compute the induced belief state after fusion. To demonstrate this, we give
an example where two pairs of sources induce the same annotated agent belief states, yet
yield different belief states after fusion:


Example 10 Let W, S, and w be as in Example 4. Suppose agents A1, A2, A′1, and A′2
are informed by sets of sources S1, S2, S′1, and S′2, respectively, where S1 = S2 = {s2},
S′1 = {s0, s2}, and S′2 = {s1, s2}. AGR∗ dictates that the pedigreed belief states of all four
agents equal <s2 with all opinions annotated with rank(s2). In spite of this indistinguisha-
bility, if A = ⊕({A1, A2}) and A′ = ⊕({A′1, A′2}), then A’s induced belief state equals <s2,
i.e., {(a, b), (c, b)}, whereas A′’s is {(a, b), (c, b), (a, c), (c, a), (a, a), (b, b), (c, c)}.


Also notice that Maynard-Reid II and Shoham (2001) consider essentially the special
case of fusing two agents informed by strictly-ranked sources. They show the surprising
result that standard AGM belief revision can be modeled as the fusion of two agents, the
informant and the informee, where the informant’s sources are all strictly more credible than
the informee’s. Furthermore, they show that, because of its clean set-theoretic semantics,
fusion provides a very attractive, semantically well-behaved solution to the difficult problem
of iterated belief revision. Our general fusion definition satisfies all the examples of iterated
fusion they describe.


10. These bounds assume that the amount of space needed to store each rank is bounded by some small
constant.
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6. Incorporating Voting


A potential drawback of the framework we have described is it does not account for
“strength” of support. For example, we cannot differentiate between the situation where
one thousand sources of the highest rank support a < b and only one source of that rank
supports b < a, and the situation where the one source supports a < b and the thousand
other sources support b < a. In both cases our framework yields a simple conflict between
a and b rather than acknowledging the overwhelming support one way or the other. This
additional information about strength of support is often sufficient to resolve what would
otherwise have appeared to be a conflict.


To address this problem, we generalize our framework to incorporate voting. We first
describe a family of aggregation operators based on voting of which AGR is a special case.
In the process, we introduce a novel modular closure operator. We discuss properties of
special members of this family including indiscriminate aggregation, simple majority, and
unanimity, as well as attractive properties of the family as a whole. We then describe an
extension of our setting to accommodate ranked individuals so that individuals of higher
rank are given precedence during aggregation. Finally, we consider fusion.


6.1 Voting Functions


We will use a pairwise voting strategy similar to the well-known Condorcet’s method. (For
more on the Condorcet method and the other methods and results from standard voting
theory we cite, see Black’s (1958) classical reference on voting theory). Condorcet’s method
considers each pair of worlds separately, ranking world x over world y in the aggregate if
and only if there are more votes for that ranking than there are for y over x. If one world
beats or ties all other worlds, it is known as the Condorcet winner. We deviate from this
method in that we use a fixed threshold proportion of support to decide on the acceptance
of an opinion in the aggregate rather than the size of its support relative to that of the
opposite opinion. Let countS(x, y) = ‖{s ∈ S : x <s y}‖ for any S ⊆ S.


Definition 24 Let S ⊆ S. For p ∈ [0, 1], the voting function for p, written vtp, maps S to
the relation


{(x, y) : countS(x, y) > 0 and countS(x, y)/‖S‖ ≥ p}.
This definition falls under the class of voting systems Black (1958) calls absolute majority
systems. It is motivated by the observation that relative support is many times less relevant
than strength of support. The support for the two possible rankings of two worlds may be
so low that neither can justifiably be considered part of the aggregate belief state. Similarly,
the support for both alternative rankings may be so high that it may be more reasonable to
introduce both and create a conflict rather than choose one with slightly higher support. Our
strategy will not be appropriate for all applications, of course, but there are many instances
when it is most appropriate. Also, our method satisfies a generalization of the Condorcet
criterion, a widely accepted criteria of “good” voting systems that requires the Condorcet
winner, if it exists, be the most likely world in the aggregate belief state. Our method never
produces a strict ranking of two worlds opposite to that of Condorcet’s method, although
there will be cases where Condorcet’s method ranks one world strictly more likely than
another and our method produces agnosticism or a conflict. As a result, the Condorcet
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winner will always be among the most likely worlds. At any rate, our aggregation results
do not depend significantly on the choice of voting strategy; one could easily replace it with
a different strategy if desired.


That said, we make a few observations about our voting functions. First, the voting
function definition requires that we accept an opinion if at least p proportion of the sources
support it. However, we often want to specify that opinions only be accepted if strictly
more than some cutoff proportion of sources support it. For example, the best-known
voting function is the majority function where we only accept an opinion if it gets more
than 50% of the vote. We can easily specify majority vote with the function vt0.5+ε(S)
where 0 < ε < 0.5/‖S‖ (e.g., ε = 0.25/‖S‖) so that tied opinions are rejected. In general,
to only accept opinions garnering more than p proportion of the vote (for 0 ≤ p < 1), it
suffices to use the function vtp+ε(S) where


0 < ε <
1− p‖S‖+ bp‖S‖c


‖S‖


e.g., ε = (1− p‖S‖+ bp‖S‖c)/(2‖S‖).11


Second, it is immediately obvious that the aggregate relation may contain conflicts if
p ≤ 0.5, even if the original source belief states are conflict-free. In fact, it is possible to
get conflicts in the aggregate of conflict-free belief states even for larger p, as the following
famous example demonstrates:


Example 11 Let W = {a, b, c} and S be such that 1/3 of the sources have belief state
{(a, b), (b, c), (a, c)}, 1/3 have {(b, c), (c, a), (b, a)}, and 1/3 have {(c, a), (a, b), (c, b)}. Then
vtp(S) = {(a, b), (b, c), (c, a)}, a cycle, for 1/3 < p ≤ 2/3. This is known as the Condorcet
paradox (cf. Brams and Fishburn’s (2002) voting survey).


Many solutions have been proposed for resolving such conflicts – using Borda counts or
instant runoff voting (aka single transferable vote) (cf. Center for Voting and Democracy,
2002) are two popular examples. As before, we do not attempt to resolve the conflicts but,
instead, make them explicit in a way that supports flexibility in the choice of resolution
methodology and allows for semantically well-behaved iteration of aggregation.


Third, the end-point members of the family of voting functions have special significance.
The voting function for 0 is equivalent to the union operator we saw earlier that takes all
opinions seriously, i.e., is indiscriminate:


Proposition 24 If S ⊆ S, then vt0(S) = Un(S).


At the other extreme, we have the voting function for 1. In this case, it is equivalent to
taking the intersection of the sources’ belief states, i.e., only accepting unanimous opinions:


Proposition 25 If S ⊆ S, then vt1(S) =
⋂


s∈S <s.


In contrast to vt0 which generates many conflicts, vt1 generates a lot of agnosticism.
Fourth, voting functions are opinion-centered; that is, if the proportion of agnostic


sources is larger than p, the voting function for p will not necessarily reflect this agnosticism
as it would in the case of an opinion. If, for example, the belief states of three sources over


11. bxc denotes the floor of x, i.e., the largest integer less than or equal to x.
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W = {a, b} are {(a, b)}, {(b, a)}, and {}, respectively, then the voting function for p = 1/3
will produce a conflict with respect to a and b, not agnosticism. However, this is not to say
that abstainers have no impact on the final result. The fact that abstainers are counted
among the total number of voters has the effect that agnosticism with respect to a pair of
worlds counts as a “no” vote for both possible opinions. This issue usually does not arise in
standard voting schemes because these usually assume that sources totally rank candidates.


However, the most important observation is that members of the family of voting op-
erators do not produce belief states in general. As we’ve already shown, vt0 produces a
modular relation that is not necessarily transitive. At the other end of the spectrum, vt1
produces a transitive relation that is not necessarily modular:


Proposition 26 Suppose S ⊆ S. vt1(S) is transitive but not necessarily modular.


For the other members of the family, the result may be neither modular nor transitive,
as the Condorcet paradox in Example 11 illustrates for 1/3 < p ≤ 2/3. In fact, we can
construct such a scenario for every 0 < p < 1:


Proposition 27 If ‖W‖ ≥ 3, then for every p ∈ (0, 1), there exists S such that vtp(S) is
neither modular nor transitive.


Part of the problem is that voting may introduce conflicts which may imply other conflicts.
As before, we need to take the transitive closure to infer these implied conflicts. In the
Condorcet paradox example, this produces the fully connected belief state as we would
hope. Unfortunately, closing under transitivity does not necessarily restore modularity as
well, as the following example demonstrates:


Example 12 Let W = {a, b, c} and S be such that 1/3 of the sources have belief state
{(a, b), (b, c), (a, c)}, 1/3 have {(b, c), (c, a), (b, a)}, and 1/3 have {(b, a), (b, c)}. Then, for
p > 2/3, vtp(S) = vtp(S)+ = {(b, c)} which is not modular.


We solve this problem by defining a natural modular closure operation which converts
a transitive relation into a belief state. We will then define a modular-transitive closure
operation which will take the result of an arbitrary voting function and transform it into a
belief state using a transitive closure followed by a modular closure.


6.2 Modular-Transitive Closure


We start by defining a helper function which returns the level of a world in a relation, i.e.,
the length of the longest path (along strict edges) from a world to a member of the choice
set of W. For convenience, throughout this modular-transitive closure subsection we will
use ¹ to denote an arbitrary relation, ≺ and ./ to denote its asymmetric and symmetric
restrictions, respectively.


Definition 25 The level of x ∈ W in a transitive relation ¹ over W, written lev¹(x), is


lev¹(x) =


{
0 if x ∈ ch(W,¹)
1 + max


y∈W
({lev¹(y) : y ≺ x}) otherwise.


(Recall that ch is the choice set function defined in Definition 2.) The following simple
properties relating ¹ and lev¹ are immediate:
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Proposition 28 Suppose ¹ is a transitive relation over W and x, y ∈ W.


1. If x ≺ y, then lev¹(x) < lev¹(y).


2. If x ./ y, then lev¹(x) = lev¹(y).


3. If lev¹(x) < lev¹(y), then ∃z. lev¹(z) = lev¹(x) ∧ z ≺ y.


4. If lev¹(x) = lev¹(y), then x ¹ y iff y ¹ x.


We now define the modular closure of a relation to be the relation that results from fully
connecting all equi-level alternatives unless they are fully disconnected:


Definition 26 The modular closure MC(¹) of a transitive relation ¹ overW is the relation
such that (x, y) ∈ MC(¹) iff


1. lev¹(x) < lev¹(y) or


2. lev¹(x) = lev¹(y) and ∃x′, y′. lev¹(x′) = lev¹(y′) = lev¹(x) ∧ x′ ./ y′.


Intuitively, as long as we have reason to doubt that some pair in a level are interchangeable,
we doubt all the pairs at that level, but only then. Note that the definition of MC is similar
to one of the equivalent constructions of the rational closure Lehmann and Magidor (1992)
describe.


We see that MC indeed makes any transitive relation modular while preserving transi-
tivity:


Proposition 29 If ¹ is a transitive relation over W, then MC(¹) ∈ B.


MC is an additive process that changes a relation minimally to achieve modularity while
preserving transitivity and the levels of the worlds:


Proposition 30 Suppose ¹ is a transitive relation over W and ¹∗= MC(¹).


1. ¹⊆¹∗ and ≺⊆≺∗.
2. If ¹ is modular, then ¹∗=¹.


3. lev¹∗(x) = lev¹(x) for all x ∈ W.


4. If ¹′∈ B such that ¹⊆¹′ and lev¹′(x) = lev¹(x) for all x ∈ W, then ¹∗⊆¹′.
We now define the modular, transitive closure of an arbitrary relation ¹ as MC applied


to the transitive closure of ¹, and show that the result is a belief state:


Definition 27 The modular, transitive closure MT(¹) of a relation ¹ over W is the rela-
tion MC(¹+).


Proposition 31 If ¹ is a relation over W, then MT(¹) ∈ B.


MT is also a minimally additive operator:


Proposition 32 Suppose ¹ is a relation over W and ¹∗= MT(¹).


1. ¹⊆¹∗.
2. If ¹ is transitive, then ¹∗= MC(¹).


3. If ¹ is modular, then ¹∗=¹+.


4. If ¹ is modular and transitive, then ¹∗=¹.


5. If ¹ has no conflicts, then neither does ¹∗.
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6.3 The Aggregation Family


We are now fully equipped to solve the problem of incorporating voting into aggregation.
First, consider the special case where all sources have the same rank. Our aggregation
operators will construct an aggregate belief state by first applying voting, then closing
under MT:


Definition 28 If S ⊆ S and p ∈ [0, 1], then AGREqp(S) = MT (vtp(S)).


Proposition 33 If S ⊆ S and p ∈ [0, 1], then AGREqp(S) ∈ B.


We can now easily generalize this definition to accommodate a ranking on the sources.
We accept an opinion if enough individuals at the highest rank with an opinion support it,
then close under MT:


Definition 29 If S ⊆ S and p ∈ [0, 1], then AGRRfp(S) is the relation
{


(x, y) : ∃s ∈ S. x <s y ∧ (x, y) ∈ vtp({s′ ∈ S : s′ ≡S s}) ∧
(
∀s′ ∈ S. s′ AS s ⇒ x ≈s′ y


)}
.


Definition 30 If S ⊆ S and p ∈ [0, 1], then AGRp(S) = MT(AGRRfp(S)).


Proposition 34 If S ⊆ S and p ∈ [0, 1], then AGRp(S) ∈ B.


All the aggregation functions we have encountered so far are special cases of this general
family:


Proposition 35 Suppose S ⊆ S and p ∈ [0, 1].


1. If wS is fully connected, then AGRp(S) = AGREqp(S).


2. If wS is a total order, then AGRp(S) = AGRRfp(S) = AGRRf(S) = AGR(S).


3. AGR0(S) = AGR(S).


As an obvious consequence of the last property, AGR0 satisfies the modified Arrovian con-
ditions.


Corollary 35.1 Let S = {s1, . . . , sn} ⊆ S and AGRf (<s1 , . . . , <sn) = AGR0(S). AGRf


satisfies (the modified versions of) restricted range, unrestricted domain, Pareto principle,
IIA, and non-dictatorship.


6.4 Fusion


Fusion is still defined as in Definition 21, i.e., the belief state created by fusion of a set of
agents is the aggregate belief state of the agents’ cumulative informant sets. However, we
now use AGRp rather than AGR to compute the aggregate belief state.


Once again, we want to compute fusion without storing all the belief states of all the
informant sources, if possible. Unfortunately, this is not possible in general for aggregation
functions based on voting. The reason is we need to keep track of the actual identity of
the sources supporting each opinion so as to avoid “double-counting” sources shared by
multiple agents.
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However, we can often do better than the O(n2m) space required to store the full sources,
where n = ‖W‖ and m is the number of informant sources. We only store those parts that
matter. Specifically, for a given source, we only store those opinions for which the source
is one of the highest ranked supporting an opinion over the corresponding worlds. We
can effectively accomplish this by extending the pedigreed belief state so that we label each
opinion not only with the rank of the highest ranking sources supporting an opinion over the
corresponding worlds, but also with the set of unique identifiers for the sources supporting
the particular opinion. We also maintain a table that stores, for each rank represented in
the set of informant sources, the set of identifiers for all sources at that rank. We call the
resulting representation a support pedigreed belief state.


Definition 31 Let A be an agent informed by a set of sources S ⊆ S. A’s support pedigreed
belief state is a triple (l, sup, rtab) where


• l : W×W → R∪{♣} such that l(x, y) = max({rank(s) : x 6≈s y, s ∈ S}∪{♣}) where
♣ 6∈ R and ♣ < r for all r ∈ R,


• sup : W ×W → 2S such that sup(x, y) = {s ∈ S : rank(s) = l(x, y), x <s y}, and


• rtab : ranks(S) → 2S such that rtab(r) = {s ∈ S : rank(s) = r}.
Note that l is symmetric: l(x, y) = l(y, x). On the other hand, sup is not. Now, we can
easily compute an agent’s belief state from its support pedigreed belief state. To compute
the proportion of support for a particular opinion, we simply divide the size of the support
set for that opinion by the number of informant sources with the labeled rank.


Proposition 36 Let A be an agent informed by a set of sources S ⊆ S, with support pedi-
greed belief state (l, sup, rtab), and using aggregation function AGRp for p ∈ [0, 1]. A’s belief
state is the relation


MT({(x, y) : ‖sup(x, y)‖ > 0 and ‖sup(x, y)‖/‖rtab(l(x, y))‖ ≥ p})


Observe that, unlike with pedigreed belief states, support pedigreed belief states label all
possible opinions, not just those appearing in the agent’s induced belief state, i.e., whose
support falls below the threshhold. The reason is another agent may come along later with
enough new votes to cross the threshold, in which case the votes from the earlier sources
become relevant. Similarly, support pedigreed belief states maintain rank information even
for ranks not appearing as labels. No source of a particular rank may currently support
any opinion, but another agent may later bring sources of that rank supporting an opinion
hitherto unsupported by any source of equal or higher rank. The correct computation of
the proportion of support for this opinion must take into account the earlier sources.


Before we address fusion, let us consider the space required to store a support pedigreed
belief state (l, sup, rtab). l requires O(n2) space, rtab requires Θ(m) space, and, if rmax


denotes the number of sources of a rank having the most sources with that rank, sup
requires O(n2rmax) space, for a total of O(n2rmax + m) space.12 Thus, in a best-case
scenario where, for example, sources are strictly ranked, a support pedigreed belief state
only requires O(n2 + m) space since each opinion has at most one supporter. However, in


12. As before, we assume representing ranks requires constant space. We assume that we can represent each
source label with constant space as well.


179







Maynard-Zhang & Lehmann


the worst-case scenario where, for example, sources are all equally ranked so that rmax = m,
we will still need O(n2m) space.


Now, computing the support pedigreed belief state resulting from fusion is straightfor-
ward. For each opinion, we set l to be the highest l value for that opinion among the agents
and set sup to be the union of sup sets for that opinion of all agents with that l value. And
for each rank represented in some agent’s rank table, we set rtab to be the union of the
rtab sets of all agents for whom it is defined.


Definition 32 Let S and A be as in Definition 21, wS, a total preorder, and PA, the set
of support pedigreed belief states of the agents in A. The support pedigreed fusion of PA,
written ⊕sup(PA), is (l, sup, rtab) where


1. l :≺→ R such that l((x, y)) = max({l′(x, y) : (l′, sup′, rtab′) ∈ PA}),
2. sup : W ×W → 2S such that


sup(x, y) =
⋃


(l′,sup′,rtab′)∈PA, l′(x,y)=l(x,y)


sup′(x, y),


and


3. rtab : ranks(S) → 2S such that


rtab(r) =
⋃


(l′,sup′,rtab′)∈PA, r∈range(rtab′)


rtab′(r).


Proposition 37 Let A, PA, S, and wS be as in Definition 32. Then ⊕sup(PA) is the
support pedigreed belief state of ⊕(A).


Thus, in addition to the potential savings in space gained by using support pedigreed
belief states, we also potentially save in the time needed to compute fusion since, for a given
opinion, we do not need to consider the opinions of lesser ranked sources.


7. Related Work


Much of the work in belief aggregation has been geared towards unbiased kinds of belief
pooling. Besides the work in social choice we described in Section 3.2, recent attempts from
the belief revision community (e.g. Borgida & Imielinski, 1984; Baral, Kraus, Minker, &
Subrahmanian, 1992; Liberatore & Schaerf, 1995; Makinson, 1997; Revesz, 1997; Konieczny
& Pérez, 1998; Meyer, 2001; Benferhat, Dubois, Kaci, & Prade, 2002) have sought to modify
the AGM theory to capture “fair” revisions, that is, revisions where the revisee and reviser’s
beliefs are treated equally seriously. Like our proposal, Benferhat et al. and Meyer accom-
modate iterative merging. Benferhat et al.’s proposal is also distinct in that they approach
the problem from a possibilistic logic point of view. Besides the restriction to equally-ranked
sources, these fairness-based proposals differ from ours in that they are generally syntactic
in nature in the sense that sentences are prioritized rather than possible worlds. Meyer’s
proposal is an exception; his belief states are epistemic states, structures in the style of
Spohn’s (1988) ordinal conditional functions (aka κ-rankings). In fact, Meyer, Ghose, and
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Chopra (2001) have shown that a number of simple aggregation operators on epistemic
belief states also satisfy Arrow’s postulates when appropriately modified for this context
(unrestricted domain, restricted range, and IIA in particular need modification). Unfortu-
nately, epistemic states are enriched total preorders and, thus, suffer from the problems we
described earlier, i.e., the inability to explicitly handle conflicts.


Cantwell’s (1998) work is also syntactic in nature, but does allow for sources of differ-
ing credibility. Cantwell addresses a complementary problem to our own: deciding what
information to reject given the subset of informing sources rejecting the information. He
assumes a generalization of our credibility ordering, a partial preorder over sets of sources.
He explores ways of inducing a partial preorder over sentences based on this ordering, then
uses this ordering to determine a subset (although not all) of the sentences to reject. An-
other difference from our work is that he only considers the non-counterfactual beliefs of
sources.


We are not, of course, the first to consider using the lexicographic ordering for aggrega-
tion purposes. Lexicographic operators have long been studied in the fields of management
and social science; Fishburn (1974) gives a good survey of much of that work. More re-
cently, researchers in artificial intelligence have taken an interest in these operators; exam-
ples include Grosof (1991), Maynard-Reid II and Shoham (2001) and Andréka, Ryan, and
Schobbens (2002).


Grosof uses lexicographic aggregation of preorders as a means of tackling the problem of
default reasoning in the presence of conflicting defaults. Besides the more general preorders
being aggregated, another interesting difference from our work is that although Grosof does
not allow for sources of equal rank, he does allow for sources of incomparable rank, i.e., the
ranking on sources is a strict partial order. Thus, in the extreme case where the ordering
is completely disconnected, the operator reduces to our Un operator (and, thus, does not
necessarily preserve transitivity).


Andréka et al., on the other hand, frame their work in the context of preference ag-
gregation. They go one step further than Grosof and allow input relations to be arbitrary.
They prove that the lexicographic operator is the only one that satisfies a variation on
Arrow’s properties – unanimity, IIA, preservation of transitivity, and a weaker version of
non-dictatorship. (We should point out that from the perspective of Arrow’s original frame-
work, the relation with the highest priority is always a dictator.) They describe a collection
of other properties besides transitivity preserved by the operator. However, as in our work,
they do not preserve totality.


Our work derives much of its inspiration from Maynard-Reid II and Shoham’s work.
They restrict their attention to total preorders, but this does not create problems because
they assume sources to be totally ordered. They focus, instead, on the strong connection
between belief aggregation and iterated belief revision. They show that ⊕ can be used as
an iterated belief operator in an AGM-based setting, then compare its properties as such
against those of a representative sampling of well-known iterated belief operator proposals
– Boutilier’s (1996) natural revision, Darwiche and Pearl’s (1997) operators, Spohn’s (1988)
ordinal conditional function revision, Lehmann’s (1995) widening rank model revision, and
Williams’s (1994) conditionalization and adjustment operators. They show that ⊕ is the
only operator among them that is semantically well-behaved: the results of all the other
operators depend on the order of iteration.
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Finally, to our knowledge, none of these related approaches outside of social choice have
yet been extended to incorporate voting.


8. Conclusion


We have described a semantically clean representation – the class of modular, transitive
relations – for collective qualitative beliefs which allows us to represent conflicting opinions
without sacrificing the ability to make decisions. We have proposed an intuitive operator
which takes advantage of this representation so that an agent can combine the belief states of
a set of informant sources totally preordered by credibility. We showed that this operator
circumvents Arrow’s Impossibility result in a satisfactory manner. We also described a
mechanism for fusing the belief states of different agents that iterates well and extended
the framework to incorporate voting.


We have assumed that all agents share the credibility ranking on sources. In general,
these rankings can vary among agents, and even change over time. Furthermore, an agent’s
ranking function can depend on the context; different sources may have different areas of
expertise. Exploring the behavior of fusion in these more general settings is an obvious next
step.


Note that although we have described operators to incorporate voting, under no condi-
tion will any of these ever side with lower rank sources when they conflict with higher rank
sources, no matter how many of these disagreeing lower rank sources there are. An aggre-
gation scheme that behaves differently would have to be built on fundamentally different
assumptions than our framework.


Another problem which deserves further study is developing a fuller understanding of
the properties of the Bel, Agn, and Con operators and how they interrelate.
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Appendix A. Proofs


Proposition 1


1. The transitive closure of a modular relation is modular.


2. Every transitive relation is quasi-transitive.


3. (Sen, 1986) Every quasi-transitive relation is acyclic.


Proof:


1. Suppose a relation ≤ over finite set Ω is modular, and ≤+ is the transitive clo-
sure of ≤. Suppose x, y, z ∈ Ω and x ≤+ y. Then there exist w0, . . . , wn such that
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x = w0 ≤ · · · ≤ wn = y. Since ≤ is modular and w0 ≤ w1, either w0 ≤ z or z ≤ w1.
In the former case, x = w0 ≤ z, so x ≤+ z. In the latter case, z ≤ w1 ≤ · · ·wn = y, so
z ≤+ y.


2. Suppose Ω is a finite set, x, y, z ∈ Ω, ≤ is a transitive relation over Ω, and < is its
asymmetric restriction. Suppose x < y and y < z. Then x ≤ y, y 6≤ x, y ≤ z, and
z 6≤ y. x ≤ y and y ≤ z imply x ≤ z, and y ≤ z and y 6≤ x imply z 6≤ x, both by
transitivity. So x < z.


2


Proposition 2 (Sen, 1986) Given a relation ≤ over a finite set Ω, the choice set operation
ch defines a choice function iff ≤ is acyclic.


Proof: See Sen’s (1986) proof. 2


Proposition 3 (Arrow, 1963) There is no aggregation operator that satisfies restricted
range, unrestricted domain, (weak) Pareto principle, independendence of irrelevant alterna-
tives, and nondictatorship.


Proof: See Arrow’s (1963) proof. 2


Proposition 4 Let ¹ be a relation over a finite set Ω and let ∼ be its symmetric restriction.
If ¹ is total and quasi-transitive but not transitive, then ∼ is not transitive.


Proof: Let ¹ be a total, quasi-transitive, non-transitive relation. Suppose x ¹ y and
y ¹ z but x 6¹ z. By totality, z ¹ x, so z ≺ x. If x ≺ y, then z ≺ y by quasi-transitivity, a
contradiction. Thus, x ∼ y. Similarly, if y ≺ z, then y ≺ x, a contradiction, so y ∼ z. But
z ≺ x, so x 6∼ z. Therefore, ∼ is not transitive. 2


Proposition 5 Suppose a relation ≺ is transitive and ∼ is the corresponding agnosticism
relation. Then ∼ is transitive iff ≺ is modular.


Proof: Suppose ∼ is transitive and suppose x ≺ z, x, y, z ∈ W. We prove by contradic-
tion: Suppose x 6≺ y and y 6≺ z. By transitivity, z 6≺ y and y 6≺ x, so x ∼ y and y ∼ z. By
assumption, x ∼ z, so x 6≺ z, a contradiction.


Suppose, instead, ≺ is modular and suppose x ∼ y and y ∼ z, x, y, z ∈ W. Then x 6≺ y,
y 6≺ x, y 6≺ z, and z 6≺ y. By modularity, x 6≺ z and z 6≺ x, so x ∼ z. 2


Proposition 6 T< ⊂ B and is the set of irreflexive relations in B.


Proof: Let x, y, z ∈ W. We first show that T< ⊂ B. Let ≺∈ T<. Then there exists
¹∈ T such that ≺ is the asymmetric restriction of ¹. By definition, ¹ is transitive, so
by Proposition 1, so is ≺. Suppose x ≺ y. Then x ¹ y and y 6¹ x. Since ¹ is total,
x ¹ z or z ¹ x. Suppose x ¹ z. If y ¹ z, then z 6¹ x (otherwise y ¹ x by transitivity,
a contradiction), so x ≺ z. And if, on the other hand, y 6¹ z, then z ¹ y by totality, so
z ≺ y. Suppose, instead, z ¹ x. Then z ¹ y by transitivity and y 6¹ z (otherwise y ¹ x by
transitivity, a contradiction), so z ≺ y. Thus, x ≺ z or z ≺ y, so ≺ is modular.


Now we show that ≺∈ B is in T< if and only if it is irreflexive. If ≺∈ T<, it is asymmetric,
so it is irreflexive. Suppose, instead, ≺ is irreflexive. We define a relationship¹, show that ≺
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is its asymmetric restriction, and show that ¹ is in T . Let ¹ be defined as x ¹ y iff y 6≺ x.
We first show that ≺ is the asymmetric restriction of ¹. Suppose ≺′ is the asymmetric
restriction of ¹. If x ≺′ y, then x ¹ y and y 6¹ x, so x ≺ y. If, instead, x ≺ y, then y 6¹ x.
By totality, x ¹ y, so x ≺′ y. We next show that ¹∈ T . If x 6≺ y then y ¹ x. Otherwise,
x ≺ y. But since ≺ is irreflexive, y 6≺ x (otherwise x ≺ x by transitivity), so x ¹ y and ¹
is total. Next, suppose x ¹ y and y ¹ z. Then y 6≺ x and z 6≺ y. By modularity, z 6≺ x, so
x ¹ z, and, thus ¹ is transitive. 2


Proposition 7 ≺∈ B iff there is a partition W = 〈W0, . . . ,Wn〉 of W such that:


1. For every x ∈ Wi and y ∈ Wj, i 6= j implies i < j iff x ≺ y.


2. Every Wi is either fully connected (w ≺ w′ for all w, w′ ∈ Wi) or fully disconnected
(w 6≺ w′ for all w, w′ ∈ Wi).


Proof: We refer to the conditions in the proposition as conditions 1 and 2, respectively.
We prove each direction of the proposition separately.


(=⇒) Suppose ≺∈ B, that is, ≺ is a modular and transitive relation over W. We use a
series of definitions and lemmas to show that a partition of W exists satisfying conditions 1
and 2. We first define an equivalence relation by which we will partition W. Two elements
will be equivalent if they “look the same” from the perspective of every element of W:


Definition 33 x ≡ y iff for every z ∈ W, x ≺ z iff y ≺ z and z ≺ x iff z ≺ y.


Lemma 7.1 ≡ is an equivalence relation over W.


Proof: Suppose x ∈ W. For every z ∈ W, x ≺ z iff x ≺ z and z ≺ x iff z ≺ x, so x ≡ x.
Therefore, ≡ is reflexive.


Suppose x, y ∈ W and x ≡ y. Then for every z ∈ W, x ≺ z iff y ≺ z and z ≺ x iff z ≺ y.
But then for every z ∈ W, y ≺ z iff x ≺ z and z ≺ y iff z ≺ x. Therefore, y ≡ x, so ≡ is
symmetric.


Suppose x, y, z ∈ W, x ≡ y, and y ≡ z. Suppose further that w ∈ W. By definition of
≡, x ≺ w iff y ≺ w and w ≺ x iff w ≺ y, and y ≺ w iff z ≺ w and w ≺ y iff w ≺ z. Therefore,
x ≺ w iff z ≺ w and w ≺ x iff w ≺ z. Since w is arbitrary, x ≡ z, so ≡ is transitive. 2


≡ partitions W into its equivalence classes. We use [w] to denote the equivalence class
containing w, that is, the set {w′ ∈ W : w ≡ w′}. Observe that two worlds in conflict
always appear in the same equivalence class:


Lemma 7.2 If x, y ∈ W and x ./ y, then [x] = [y].


Proof: Suppose x, y ∈ W and x ./ y. Since [x] is an equivalence class, it suffices to show
that y ∈ [x], that is, x ≡ y. Suppose z ∈ W. By transitivity, if x ≺ z, then y ≺ z; if y ≺ z,
then x ≺ z; if z ≺ x, then z ≺ y; and, if z ≺ y then z ≺ x. Thus, x ≺ z iff y ≺ z and z ≺ x
iff z ≺ y, and since z is arbitrary, x ≡ y. 2


We now define a total order over these equivalence classes:


Definition 34 For all x, y ∈ W, [x] ≤ [y] iff [x] = [y] or x ≺ y.
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Lemma 7.3 ≤ is well-defined, that is, if x ≡ x′ and y ≡ y′, then x ≺ y iff x′ ≺ y′, for all
x, x′, y, y′ ∈ W.


Proof: Suppose x ≡ x′ and y ≡ y′, x, x′, y, y′ ∈ W. By the definition of ≡, for every
z ∈ W, x ≺ z iff x′ ≺ z. In particular, x ≺ y iff x′ ≺ y. Also by the definition of ≡, for
every z′ ∈ W, z′ ≺ y iff z′ ≺ y′. In particular, x′ ≺ y iff x′ ≺ y′. Therefore, x ≺ y iff x′ ≺ y′.
2


Lemma 7.4 ≤ is a total order over the equivalence classes of W defined by ≡.


Proof: Suppose x, y, z ∈ W. We first show that ≤ is total. By definition of ≤, if x ≺ y
or y ≺ x, then [x] ≤ [y] or [y] ≤ [x], respectively. Suppose x 6≺ y and y 6≺ x, and suppose
z ∈ W. By modularity of ≺, x ≺ z implies y ≺ z, y ≺ z implies x ≺ z, z ≺ x implies z ≺ y,
and z ≺ y implies z ≺ x, so x ≡ y. Therefore, [x] = [y], so [x] ≤ [y] by the definition of ≤.


Next, we show that ≤ is anti-symmetric. Suppose [x] ≤ [y] and [y] ≤ [x]. Then [x] = [y]
or x ≺ y and y ≺ x. In the former case we are done, in the latter, the result follows from
Lemma 7.2.


Finally, we show that ≤ is transitive. Suppose [x] ≤ [y] and [y] ≤ [z]. Obviously, if
[x] = [y] or [y] = [z], then [x] ≤ [z]. Suppose not. Then x ≺ y and y ≺ z, so x ≺ z by the
transitivity of ≺. Therefore, [x] ≤ [y] by the definition of ≤. 2


We name the members of the partition W0, . . . , Wn such that Wi ≤ Wj iff i ≤ j, where
n is an integer. Such a naming exists since every finite, totally ordered set is isomorphic to
some finite prefix of the integers.


We now check that this partition satisfies the two conditions. For the first condition,
suppose x ∈ Wi, y ∈ Wj , and i 6= j. We want to show that i < j iff x ≺ y. Since i 6= j,
[x] 6= [y]. Suppose i < j. Then i ≤ j, so [x] ≤ [y]. Since [x] 6= [y], x ≺ y by the definition of
≤. Now suppose, instead, that x ≺ y. Then [x] ≤ [y] by the definition of ≤, so i ≤ j. Since
[x] 6= [y], y 6≺ x by Lemma 7.2. Since [x] 6= [y] and y 6≺ x, [y] 6≤ [x] by the definition of ≤,
so j 6≤ i. Thus, i < j.


Finally, we show that each Wi is either fully connected or fully disconnected. Suppose
x, y, z ∈ Wi so that x ≡ y ≡ z. It suffices to show that x ≺ x iff y ≺ z. By the definition of
≡, x ≺ x iff y ≺ x, and x ≺ x iff x ≺ z. Suppose x ≺ x. Then, y ≺ x and x ≺ z, so y ≺ z
by transitivity of ≺. Suppose now, x 6≺ x. Then, y 6≺ x and x 6≺ z, so y 6≺ z by modularity
of ≺.


(⇐=) Suppose W = 〈W0, . . . , Wn〉 is a partition of W and ≺ is a relation over W sat-
isfying the given conditions. We want to show that ≺ is modular and transitive. We first
give the following lemma:


Lemma 7.5 Suppose W is a partition of W and ≺ is a relation over W satisfying condi-
tion 1. If Wi,Wj ∈ W, x ∈ Wi, y ∈ Wj, and x ≺ y, then i ≤ j.


Proof: If i = j, we’re done. Suppose i 6= j. Then, since x ≺ y, i < j by condition 1. 2


We now show ≺ is modular. Suppose x ∈ Wi, y ∈ Wj , and x ≺ y. Then i ≤ j by
Lemma 7.5. Suppose z ∈ Wk. Then i ≤ k or k ≤ j by the modularity of ≤. Suppose i < k
or k < j. Then x ≺ z or z ≺ y by condition 1. Otherwise i = k = j, so x, y, z ∈ Wi. Since
x ≺ y, Wi is fully connected by condition 2, so x ≺ z (and z ≺ y).
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Finally, we show that ≺ is transitive. Suppose x ∈ Wi, y ∈ Wj , z ∈ Wk, x ≺ y, and
y ≺ z. By Lemma 7.5, i ≤ j and j ≤ k, so i ≤ k by the transitivity of ≤. Suppose i < k.
Then x ≺ z by condition 1. Otherwise i = k = j, so x, y, z ∈ Wi. Since x ≺ y, Wi is fully
connected by condition 2, so x ≺ z. 2


(END OF PROPOSITION 7 PROOF)


Proposition 8 T ⊂ B and is the set of reflexive relations in B.


Proof: We first show that T ⊂ B. Let ¹∈ T and x, y, z ∈ W. By definition, ¹ is transi-
tive. Suppose x ¹ y. Since ¹ is total, x ¹ z or z ¹ x. If z ¹ x, then z ¹ y by transitivity,
so ¹ is modular. On the other hand, the empty relation over W is modular and transitive,
but not total and, consequently, not in T .


Now we show that ≺∈ B is in T if and only if it is reflexive. If ≺∈ T , it is total, so it is
reflexive. If, instead, ≺ is reflexive, then x ≺ x so, by modularity, x ≺ y or y ≺ x. Thus, ≺
is total. And, since ≺∈ B, it is transitive. 2


Proposition 9


1. Q∩ B = T .


2. B 6⊆ Q.


3. Q 6⊆ B if W has at least three elements.


4. Q ⊂ B if W has one or two elements.


Proof:


1. Suppose ¹∈ Q ∩ B. Then ¹ is total and transitive and, hence, in T . Suppose ¹∈ T .
By definition, ¹ is total. Also by definition, it is transitive, so by Proposition 1, it is
quasi-transitive and, thus, in Q. By Proposition 8, ¹∈ B and, so, in Q∩ B.


2. The empty relation is modular and transitive, but not total and, so, not in Q.


3. Suppose a and b are distinct elements of W. The relation W ×W \ {(b, a)} is total,
and, since the asymmetric restriction is {(a, b)} which is transitive, it is also quasi-
transitive. However, if there are at least three elements in W, it is not transitive and,
so, not in B.


4. SupposeW has one element. Then B contains both possible relations overW, whereas
Q contains only the fully connected relation over W.


Suppose W has two elements a and b. Then B contains the empty relation, the fully
connected relation, and all the remaining eight relations which contain either (a, b) or
(b, a), but not both. Q, on the other hand, only contains the three reflexive relations
containing either (a, b) or (b, a).


2


Proposition 10


1. Q< ∩ B = T<.
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2. B 6⊆ Q<.


3. Q< 6⊆ B if W has at least three elements.


4. Q< ⊂ B if W has one or two elements.


Proof:


1. Suppose ≺∈ Q< ∩ B. Since ≺∈ Q<, it is irreflexive, so since it is in B, it is in T< by
Proposition 6. Suppose, instead, ≺∈ T<. By Proposition 6, ≺∈ B. Let ¹∈ T be a
relation such that ≺ is its asymmetric restriction. (Obviously such a relation must
exist.) From Proposition 9, ¹∈ Q, so ≺∈ Q<. Thus, ≺∈ Q< ∩ B.


2. The fully connected relation over W is in B, but not asymmetric and, so, not in Q<.


3. Suppose a and b are distinct elements of W. If W has at least three elements, the
relation {(a, b)} is not modular and, thus, not in B, yet it is the asymmetric restriction
of the relation W ×W \ {(b, a)} which is total and quasi-transitive (since {(a, b)} is
transitive).


4. SupposeW has one element. Then B contains both possible relations overW, whereas
Q< contains only the empty relation over W.


Suppose W has two elements a and b. Then B contains the empty relation, the fully
connected relation, and all eight of the remaining relations which contain either (a, b)
or (b, a), but not both. Q<, on the other hand, only contains the three irreflexive
relations.


2


Proposition 11 If S ⊆ S, then Un(S) is modular but not necessarily transitive.


Proof: Let ≺= Un(S). Suppose x, y, z ∈ W and x ≺ y. Then there is some s ∈ S such
that x <s y. By assumption, <s is modular, so x <s z or z <s y. By the definition of Un(S),
x ≺ z or z ≺ y, so ≺ is modular.


Suppose a, b, c ∈ W and S = {s1, s2} such that <s1= {(a, b), (a, c)} and
<s2= {(b, a), (c, a)}. Un(S) is not transitive. 2


Proposition 12 If S ⊆ S, then AGRUn(S) ∈ B.


Proof: The transitive closure of any relation is transitive. Since Un(S) is modular, the
transitive closure of Un(S) is also modular by Proposition 1. 2


Proposition 13 If S ⊆ S, then AGRRf(S) is modular but not necessarily transitive.


Proof: We first prove modularity. Suppose x, y, z ∈ W and (x, y) ∈ AGRRf(S). Then
there exists s ∈ S such that x <s y and for all s′ AS s ∈ S, x ≈s′ y. By modularity of <s,
either x <s z or z <s y. Since S is finite, this implies that either there exists s′ ∈ S such
that x <s′ z and for all s′′ AS s′ ∈ S, x ≈s′′ z, or there exists s′ ∈ S such that y <s′ z
and for all s′′ AS s′ ∈ S, y ≈s′′ z. Thus, (x, z) ∈ AGRRf(S) or (z, y) ∈ AGRRf(S), so
AGRRf(S) is modular.


SupposeW = {x, y, z} and S = {s1, s2} such that s1 = {(x, y), (z, y)}, s2 = {(y, x), (y, z)},
and s1 ≡S s2. Then AGRRf(S) = {(x, y), (z, y), (y, x), (y, z)} which is not transitive. 2
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Proposition 14 If S ⊆ S and wS is a total order, then AGRRf(S) ∈ B.


Proof: We’ve already proven in Proposition 13 that AGRRf(S) is modular. Let
≺= AGRRf(S) and suppose x, y, z ∈ W. It remains to show that ≺ is transitive. Sup-
pose x ≺ y and y ≺ z. Then there exists s1 ∈ S such that x <s1 y and, for every s′1 ∈ S,
s′1 AS s implies x 6<s′1 y and y 6<s′1 x, and there exists s2 ∈ S such that y <s2 z and, for
every s′2 ∈ S, s′2 AS s implies y 6<s′2 z and z 6<s′2 y. Suppose s1 AS s2 (the case s2 AS s1 is
similar). Then y 6<s1 z and z 6<s1 y. By modularity, since x <s1 y and z 6<s1 y, x <s1 z. Let
s′ ∈ S and s′ AS s1. Then x 6<s′ y and y 6<s′ x. And, since s1 AS s2, s′ AS s2, so y 6<s′ z
and z 6<s′ y. By modularity, x 6<s′ z and z 6<s′ x. Therefore, x ≺ z. 2


Proposition 15 If S ⊆ S, then AGR∗(S) ∈ B.


Proof: By Proposition 12, <r∈ B for every r ∈ ranks(S). For convenience, we assume the
existence of a “virtual” source sr corresponding to each <r. Precisely, for each r ∈ ranks(S),
assume there exists a source sr ∈ S such that <sr=<r and rank(sr) = r, and let S′ be the
set of these sources. Then,


AGR∗(S) =
{
(x, y) : ∃r ∈ R. x <r y ∧ (∀r′ ∈ ranks(S). r′ > r ⇒ x ≈r′ y


)}


=
{


(x, y) : ∃s ∈ S′. x <s y ∧
(
∀s′ ∈ S′. s′ AS′ s ⇒ x ≈s′ y


)}


= AGRRf(S′).


Since there is one source in S′ per rank r, and since > is a total order over R, wS′ is a total
order. The result follows from Proposition 14. 2


Proposition 16 If S ⊆ S, then AGR(S) ∈ B.


Proof: By Proposition 13, AGRRf(S) is modular. AGRRf(S)+ is obviously transitive,
and, by Proposition 1, it is modular as well. 2


Proposition 17 Suppose S ⊆ S.


1. If wS is fully connected, AGR(S) = AGRUn(S).


2. If wS is a total order, AGR(S) = AGRRf(S).


Proof:


1. Suppose wS is fully connected. Then the second half of the definition of AGRRf is
vacuously true so that AGRRf(S) simplifies to {(x, y) : ∃s ∈ S. x <s y}. But this is
exactly


⋃
s∈S <s, i.e., Un(S), so AGR(S) = AGRRf(S)+ = Un(S)+ = AGRUn(S).


2. SupposewS is an total order. By Proposition 14, AGRRf(S) is transitive, so AGR(S) =
AGRRf(S)+ = AGRRf(S).


2


Proposition 18 Suppose S ⊆ S, ≺∗= AGRRf(S), ≺= AGR(S), and x 6≺∗ y for x, y ∈ W.
If x ≺ y, then x ./ y.
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Proof: We first show the following lemma:


Lemma 18.1 Suppose S ⊆ S and ≺∗= AGRRf(S). For every integer n ≥ 2, if x, y ∈ W,
x 6≺∗ y, there exist x0, . . . , xn ∈ W such that x = x0 ≺∗ · · · ≺∗ xn = y, and n is the smallest
integer such that this is true, then xn ≺∗ · · · ≺∗ x0.


Proof: Suppose x, y ∈ W, x 6≺∗ y, and there exist x0, . . . , xn ∈ W such that x = x0 ≺∗
· · · ≺∗ xn = y, and n is the smallest integer such that this is true. Consider any triple
xi−1, xi, xi+1, where 1 ≤ i ≤ n − 1. First, xi−1 6≺∗ xi+1, otherwise there would be a chain
of shorter length than n between x and y. Now, since xi−1 ≺∗ xi, there exists s1 ∈ S such
that xi−1 <s1 xi and, for all s′ AS s1 ∈ S, xi−1 ≈s′ xi. Similarly, there exists s2 ∈ S such
that xi <s2 xi+1 and, for all s′ AS s2 ∈ S, xi ≈s′ xi+1. Thus, all sources with higher rank
than max(s1, s2) are agnostic with respect to xi−1 and xi+1.


Suppose s1 AS s2. Then xi ≈s1 xi+1 so, by modularity, xi−1 <s1 xi+1. But then
xi−1 ≺∗ xi+1, a contradiction. Similarly, we derive a contradiction if s2 A s1. Thus, s1 ≡S s2.


Now, since xi−1 6≺∗ xi+1 and all sources with rank higher than s1 and s2 are agnostic
with respect to xi−1 and xi+1, xi−1 6<s1 xi+1. By modularity, xi+1 <s1 xi. Since s1 ≡S s2,
and all the sources with higher rank than s2 are agnostic with respect to xi and xi+1,
xi+1 ≺∗ xi. Similarly, xi <s2 xi−1, so xi ≺∗ xi−1. Since i was chosen arbitrarily between 1
and n− 1, xn ≺∗ · · · ≺∗ x0. And, in fact, all the opinions between these worlds originate
from sources of the same rank. 2


Now suppose x 6≺∗ y. If x ≺ y, then there exist x0, . . . , xn such that x = x0 ≺∗ · · · ≺∗
xn = y and n is the smallest positive integer such that this is true. Then, by Lemma 18.1,
y = xn ≺∗ · · · ≺∗ x0 = x, so y ≺ x and x ./ y. 2


Proposition 19 Let S = {s1, . . . , sn} ⊆ S and AGRf (<s1 , . . . , <sn) = AGR(S). AGRf


satisfies (the modified versions of) restricted range, unrestricted domain, Pareto principle,
IIA, and non-dictatorship.


Proof: Let ≺= AGRf (<s1 , . . . , <sn). Then ≺= AGR(S).
Restricted range: AGRf satisfies restricted range by Proposition 16.
Unrestricted domain: AGRf satisfies unrestricted domain by Definition 7.
Pareto principle: Suppose x <si y for all si. In particular, x <s y where s is a maximal


rank source of S. Since s is maximal, it is vacuously true that for every s′ AS s ∈ S, x 6<s y
and y 6<s′ x. Therefore, x ≺ y, so AGRf satisfies the Pareto principle.


IIA: Let S′ = {s′1, . . . , s′n}. First note that AGRRf satisfies IIA:


Lemma 19.1 Suppose S = {s1, . . . , sn} ⊆ S, S′ = {s′1, . . . , s′n} ⊆ S, si ≡S s′i for all i,
≺∗= AGRRf(S), and ≺′∗= AGRRf(S′). If, for x, y ∈ W, x <si y iff x <s′i y for all i, then
x ≺∗ y iff x ≺′∗ y.


Proof: Suppose si ≡S s′i, and x <si y iff x <s′i y, for all i. Then x ≺∗ y iff x ≺′∗ y since
Definition 13 only relies on the relative ranking of the sources and the relations between
x and y in their belief states to determine the relation between x and y in the aggregated
state. 2
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Thus, IIA can only be disobeyed when the closure step of AGR introduces new opinions.
(Note that IIA is satisfied when there are no sources of equal rank since, by Proposition 17,
the closure step introduces no new opinions under these conditions.)


Now, suppose x, y ∈ W, x <si y iff x <s′i y for all i, x6 ./ y, and x6 ./′ y. We show that
x ≺ y implies x ≺′ y (the other direction is identical). Suppose x ≺ y. Let ≺∗= AGRRf(S)
and ≺′∗= AGRRf(S′). Since x6 ./ y, x ≺∗ y by Proposition 18. But then x ≺′∗ y by
Lemma 19.1, so x ≺′ y.
(END OF IIA SUB-PROOF)


Non-dictatorship: Suppose wS is fully connected and suppose x <si y and y 6<si x.
Let sj be such that y <sj x. Then x ≺ y and y ≺ x, so si is not a dictator. 2


(END OF PROPOSITION 19 PROOF)


Proposition 20 Let A and S be as in Definition 21, ≺Ai, agent Ai’s induced belief state,
and wS, fully connected. If A = ⊕(A), then


(⋃
Ai∈A ≺Ai


)+ is A’s induced belief state.


Proof: We will use the following lemma:


Lemma 20.1 If Π is a set of relations over an arbitrary finite set Ω, then

 ⋃


≤∈Π


≤+






+


=



 ⋃


≤∈Π


≤




+


where ≤+ is the transitive closure of ≤.


Proof: Let ¹=
(⋃


≤∈Π ≤+
)+


, ¹′=
(⋃


≤∈Π ≤
)+


, and a, b ∈ Ω. Suppose a ¹ b. Then
there exist ≤0, . . . ,≤n−1∈ Π and w0, . . . , wn ∈ Ω such that


a = w0 ≤+
0 · · · ≤+


n−1 wn = b


Thus, there exist x00, . . . , x0m0 , . . ., x(n−1)0, . . . , x(n−1)mn−1
in Ω such that


a = w0 = x00 ≤0 · · · ≤0 x0m0 = w1 = · · · = wn−1 = x(n−1)0 ≤n−1 · · · ≤n−1 x(n−1)mn−1
= wn


and wn = b, so a ¹′ b.
Now suppose a ¹′ b. Then there exist ≤0, . . . ,≤n−1∈ Π and w0, . . . , wn ∈ Ω such that


a = w0 ≤0 · · · ≤n−1 wn = b


Obviously, this implies that


a = w0 ≤+
0 · · · ≤+


n−1 wn = b


which implies that
a = w0 ≤+


∗ · · · ≤+
∗ wn = b


where ≤∗=
(⋃


≤∈Π ≤
)
, so a ¹ b. 2


190







Representing and Aggregating Conflicting Beliefs


Now, let ≺ be the belief state induced by ⊕(A). Then ≺= AGR(S). By Proposition 17,
≺= AGRUn(S), so


≺= Un(S)+ =


(⋃


s∈S


<s


)+


=



 ⋃


s∈Sn
i=1 Si


<s






+


=



 ⋃


Ai∈A


⋃


s∈Si


<s






+


By the lemma,


≺=



 ⋃


Ai∈A



 ⋃


s∈Si


<s






+



+


=



 ⋃


Ai∈A
AGRUn(Si)






+


=



 ⋃


Ai∈A
≺Ai






+


2


Proposition 21 Let A be an agent informed by a set of sources S ⊆ S and with pedigreed
belief state (≺, l). Then ≺A


r is the relation
{


(x, y) : ∃s ∈ S. x <s y ∧ r = rank(s) ∧
(
∀s′ ∈ S. s′ A s ⇒ x ≈s′ y


)}
.


Proof: Suppose x ≺A
r y. Then x ≺ y and l((x, y)) = r. By Definitions 13 and 22, there


exists s ∈ S such that x <s y and for every s′ AS s ∈ S, x ≈s′ y. In particular, if x <s′ y
for some s′ ∈ S, then s wS s′, so rank(s) ≥ rank(s′). Thus,


r = l((x, y)) = max({rank(s′) : x <s′ y, s′ ∈ S}) = rank(s).


Now suppose there exists s ∈ S such that x <s y, r = rank(s), and, for every s′ AS s ∈ S,
x ≈s′ y. Then x ≺ y. Moreover, since for every s′ ∈ S, x <s′ y implies s wS s′ which implies
rank(s) ≥ rank(s′),


l((x, y)) = max({rank(s′) : x <s′ y, s′ ∈ S}) = rank(s) = r.


Therefore, x ≺A
r y. 2


Proposition 22 Let A, PA, S, and wS be as in Definition 23. Then ⊕ped(PA) is the
pedigreed belief state of ⊕(A).


Proof: Let ⊕ped(PA) = (≺, l), ≺′= AGRRf(S), and l′ :≺′→ R such that l′((x, y)) =
max({rank(s) : x <s y, s ∈ S}). It suffices to show that ≺=≺′ and l = l′.


Suppose x ≺ y. We show that x ≺′ y, i.e., there exists s ∈ S such that x <s y and, for
every s′ AS s ∈ S, x 6<s′ y and y 6<s′ x, and that l′((x, y)) = l((x, y)). Since x ≺ y, there
exists Ai and r such that x ≺Ai


r y and, for every Aj ∈ A and r′ > r ∈ R, x 6≺Aj


r′ y and
y 6≺Aj


r′ x. Since x ≺Ai
r y, there exists s ∈ Si such that x <s y, rank(s) = r, and, for ev-


ery s1 AS s ∈ Si, x 6<s1 y and y 6<s1 x. Si ⊆ S, so there exists s ∈ S such that x <s y.
Now suppose s′ is a maximal rank source of S with x <s′ y or y <s′ x. Such an s′ ex-
ists since x <s y. Since wS is a total preorder, it suffices to show that s wS s′. Suppose
s′ ∈ Sj . Since Sj ⊆ S, s′ is also a maximal rank source of Sj with x <s′ y or y <s′ x, so
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x ≺Aj


rank(s′) y or y ≺Aj


rank(s′) x. But since x ≺Ai
r y, r = rank(s) ≥ rank(s′), so s wS s′. Fur-


thermore, l′((x, y)) = rank(s) = r = l((x, y)).
Now suppose x ≺′ y. We show that x ≺ y, i.e., there exists Ai and r such that x ≺Ai


r y


and, for every Aj ∈ A and r′ > r ∈ R, x 6≺Aj


r′ y and y 6≺Aj


r′ x, and that l((x, y)) = l′((x, y)).
Since x ≺′ y, there exists s ∈ S such that x <s y and, for every s′ AS s ∈ S, x 6<s′ y and
y 6<s′ x. Suppose s ∈ Si. Since Si ⊆ S, it is also the case that for every s′ AS s ∈ Si,
x 6<s′ y and y 6<s′ x, so x ≺Ai


rank(s) y. Now, let Aj and r′ be such that x ≺Aj


r′ y or y ≺Aj


r′ x. It


suffices to show that rank(s) ≥ r′. By Proposition 21, there exists s′ ∈ Sj such that x <s′ y
or y <s′ x and rank(s′) = r′. But then s wS s′, so rank(s) ≥ rank(s′) = r′. Furthermore,
l((x, y)) = rank(s) = l′((x, y)). 2


Proposition 23 If A, PA, and S are as in Definition 23, wS is a total order, and
⊕ped(PA) = (≺, l), then ≺+=≺.


Proof: Since wS is a total order, AGR(S) = AGRRf(S) by Proposition 17. Thus, ≺=
AGRRf(S) = AGR(S) = AGRRf(S)+ =≺+. 2


Proposition 24 If S ⊆ S, then vt0(S) = Un(S).


Proof: Suppose (x, y) ∈ Un(S). Then S 6= ∅ and x <s y for some s ∈ S. Thus,
countS(x, y) > 0 and countS(x, y)/‖S‖ > 0, so (x, y) ∈ vt0(S). Suppose, instead, (x, y) 6∈
Un(S). Then x 6<s y for all s ∈ S, so countS(x, y) = 0, so (x, y) 6∈ vt0(S). 2


Proposition 25 If S ⊆ S, then vt1(S) =
⋂


s∈S <s.


Proof: Suppose (x, y) ∈ ⋂
s∈S <s. Then S 6= ∅ and x <s y for all s ∈ S. Thus,


countS(x, y) > 0 and countS(x, y)/‖S‖ ≥ 1, so (x, y) ∈ vt1(S). Suppose, instead, (x, y) 6∈⋂
s∈S <s. Then there exists s ∈ S such that x 6<s y, so countS(x, y) < ‖S‖. Thus,


countS(x, y)/‖S‖ < 1, so (x, y) 6∈ vt1(S). 2


Proposition 26 Suppose S ⊆ S. vt1(S) is transitive but not necessarily modular.


Proof: Let W = {x, y, z} and S = {s1, s2} where <s1= {(x, y), (y, z), (x, z)} and <s2=
{(x, y), (z, y)}. Then vt1(S) = {(x, y)} which is not modular. 2


Proposition 27 If ‖W‖ ≥ 3, then for every p ∈ (0, 1), there exists S such that vtp(S) is
neither modular nor transitive.


Proof: Note that if ‖W‖ = 2, every relation over W is either transitive or modular
(but not necessarily both), and if ‖W‖ = 1 every relation over W is both modular and
transitive. Let W be a set of worlds such that ‖W‖ ≥ 3 and let x, y, and z denote three
distinct members of W. We will define S parameterized by p such that vtp(S) is the relation
{(x, y), (y, z)} which is neither transitive or modular.


Let S = {s1, . . . , sn} satisfying the following conditions:


1. n = d1/p + 1e if p ≤ 1/3, d2/(1− p) + 1e otherwise.13


13. dxe denotes the ceiling of x, i.e., the smallest integer greater than or equal to x.
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2. <s1= {(w, y)|w ∈ W, w 6= y}.
3. <s2= {(y, w)|w ∈ W, w 6= y}.
4. dpn−1e of the remaining sources have belief state {(x,w)|w ∈ W, w 6= x}∪{(w, z)|w ∈
W, w 6= z}.


5. The remaining sources have fully disconnected belief states.


It is clear that <si∈ B for all i. We make two observations: First, observe that pn > 1. If
p ≤ 1/3,


pn = pd1/p + 1e ≥ 1 + p > 1.


If p > 1/3,
pn = pd2/(1− p) + 1e ≥ 2p/(1− p) + p


which is a monotonically increasing function, so


pn > 2(1/3)/(1− 1/3) + 1/3 = 4/3 > 1.


Second, note that the set described in the fifth condition is non-empty since the number
of sources described in conditions 2-4 is 2 + dpn − 1e < 1 + pn which is less than n if
n > 1/(1− p). This is true if p ≤ 1/3 since for these values


n = d1/p + 1e > 1/p > 1/(1− p).


And it is also true if p > 1/3 since


n = d2/(1− p) + 1e > 2/(1− p) > 1/(1− p).


(x, y) appears only in <s1 and each of the belief states described in condition 3, so


countS(x, y) = 1 + dpn− 1e ≥ 1 + pn− 1 = pn


so (x, y) ∈ vtp(S). Similarly, (y, z) appears only in <s2 and each of the belief states described
in condition 3, so


countS(y, z) = 1 + dpn− 1e ≥ 1 + pn− 1 = pn


so (y, z) ∈ vtp(S). It remains to show that vtp(S) has no other members. We show
that the count of each pair is less than pn. countS(w, w) = 0 < pn for all w ∈ W.
countS(z, w) = countS(w, x) = 0 for all w 6= y ∈ W. For all w ∈ W − {x, y}, (w, y)
only appears in <s1 , so countS(w, y) = 1 < pn from our first observation above. For all
w ∈ W − {y, z}, (y, w) only appears in <s2 , so countS(y, w) = 1 < pn. Finally, for all
w ∈ W − {x, y, z}, (x, z), (x, w), and (w, z) only appear in the belief states described in
condition 3, so


countS(x, z) = countS(x, w) = countS(w, z) = dpn− 1e < pn.


2


Proposition 28 Suppose ¹ is a transitive relation over W and x, y ∈ W.
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1. If x ≺ y, then lev¹(x) < lev¹(y).


2. If x ./ y, then lev¹(x) = lev¹(y).


3. If lev¹(x) < lev¹(y), then ∃z. lev¹(z) = lev¹(x) ∧ z ≺ y.


4. If lev¹(x) = lev¹(y), then x ¹ y iff y ¹ x.


Proof:


1. Suppose x ≺ y. Then


lev¹(y) = 1 + max
y′∈W


({
lev¹(y′) : y′ ≺ y


})


≥ 1 + lev¹(x)
> lev¹(x).


2. Suppose x ./ y. If x ∈ ch(W,¹) then y ∈ ch(W,¹), so lev¹(x) = lev¹(y) = 0. Sup-
pose x 6∈ ch(W,¹). Then y 6∈ ch(W,¹) and lev¹(x) = 1 + max


y′∈W
({lev¹(y′) : y′ ≺ x}).


If y′ is one such element, then y′ ≺ y by transitivity, so


lev¹(y) = 1 + max
y′′∈W


({
lev¹(y′′) : y′′ ≺ y


}) ≥ lev¹(x).


By an identical argument, lev¹(x) ≥ lev¹(y). Thus, lev¹(x) = lev¹(y).


3. Suppose lev¹(x) < lev¹(y). It is sufficient to prove the following: For every non-
negative integer l < lev¹(y), there exists z ≺ y such that lev¹(z) = l. We prove by
induction on l. If l = lev¹(y)−1, there must exist z ≺ y and lev¹(z) = l by definition.
Assume there exists z ≺ y for 0 < l < lev¹(y)− 1 such that lev¹(z) = l. Since l > 0,
there exists z′ ≺ z such that lev¹(z′) = l − 1. By transitivity, z′ ≺ y.


4. Suppose lev¹(x) = lev¹(y). If x ¹ y then x 6≺ y from the first part of this proposition,
otherwise lev¹(x) < lev¹(x), so y ¹ x. Similarly, if y ¹ x then y 6≺ x, so x ¹ y.


2


Proposition 29 If ¹ is a transitive relation over W, then MC(¹) ∈ B.


Proof: Let ¹∗= MC(¹) and x, y, z ∈ W. Suppose x ¹∗ y. Then lev¹(x) < lev¹(y)
or lev¹(x) = lev¹(y) and ∃x′, y′ ∈ W. (lev¹(x′) = lev¹(y′) = lev¹(x) ∧ x′ ./ y′). If
lev¹(x) < lev¹(z) or lev¹(z) < lev¹(y), then x ¹∗ z or z ¹∗ y. Otherwise, lev¹(x) =
lev¹(y) = lev¹(z) and ∃x′, y′ ∈ W. (lev¹(x′) = lev¹(y′) = lev¹(x) ∧ x′ ./ y′), so x ¹∗ z.
Thus, ¹∗ is modular.


Now also suppose y ¹∗ z. Then lev¹(y) < lev¹(z) or lev¹(y) = lev¹(z) and ∃y′, z′ ∈
W. (lev¹(y′) = lev¹(z′) = lev¹(y) ∧ y′ ./ z′). If lev¹(x) < lev¹(y) or lev¹(y) < lev¹(z),
then lev¹(x) < lev¹(z) by transitivity of <, so x ¹∗ z. Otherwise, lev¹(x) = lev¹(y) =
lev¹(z) and ∃x′, y′ ∈ W. (lev¹(x′) = lev¹(y′) = lev¹(x) ∧ x′ ./ y′), so x ¹∗ z. Thus, ¹∗ is
transitive. 2


Proposition 30 Suppose ¹ is a transitive relation over W and ¹∗= MC(¹).
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1. ¹⊆¹∗ and ≺⊆≺∗.
2. If ¹ is modular, then ¹∗=¹.


3. lev¹∗(x) = lev¹(x) for all x ∈ W.


4. If ¹′∈ B such that ¹⊆¹′ and lev¹′(x) = lev¹(x) for all x ∈ W, then ¹∗⊆¹′.


Proof: Let x, y ∈ W.


1. Suppose x ¹ y. Then lev¹(x) ≤ lev¹(y). If lev¹(x) < lev¹(y), x ¹∗ y. Suppose
lev¹(x) = lev¹(y). Then x ./ y, so there exist x′, y′ such that lev¹(x′) = lev¹(y′) =
lev¹(x) and x′ ./ y′, i.e., x′ = x and y′ = y, so x ¹∗ y.


Now suppose x ≺ y. Then lev¹(x) < lev¹(y), so x ¹∗ y and y 6¹∗ x, so x ≺∗ y.


2. From the first part of this proposition, ¹⊆¹∗, so it suffices to show ¹∗⊆¹. Suppose
x ¹∗ y.


Case 1: lev¹(x) < lev¹(y). Then, by Proposition 28, there exists z such that
lev¹(z) = lev¹(x) and z ≺ y. By modularity, z ¹ x or x ¹ y. In the latter case,
we’re done. In the former case, z ./ x otherwise lev¹(z) 6= lev¹(x). Thus, x ¹ y by
transitivity.


Case 2: lev¹(x) = lev¹(y). Then there exist x′, y′ such that lev¹(x′) = lev¹(y′) =
lev¹(x) and x′ ./ y′. By modularity, x′ ¹ x or x ¹ y′. In the former case x′ ./ x by
Proposition 28, in the latter x′ ./ x by Proposition 28 and transitivity. By modularity,
x′ ¹ y or y ¹ x. Again applying Proposition 28 and transitivity, we have x ./ y, so
x ¹ y.


3. We prove by induction on the level of x in ¹.


Base case: lev¹(x) = 0. Then x ∈ ch(W,¹). Suppose y ¹∗ x. Then lev¹(x) =
lev¹(y) and there exist x′ and y′ such that lev¹(x′) = lev¹(y′) = lev¹(x) = lev¹(y)
and x′ ./ y′, so x ¹∗ y. Thus, x ∈ ch(W,¹∗), so lev¹∗(x) = 0 = lev¹(x).


Inductive case: Assume that lev¹∗(x′) = lev¹(x′) for all x′ such that lev¹(x′) <
lev¹(x); we show that lev¹∗(x) = lev¹(x). Let z = arg max


y′∈W
({lev¹∗(y′) : y′ ≺∗ x});


then lev¹∗(x) = 1 + lev¹∗(z). Also, let y = arg max
y′∈W


({lev¹(y′) : y′ ≺ x}); then


lev¹(x) = 1 + lev¹(y). By the first part of this proposition, ≺⊆≺∗, so y ≺∗ x.
Thus, lev¹∗(z) ≥ lev¹∗(y). Furthermore, lev¹∗(y) = lev¹(y) by the inductive hy-
pothesis, so lev¹∗(z) ≥ lev¹(y). Now lev¹(z) < lev¹(x) by Definition 26 (other-
wise x ¹∗ z, a contradiction). By the inductive hypothesis, lev¹∗(z) = lev¹(z), so
lev¹∗(z) < lev¹(x) = 1 + lev¹(y). Since levels are integral, lev¹∗(z) ≤ lev¹(y), so
lev¹∗(z) = lev¹(y). Thus, lev¹∗(x) = 1 + lev¹∗(z) = 1 + lev¹(y) = lev¹(x).


4. Suppose ¹′∈ B, ¹⊆¹′, and lev¹′(z) = lev¹(z) for all z ∈ W. It is clear that for
any ¹′′∈ B and x ∈ W, x is in the partition corresponding to its level, i.e., Wlev¹′′ (x).
Since both ¹∗ and ¹′ are both in B and both preserve the levels of all worlds in ¹, the
must have identical partitions. Suppose x, y ∈ W and Wi and Wj are the partitions
(for both ¹∗ and ¹′) such that x ∈ Wi and y ∈ Wj .
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Suppose x ¹∗ y. If Wi 6= Wj then i < j by Proposition 7, so x ¹′ y, again by
Proposition 7. If, instead Wi = Wj , then lev¹∗(x) = lev¹∗(y). By Definition 26,
there exist x′, y′ ∈ W such that lev¹∗(x′) = lev¹∗(y′) = lev¹∗(x) and x′ ./ y′. Thus,
x′, y′ ∈ Wi and, since ¹⊆¹′, x′ ./′ y′. By Proposition 7, Wi is either fully connected
or fully disconnected in ¹′, so Wi must be fully connected in ¹′. In particular, x ¹′ y.


2


Proposition 31 If ¹ is a relation over W, then MT(¹) ∈ B.


Proof: Since ¹+ is transitive, MT(¹) = MC (¹+) ∈ B by Proposition 29. 2


Proposition 32 Suppose ¹ is a relation over W and ¹∗= MT(¹).


1. ¹⊆¹∗.
2. If ¹ is transitive, then ¹∗= MC(¹).


3. If ¹ is modular, then ¹∗=¹+.


4. If ¹ is modular and transitive, then ¹∗=¹.


5. If ¹ has no conflicts, then neither does ¹∗.
Proof: Let x, y ∈ W.


1. ¹⊆¹+ and, by the first property of Proposition 30, ¹+⊆ MC(¹+) =¹∗, so ¹⊆¹∗.
2. Since ¹ is transitive, ¹+=¹. Thus, ¹∗= MC(¹+) = MC(¹).


3. Since ¹ is modular, ¹+ is modular by Proposition 1 so, by Proposition 30,
MC(¹+) =¹+. Thus, ¹∗=¹+.


4. Since ¹ is transitive, ¹∗= MC(¹) and since ¹ is modular, MC(¹) =¹ by Proposi-
tion 30, so ¹∗=¹.


5. We first prove the following lemma:


Lemma 32.1 x and y are in conflict wrt ¹+ iff they are in conflict wrt ¹.


Proof: The “if” direction is obvious since the transitive closure is a monotonically
additive operation. For the “only if” direction, suppose x and y are in conflict wrt
¹+. Then there exist w0, . . . , wn, z0, . . . , zm ∈ W such that


x = w0 ¹+ · · · ¹+ wn = y = z0 ¹+ · · · ¹+ zm = x.


But then, for each 0 ≤ i ≤ n− 1, there exist wi0, . . . , wipi ∈ W such that


wi = wi0 ¹ · · · ¹ wipi = wi+1.


Similarly, for each 0 ≤ j ≤ m− 1, there exist zj0, . . . , zjqj ∈ W such that


zj = zj0 ¹ · · · ¹ zjqj = zj+1.


Thus,
x = w0 ¹ · · · ¹ wn = y = z0 ¹ · · · ¹ zm = x,


so x and y are in conflict wrt ¹. 2
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Now, suppose x and y are in conflict wrt ¹∗. Then x ./∗ y since ¹∗∈ B by Proposi-
tion 31. By Propositions 28 and 30,


lev¹+(x) = lev¹∗(x) = lev¹∗(y) = lev¹+(y)


So, since x ¹∗ y, there exist x′, y′ ∈ W such that lev¹+(x′) = lev¹+(y′) = lev¹+(x)
and x′ ./+ y′ by Definition 26. Thus, ¹+ has a conflict. By the lemma above, ¹ must
also have a conflict.


2


Proposition 33 If S ⊆ S and p ∈ [0, 1], then AGREqp(S) ∈ B.


Proof: Follows immediately from the definition of AGREqp and Proposition 31. 2


Proposition 34 If S ⊆ S and p ∈ [0, 1], then AGRp(S) ∈ B.


Proof: Again, this follows immediately from Proposition 31. 2


Proposition 35 Suppose S ⊆ S and p ∈ [0, 1].


1. If wS is fully connected, then AGRp(S) = AGREqp(S).


2. If wS is a total order, then AGRp(S) = AGRRfp(S) = AGRRf(S) = AGR(S).


3. AGR0(S) = AGR(S).


Proof: Assume x, y ∈ W.


1. It suffices to show that AGRRfp(S) = vtp(S) when wS is fully connected. Suppose
(x, y) ∈ AGRRfp(S). Then, by the definition of AGRRfp, there exists s ∈ S such that
(x, y) ∈ vtp({s′ ∈ S : s′ ≡S s}). Since wS is fully connected, {s′ ∈ S : s′ ≡S s} = S,
so (x, y) ∈ vtp(S).


Suppose, instead, (x, y) ∈ vtp(S). By the definition of vtp, countS(x, y) > 0 so there
exists s ∈ S such that x <s y. Pick one such s. Again, {s′ ∈ S : s′ ≡S s} = S since
wS is fully connected, so (x, y) ∈ vtp({s′ ∈ S : s′ ≡S s}). Finally, ∀s′ ∈ S. s′ AS s ⇒
x ≈s′ y holds vacuously, so (x, y) ∈ AGRRfp(S).


2. Suppose wS is a total order. We have already shown in Proposition 17 that
AGRRf(S) = AGR(S).


Next we show that AGRRfp(S) = AGRRf(S). AGRRfp(S) is the set (x, y) such
that there exists s ∈ S such that x <s y, (x, y) ∈ vtp({s′ ∈ S : s′ ≡S s}), and,
for all s′ AS s ∈ S, x ≈s′ y. w is a total order, {s′ ∈ S : s′ ≡S s} = {s}. Since
x <s y, so count{s}(x, y) = 1 > 0 and count{s}(x, y)/‖{s}‖ = 1 ≥ p. Consequently,
(x, y) ∈ vtp({s′ ∈ S : s′ ≡S s}), proving that this requirement is redundant when
wS is a total order. Thus, AGRRfp(S) is the set (x, y) such that x <s y and, for all
s′ AS s ∈ S, x ≈s′ y, i.e., AGRRfp(S) = AGRRf(S).


Finally, AGRp(S) = MT(AGRRfp(S)) = MT(AGRRf(S)). By Proposiion 14,
AGRRf(S) is modular and transitive, so AGRp(S) = AGRRf(S) by Proposition 32.
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3. It suffices to show that AGRRf0(S) = AGRRf(S), since then


AGR0(S) = MT(AGRRf0(S)) = MT(AGRRf(S)) = AGRRf(S)+


by Propositions 13 and 32, so AGR0(S) = AGR(S).


Suppose (x, y) ∈ AGRRf0(S). Then x <s y and, for all s′ AS s ∈ S, x ≈s′ y,
so (x, y) ∈ AGRRf(S). Suppose, instead, (x, y) ∈ AGRRf(S). Then x <s y and,
for all s′ AS s ∈ S, x ≈s′ y. Let S′ = {s′ ∈ S : s′ ≡S s}. Since x <s y and
s ∈ S′, countS′(x, y) > 0 and countS′(x, y)/‖S′‖ ≥ 0, so (x, y) ∈ vt0(S′). Therefore,
(x, y) ∈ AGRRf0(S).


2


Corollary 35.1 Let S = {s1, . . . , sn} ⊆ S and AGRf (<s1 , . . . , <sn) = AGR0(S). AGRf


satisfies (the modified versions of) restricted range, unrestricted domain, Pareto principle,
IIA, and non-dictatorship.


Proof: Follows immediately from Propositions 35 and 19. 2


Proposition 36 Let A be an agent informed by a set of sources S ⊆ S, with support pedi-
greed belief state (l, sup, rtab), and using aggregation function AGRp for p ∈ [0, 1]. A’s belief
state is the relation


MT({(x, y) : ‖sup(x, y)‖ > 0 and ‖sup(x, y)‖/‖rtab(l(x, y))‖ ≥ p})
Proof: Let


R = {(x, y) : ‖sup(x, y)‖ > 0 and ‖sup(x, y)‖/‖rtab(l(x, y))‖ ≥ p}
It suffices to show AGRRfp(S) = R. Suppose (x, y) ∈ AGRRfp(S). Then there exists s ∈ S
such that (a) x <s y, (b) (x, y) ∈ vtp({s′ ∈ S : s′ ≡S s}), and (c) for all s′ AS s ∈ S,
x ≈s′ y. By the (a) and (c), rank(s) = max({rank(s) : x 6≈s y, s ∈ S} ∪ {♣}), so
l(x, y) = rank(s). Thus, {s′ ∈ S : s′ ≡S s} = {s′ ∈ S : rank(s′) = l(x, y)} = rtab(l(x, y)),
so (x, y) ∈ vtp(rtab(l(x, y))) by (b). By the definition of vtp, countrtab(l(x,y))(x, y) > 0
and countrtab(l(x,y))(x, y)/‖rtab(l(x, y))‖ ≥ p. But sup(x, y) = {s′ ∈ S : rank(s′) =
l(x, y), x <s′ y} = {s′ ∈ rtab(l(x, y)) : x <s′ y}, so ‖sup(x, y)‖ = countrtab(l(x,y))(x, y).
Thus, ‖sup(x, y)‖ > 0 and ‖sup(x, y)‖/‖rtab(l(x, y))‖ ≥ p, so (x, y) ∈ R.


Now suppose (x, y) ∈ R. Then (a) ‖sup(x, y)‖ > 0 and (b) ‖sup(x, y)‖/‖rtab(l(x, y))‖ ≥
p. Suppose s ∈ sup(x, y); by (a), at least one such s exists. By the definition of sup, x <s y,
satisfying the first condition of AGRRfp, and rank(s) = l(x, y). By the definition of l(x, y),
rank(s) = max({rank(s) : x 6≈s y, s ∈ S} ∪ {♣}), so for all s′ ∈ S such that rank(s′) >
rank(s) (i.e., s′ AS s), x ≈s′ y. It only remains to show that (x, y) ∈ vtp({s′ ∈ S : s′ ≡S s}).
Since rank(s) = l(x, y), {s′ ∈ S : s′ ≡S s} = rtab(l(x, y)) as we showed above, so


vtp({s′ ∈ S : s′ ≡S s})
= vtp(rtab(l(x, y)))
= {(x′, y′) : countrtab(l(x,y))(x


′, y′) > 0, countrtab(l(x,y))(x
′, y′)/‖rtab(l(x, y))‖ ≥ p}.


As we showed above, ‖sup(x, y)‖ = countrtab(l(x,y))(x, y). Making this substitution into (a)
and (b), we see that (x, y) ∈ vtp({s′ ∈ S : s′ ≡S s}), so (x, y) ∈ AGRRfp(S). 2
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Proposition 37 Let A, PA, S, and wS be as in Definition 32. Then ⊕sup(PA) is the
support pedigreed belief state of ⊕(A).


Proof: Let ⊕sup(PA) = (l, sup, rtab), l′ : W ×W → R∪ {♣} such that


l′((x, y)) = max({l′′(x, y) : (l′′, sup′′, rtab′′) ∈ PA}),


sup′ : W ×W → 2S such that


sup′(x, y) =
⋃


(l′′,sup′′,rtab′′)∈PA, l′′(x,y)=l′(x,y)


sup′′(x, y),


and rtab′ : ranks(S) → R such that


rtab′(r) =
⋃


(l′′,sup′′,rtab′′)∈PA, r∈range(rtab′′)


rtab′′(r).


It suffices to show that l = l′, sup = sup′, and rtab = rtab′.
Suppose x, y ∈ W and agent Ai’s support pedigreed belief state is (li, supi, rtabi).


l(x, y) = max({rank(s) : x <s y, s ∈ S} ∪ {♣})


= max



 ⋃


Si informs Ai, Ai∈A
({rank(s) : x <s y, s ∈ Si} ∪ {♣})






= max



 ⋃


Si informs Ai, Ai∈A
{max ({rank(s) : x <s y, s ∈ Si} ∪ {♣})}






= max({l′′(x, y) : (l′′, sup′′, rtab′′) ∈ PA})
= l′(x, y).


Also,


sup(x, y) = {s ∈ S : rank(s) = l(x, y), x <s y}
=


⋃


Si informs Ai, Ai∈A
{s ∈ Si : rank(s) = l(x, y), x <s y}


=
⋃


Si informs Ai, Ai∈A
{s ∈ Si : rank(s) = l′(x, y), x <s y}


=
⋃


Si informs Ai, Ai∈A, li(x,y)=l′(x,y)


{s ∈ Si : rank(s) = li(x, y), x <s y}


=
⋃


(l′′,sup′′,rtab′′)∈PA, l′′(x,y)=l′(x,y)


sup′′(x, y)


= sup′(x, y).
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Finally,


rtab(r) = {s ∈ S : rank(s) = r}
=


⋃


Si informs Ai, Ai∈A
{s ∈ Si : rank(s) = r}


=
⋃


Si informs Ai, Ai∈A, r∈range(rtabi)


rtabi(r)


=
⋃


(l′′,sup′′,rtab′′)∈PA, r∈range(rtab′′)


rtab′′(r)


= rtab′(x, y).


2


Appendix B. Notation key


Ω: arbitrary finite set
a, b, c, . . .: specific elements of a set
x, y, z, . . .: arbitrary elements of a set
A, B,C, . . .: specific subsets of a set
X, Y, Z, . . .: arbitrary subsets of a set
Π: arbitrary set of relations
≤: arbitrary relation
≤+: transitive closure of ≤
ch(X,≤): choice set of X wrt ≤
‖X‖: cardinality of set X


W: finite set of possible worlds
w, W : element, subset of W, respectively


B: set of generalized belief states (modular, transitive relations)
≺: element of B, strict likelihood
¹: weak likelihood
∼: equal likelihood, agnosticism
./: conflict
Bel: belief of a conditional statement
Agn: agnosticism over a conditional statement
Con: conflict over a conditional statement


T : set of total preorders
T<: strict versions of total preorders
Q: set of total, quasi-transitive relations
Q<: strict versions of total, quasi-transitive relations


S: set of sources
s, S: element, subset of S, respectively
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<s: belief state of source s
≈s: source agnosticism
./s: source conflict
R: set of ranks
r: element of R
rank(s): rank of source s
ranks(S): set of ranks of sources in S
w, wS : credibility ordering over S, S ⊆ S, respectively


Un: union of a set of belief states
AGRUn: aggregation via union
AGRRf: aggregation via refinement
AGR: general aggregation


A: set of agents
A: element of A
≺A: A’s induced belief state
(≺, l): pedigreed belief state
≺A


r : restriction of A’s pedigreed belief state to rank r
⊕: fusion
⊕ped: pedigreed fusion


vtp: voting function for p
lev: level of a world in a transitive relation
MC: modular closure
MT: modular, transitive closure
AGREqp: aggregation with voting without refinement
AGRRfp: aggregation with voting via refinement
AGRp: general aggregation with voting
(l, sup, rtab): support pedigreed belief state
⊕sup: support pedigreed fusion


References


Alchourrón, C. E., Gärdenfors, P., & Makinson, D. (1985). On the logic of theory change:
Partial meet contraction and revision functions. Journal of Symbolic Logic, 50, 510–
530.


Andréka, H., Ryan, M., & Schobbens, P.-Y. (2002). Operators and laws for combining
preference relations. Journal of Logic and Computation, 12 (1), 13–53.


Arrow, K. J. (1963). Social Choice and Individual Values (2nd edition). Wiley, New York.


Baral, C., Kraus, S., Minker, J., & Subrahmanian, V. S. (1992). Combining knowledge
bases consisting of first-order theories. Computational Intelligence, 8 (1), 45–71.


Benferhat, S., Dubois, D., Kaci, S., & Prade, H. (2002). Possibilistic merging and distance-
based fusion of propositional information. Annals of Mathematics and Artificial In-


201







Maynard-Zhang & Lehmann


telligence, 34 (1–3), 217–252.


Black, D. (1958). The Theory of Committees and Elections. Cambridge University Press,
Cambridge.


Borgida, A., & Imielinski, T. (1984). Decision making in committees: A framework for
dealing with inconsistency and non-monotonicity. In Proceedings of the Workshop on
Nonmonotonic Reasoning, pp. 21–32.


Boutilier, C. (1996). Iterated revision and minimal change of conditional beliefs. Journal
of Philosophical Logic, 25, 263–305.


Brams, S. J., & Fishburn, P. C. (2002). Voting procedures. In Arrow, K. J., Sen, A. K., &
Suzumura, K. (Eds.), Handbook of Social Choice and Welfare, Vol. 1 of Handbooks in
Economics, chap. 4, pp. 173–236. Elsevier Science.


Cantwell, J. (1998). Resolving conflicting information. Journal of Logic, Language, and
Information, 7, 191–220.


Center for Voting and Democracy (2002). Instant runoff voting.
http://www.fairvote.org/irv/.


Darwiche, A., & Pearl, J. (1997). On the logic of iterated belief revision. Artificial Intelli-
gence, 89 (1–2), 1–29.


Fishburn, P. C. (1974). Lexicographic orders, utilities and decision rules: A survey. Man-
agement Science, 20 (11), 1442–1471.


Gärdenfors, P. (1988). Knowledge in Flux: Modeling the Dynamics of Epistemic States.
MIT Press.


Gärdenfors, P., & Makinson, D. (1994). Nonmonotonic inference based on expectations.
Artificial Intelligence, 65 (1), 197–245.


Gärdenfors, P., & Rott, H. (1995). Belief revision. In Gabbay, D. M., Hogger, C. J., &
Robinson, J. A. (Eds.), Epistemic and Temporal Reasoning, Vol. 4 of Handbook of
Logic in Artificial Intelligence and Logic Programming, pp. 35–132. Oxford University
Press, Oxford.


Grosof, B. (1991). Generalizing prioritization. In Proceedings of the Second International
Conference on Principles of Knowledge Representation and Reasoning (KR ’91), pp.
289–300.


Grove, A. (1988). Two modellings for theory change. Journal of Philosophical Logic, 17,
157–170.


Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk.
Econometrica, 47 (2), 263–291.


Katsuno, H., & Mendelzon, A. O. (1991). Propositional knowledge base revision and mini-
mal change. Artificial Intelligence, 52 (3), 263–294.
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