

Logic-Based Abduction

New Polynomial Classes for Logic-Based Abduction
(Technical Report)

Bruno Zanuttini zanutti@info.unicaen.fr

GREYC, Université de Caen, Boulevard du Maréchal Juin
14032 Caen Cédex, France

Abstract

We address the problem of propositional logic-based abduction, i.e., the problem of
searching for a best explanation for a given propositional observation according to a given
propositional knowledge base. We give a general algorithm, based on the notion of pro-
jection; then we study restrictions over the representations of the knowledge base and of
the query, and find new polynomial classes of abduction problems. We also show that our
algorithm unifies several previous results.1

1. Introduction

Abduction consists in searching for a plausible explanation for a given observation. For
instance, if p |= q then p is a plausible explanation for the observation q. More practically,
abduction arises for instance when one wants to explain a system’s failure, knowing its usual
behaviour. It can also formalize the search for a set of actions to realize for achieving a given
goal, or the search for a minimal number of points to check in order to make sure of another
point, etc. To summarize, abduction consists in searching for a set of facts (the explanation)
that, conjointly with a given knowledge base, imply a given query (the observation to be
explained, or the goal to be achieved etc.). This process is also constrained by a set of
hypotheses among which the explanations have to be chosen, and by a preference criterion
among them, with respect to which we search for a best explanation.

The problem of abduction proved its practical interest in many domains. For instance, it
has been used to formalize text interpretation (Hobbs et al., 1993), system (Coste-Marquis
& Marquis, 1998; Stumptner & Wotawa, 2001) or medical diagnosis (Bylander et al., 1989,
Section 6). It is also closely related to configuration problems (Amilhastre et al., 2002),
to the ATMS/CMS (Reiter & de Kleer, 1987), to default reasoning (Selman & Levesque,
1990) and even to induction (Goebel, 1997).

In this paper, we are interested in the complexity of propositional logic-based abduc-
tion, which means we assume both the knowledge base and the query are represented by
propositional formulas. Even in this framework, many different formalizations have been
proposed in the literature (Eiter & Gottlob, 1995), mainly differing about the definition
of an hypothesis and that of a best explanation. We assume here that the hypotheses are
the conjunctions of literals formed upon a distinguished subset of the variables involved,
and that a best explanation is one no proper subconjunction of which is an explanation
(subset-minimality criterion).

1. This paper is an extended version of a research note published in Journal of Artificial Intelligence
Research (vol. 19, pages 1–10, 2003), and is meant to provide detailed proofs and examples.

1

Bruno Zanuttini

Our purpose is to exhibit new polynomial classes of abduction problems. We give a
general algorithm for finding a best explanation in the framework defined above, indepen-
dently from the syntactic form of the formulas representing the knowledge base and the
query. Then we explore the syntactic forms that allow a polynomial running time for this
algorithm. We find new polynomial classes of abduction problems, among which the one
restricting the knowledge base to be represented by a Horn DNF and the query by a positive
CNF, and the one restricting the knowledge base to be represented by an affine formula and
the query by a disjunction of linear equations; finally, we show that our algorithm unifies
several previous such results.

The paper is organized as follows. We first recall the useful notions of propositional logic,
formalize the problems (Section 2) and briefly survey previous work about the complexity
of abduction (Section 3). Then we give our algorithm (Section 4) and explore polynomial
classes for it (Section 5). Finally, we discuss our results and perspectives (Section 6).

2. Preliminaries

We present in this section the notions that are useful for understanding the rest of the
paper. We end with a motivating example that will be reused later on.

2.1 Notions of Propositional Logic

We assume a countable number of propositional variables x1, x2 . . . and the standard con-
nectives ¬,∧,∨,⊕,→,↔. A literal is either a variable xi (positive literal) or its negation
¬xi (negative literal). A propositional formula is a well-formed formula built on a finite
number of variables and on the connectives; V ar(φ) denotes the set of variables that occur
in the propositional formula φ. A clause is a finite disjunction of literals, and a proposi-
tional formula is in Conjunctive Normal Form (CNF) if it is written as a finite conjunction
of clauses. For instance, φ = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3) is in CNF. The dual notions
of clause and CNF are the notions of term (finite conjunction of literals) and Disjunctive
Normal Form (DNF) (finite disjunction of terms).

An assignment to a set of variables V is a set of literals m that contains exactly one
literal per variable in V , and a model of a propositional formula φ is an assignment m to
V ar(φ) that satisfies φ in the usual way, where m assigns 1 to xi iff xi ∈ m; we also write
m as a tuple, e.g., 0010 for {¬x1,¬x2, x3,¬x4}. We denote by m[i] the value assigned to xi
by m, and by M(φ) the set of all the models of a propositional formula φ; φ is said to be
satisfiable if M(φ) 6= ∅. A propositional formula φ is said to imply a propositional formula
φ′ (written φ |= φ′) if M(φ) ⊆ M(φ′). More generally, we identify sets of models with
Boolean functions, and thus use the notationsM (negation),M∨M′ (disjunction) and so
on.

2.2 Projection

The notion of projection is very important for the rest of the paper. For m an assignment
to a set of variables V and A ⊆ V , write SelectA(m) for the set of literals in m that are
formed upon A, e.g., Select{x1,x2}(0110) = 01. Projecting a set of assignments onto a subset
A of the variables intuitively consists in replacing each assignment m with SelectA(m); for

2

Logic-Based Abduction

sake of simplicity however, we define the projection of a set of models M to be built upon
the same set of variables as M. This yields the following definition.

Definition 1 (projection) Let V = {x1, . . . , xn} be a set of variables, M a set of as-
signments to V and A ⊆ V . The projection of M onto A is the set of assignments to V
M|A = {m | ∃m′ ∈M, SelectA(m′) = SelectA(m)}.

For instance, let M = {0001, 0010, 0111, 1100, 1101} be a set of assignments to V =
{x1, x2, x3, x4}, and let A = {x1, x2}. Then it is easily seen that

M|A = {0000, 0001, 0010, 0011} ∪ {0100, 0101, 0110, 0111} ∪ {1100, 1101, 1110, 1111}

since {SelectA(m) |m ∈M} = {00, 01, 11}.
Remark that the projection of the set of models of a formula φ onto a set of variables

A is the set of models of the most general consequence of φ that is independent of all the
variables not in A. Note also that the projection ofM(φ) onto A is the set of models of the
formula obtained from φ by forgetting its variables not occurring in A. For more details
about variable forgetting and independence we refer the reader to the work by Lang et
al. (Lang et al., 2002).

It is useful to note some straightforward properties of projection. Let M,M′ denote
two sets of assignments to the set of variables V , and let A ⊆ V . First, projection is
distributive over disjunction, i.e., (M∨M′)|A = M|A ∨M′|A. Now it is distributive over
conjunction whenM does not depend on the variablesM′ depends on, i.e., when there exist
A,A′ ⊆ V , A ∩ A′ = ∅ with M|A = M (M does not depend on V \A) and M′|A′ = M′,
(M∧M′)|A =M|A∧M′|A holds; note that this is not true in the general case. Note finally
that in general (M)|A is not the same as M|A.

2.3 Our Model of Abduction

As said in the introduction, we assume in abduction problems that the knowledge base Σ
and the query α are propositional formulas, that the hypotheses are the conjunctions of
literals formed upon a distinguished subset A of V ar(Σ) (the set of abducibles), and that
the best explanations are those no proper subconjunction of which is still an explanation.
We formalize these notions below.

Definition 2 (abduction problem) A triple Π = (Σ, α, A) is called an abduction prob-
lem if Σ and α are satisfiable propositional formulas and A is a set of variables with
V ar(α), A ⊆ V ar(Σ); Σ is called the knowledge base of Π, α its query and A its set
of abducibles.

Remark that our definition allows an abducible (or its negation) to occur in the query; the
running example below will justify this possibility, and for a longer discussion we refer the
reader to Eiter and Gottlob’s paper (Eiter & Gottlob, 1995).

Definition 3 (hypothesis,explanation) Let Π = (Σ, α, A) be an abduction problem. An
hypothesis for Π is a set of literals formed upon A (seen as their conjunction), and an
hypothesis E for Π is called an explanation for Π if (i) Σ∧E is satisfiable and (ii) Σ∧E |=
α. If no proper subconjunction of E satifies both points (i) and (ii), E is called a best
explanation for Π.

3

Bruno Zanuttini

Note that this framework does not allow one to specify that a variable must occur unnegated
(resp. negated) in an explanation. We do not think this is a prohibiting restriction, since
abducibles are intuitively meant to represent the variables whose values can be modified,
imposed, observed or repaired, and then no matter their sign in an explanation. We however
note that this is a restriction, and that a more general framework could be defined where
the abducibles are literals and the hypotheses, conjunctions of abducibles, as is done by
Marquis (2000).

We are interested in the computational complexity of computing a best explanation of
a given abduction problem, or asserting there is none at all. Following the usual model,
we establish complexities with respect to the size of the representations of Σ and α and to
the number of abducibles; for hardness results, the following associated decision problem is
usually considered: is there at least one explanation for Π? Obviously, if this latter problem
is hard, then the function problem also is.

2.4 A Motivating Example

We now give a simple example of an abduction problem that we will reuse later on. Let us
consider a burglar who wishes to visit a house, but wants to make sure its inhabitants are
in holidays, since on one hand he wants them to be far for a long time, and on the other
hand he does not want them to have moved house, for otherwise he would not find anything
to steal.

Thus our burglar has a knowledge base Σe encoding the habits of people, and he wants
to know what points to check for being sure the query “inhabitants are far from here but
did not moved house” holds. Of course, he cannot check directly whether they are far nor
whether they have moved; but he can check, for instance, whether their shutters are closed
or whether they answer the phone.

More formally, assume his knowledge base is built over the following propositional vari-
ables: sh, meaning the shutters are closed; d, meaning it is day (and not night); p, meaning
the inhabitants of the house answer the phone; sl, meaning they are sleeping (in the house);
e, meaning the house is empty; f , meaning the inhabitants are far from home. Now assume
this knowledge base, Σe, is the conjunction of the following five formulas (the set of all the
models of Σe is given in Figure 1 with examples of their intuitive meanings as situations):

• sl→ (sh∧¬d), i.e., if the inhabitants are sleeping then the shutters are closed and it
is night

• sl→ (¬e∧¬f), i.e., if the inhabitants are sleeping then their house is not empty and
they are not far from home

• (e ∨ f)→ ¬p, i.e., if the house is empty or if the inhabitants are far from home, then
they will not answer the phone

• (¬d∧¬e∧¬f)→ sl, i.e., if it is night, if the house is not empty and if the inhabitants
are not far from home, then we can deduce they are sleeping

• sh → (sl ∨ e ∨ f), i.e., if the shutters are closed, then we can deduce that either the
inhabitants are sleeping or their house is empty or they are far from it.

4

Logic-Based Abduction

sh d p sl e f intuitive meaning
0 0 0 0 0 1 in holidays
0 0 0 0 1 0 moved house
0 0 0 0 1 1 moved house
0 1 0 0 0 0 at work
0 1 0 0 0 1 in holidays
0 1 0 0 1 0 moved house
0 1 0 0 1 1 moved house
0 1 1 0 0 0 at home

sh d p sl e f intuitive meaning
1 0 0 0 0 1 in holidays
1 0 0 0 1 0 moved house
1 0 0 0 1 1 moved house
1 0 0 1 0 0 sleeping at home
1 0 1 1 0 0 sleeping at home
1 1 0 0 0 1 in holidays
1 1 0 0 1 0 moved house
1 1 0 0 1 1 moved house

Figure 1: The set of all the models of Σe

Our burglar would like to explain his query αe = (¬e ∧ f) over the set of abducibles
A0 = {sh, d, p} (i.e., those points he can check directly). But the abduction problem
(Σe, αe, A0) has no explanation, i.e., with the set of abducibles A0, whathever the results of
his observations are, the burglar cannot make sure the inhabitants are far from home and
the house is not empty.

Now he must relax the set of abducibles, and he decides to take the risk to assume
the house is not empty. Consequently, the set of abducibles A0 becomes Ae = A0 ∪ {e} =
{sh, d, p, e}, and we finally define our example abduction problem:

Πe = (Σe, αe, Ae)

Now a best explanation for this problem is Ee = (sh∧d∧¬e), i.e., if the shutters are closed
during the day and the house is not empty, then the burglar can be sure (as far as his
knowledge base Σe is correct) that the house is not empty and that its inhabitants are far
from it; indeed, it holds that Σe ∧ sh∧ d∧¬e is satisfiable and implies (¬e∧ f) (thus Ee is
an explanation for Πe), and no proper subconjunction of Ee has both these properties (thus
Ee is a best explanation for Πe). Remark that for this problem a variable occurs usefully in
both the query and the set of abducibles; indeed, not only ¬e explains ¬e itself, but it also
participates in explaining f .

3. Previous Work

The main general complexity results about propositional logic-based abduction with subset-
minimality preference were stated by Eiter and Gottlob (1995). The authors show that
deciding whether a given abduction problem has a solution at all is a ΣP

2 -complete problem,
even if A ∪ V ar(α) = V ar(Σ) and Σ is in CNF.

As stated as well by Selman and Levesque (1990), they also establish that this problem
becomes “only” NP-complete when Σ is Horn, and even acyclic Horn; we refer the reader
to their paper for definitions, but simply recall that the class of Horn CNFs is one of
the most important ones for representing propositional knowledge, and that for most other
reasoning tasks it admits polynomial algorithms: SAT, deduction (Dowling & Gallier, 1984),
identification (Dechter & Pearl, 1992; Zanuttini & Hébrard, 2002) etc.

More generally, note that when SAT and deduction are polynomial with Σ the problem
is obviously in NP. But in fact, very few classes of abduction problems are known to be

5

Bruno Zanuttini

polynomial for the search for explanations. As far as we know, the only such classes are
those defined by the following restrictions (once again we refer the reader to the references
for definitions):

• Σ is in 2CNF and α is in 2DNF (Marquis, 2000, Section 4.2)

• Σ is given as a monotone CNF and α as a clause (Marquis, 2000, Section 4.2)

• Σ is given as a definite Horn CNF and α as a conjunction of positive literals (Selman
& Levesque, 1990; Eiter & Gottlob, 1995)

• Σ is given as an acyclic Horn CNF with pseudo-completion unit-refutable and α is a
variable (Eshghi, 1993)

• Σ has bounded induced kernel width and α is given as a literal (del Val, 2000)

• Σ is represented by its set of characteristics models (with respect to a particular basis)
and α is a variable (Khardon & Roth, 1996); note that a set of characteristic models
is not a propositional formula, but that the result is however in the same vein as the
other ones

• Σ is represented by the set of its models, or, equivalently, by a DNF with every variable
occurring in each term, and α is any propositional formula.

The first two classes are proved polynomial with a general method for solving abduction
problems with the notion of prime implicants, the last one is obvious since all the information
is explicitely given in the input, and the four others are exhibited with ad hoc algorithms.

Let us also mention that Amilhastre et al. (2002) study most of the related problems in
the more general framework of multivalued theories instead of propositional formulas, i.e.,
when the domain of the variables is not restricted to be {0, 1}. The authors mainly show,
as far as this paper is concerned, that deciding whether there exists an explanation is still
a ΣP

2 -complete problem (Amilhastre et al., 2002, Table 1).
Note that not all these results are stated in our exact framework in the papers cited

above, but that they all still hold in it. Let us also mention that the problem of enumerating
all the best explanations for a given abduction problem is of great interest; Eiter and Makino
(2002) provide a discussion and some first results about it, mainly in the case when the
knowledge base is Horn.

4. A General Algorithm

We now give the principle of our algorithm. Let us stress first that, as well as Marquis’
construction (Marquis, 2000, Section 4.2) for instance, its outline matches point by point
the definition of a best explanation for an abduction problem; our ideas and Marquis’ are
anyway rather close, as will be discussed in Section 5.3.

We are first interested in the hypotheses in which every abducible x ∈ A occurs (either
negated or unnegated); let us call them full hypotheses. Note indeed that every explanation
E for an abduction problem is a subconjunction of a full explanation F ; indeed, since E is

6

Logic-Based Abduction

by definition such that Σ∧E is satisfiable and implies α, it suffices to let F be SelectA(m)
for a model m of Σ ∧ E ∧ α. Minimization of F will be discussed later on.

Our algorithm’s principle is then based on the following proposition. The idea is that a
full explanation F must be SelectA(m) for an assignment m to V ar(Σ) such that (i) m /∈
(M(Σ∧α))|A, otherwise m would be a model of Σ∧F ∧α, thus Σ∧F |= α would not hold,
and (ii) m |= Σ, to ensure that Σ ∧ F is satisfiable.

Proposition 1 Let Π = (Σ, α, A) be an abduction problem, and F a full hypothesis of Π.
Then F is an explanation for Π if and only if there exists an assignment m to V ar(Σ) with
F = SelectA(m) and m ∈M(Σ) ∧ (M(Σ ∧ α))|A.

Proof Assume first F is an explanation for Π. Then (i) there exists an assignment m to
V ar(Σ) with m |= Σ ∧ F , thus F = SelectA(m) and m ∈ M(Σ), and (ii) Σ ∧ F |= α, i.e.,
Σ∧F ∧α is unsatisfiable, thus F /∈ {SelectA(m) | m ∈M(Σ∧α)}, thus m /∈ (M(Σ∧α))|A,
thus m ∈ (M(Σ ∧ α))|A.

Conversely, if m ∈ M(Σ) ∧ (M(Σ ∧ α))|A let F = SelectA(m). Then we have (i) since
m ∈M(Σ), Σ∧F is satisfiable, and (ii) since m /∈ (M(Σ∧α))|A, there is no m′ ∈M(Σ∧α)
with SelectA(m′) = F , thus Σ ∧ F ∧ α is unsatisfiable, thus Σ ∧ F |= α. �

Thus we have characterized the full explanations for an abduction problem. Now since, as
remarked above, every explanation is a subset of a full one, once we have found a convenient
F there is only left to minimize it. It is easily seen that the following greedy procedure
(Selman & Levesque, 1990) reduces F into a best explanation for Π:

For every literal ` ∈ F do
If Σ ∧ F\{`} |= α then F ← F\{`} endif;

Endfor;

Note that depending on the order in which the literals ` ∈ F are considered the result may
be different, but that in all cases it will be a best explanation for Π.

Finally, we can give our general algorithm for computing a best explanation for a given
abduction problem Π = (Σ, α, A); its correctness follows directly from Proposition 1:

Σ′ ← a propositional formula with M(Σ′) =M(Σ) ∧ (M(Σ ∧ α))|A;
If Σ′ is unsatisfiable then

return “No explanation”;
Else
m← a model of Σ′;
F ← SelectA(m);
minimize F ;
return F ;

Endif;

Let us demonstrate this algorithm on our running example. We first compute a formula
Σ1
e with set of models (M(Σe ∧ αe))|Ae , which yields for instance Σ1

e = ((¬sh ∧ ¬d) →
e) ∧ (p → (sh ∨ d)) ∧ (p → ¬e) ∧ ((sh ∧ d) → e); one of the models of Σ1

e is 101000, which
means that the full hypothesis SelectAe(101000) = {sh,¬d, p,¬e) cannot explain αe. Now

7

Bruno Zanuttini

we compute Σ′e with set of models M(Σe) ∧ (M(Σe ∧ αe))|Ae = M(Σe) ∧M(Σ1
e), which

yields for instance Σ′e = (sh ↔ d) ∧ ¬p ∧ ¬sl ∧ ¬e ∧ f ; its models are 000001 and 110001,
thus the full hypotheses (¬sh ∧ ¬d ∧ ¬p ∧ ¬e) and (sh ∧ d ∧ ¬p ∧ ¬e) are exactly the full
explanations for Πe. Finally, if we choose the full explanation (sh∧ d∧¬p∧¬e) for Πe, we
can get the best explanation Ee = (sh ∧ d ∧ ¬e).

We are interested in the next Section in classes of abduction problems, defined by
the syntactic forms of the representations of Σ and α, for which the running time of this
algorithm is polynomial. Let us simply remark for the moment that it suffices that these
restrictions allow to process efficiently the following operations: projecting Σ ∧ α onto
A, deciding the satifiability of Σ′ and computing one of its models, and finally deciding
Σ ∧

∧
F\{`} |= α. The other operations are purely syntactic computations with linear

complexity.

5. Polynomial Classes

We first explore the new polynomial classes of abduction problems that our algorithm allows
to exhibit (Sections 5.1 and 5.2) and then briefly explore what previously known classes are
encompassed by our framework (Section 5.3). Throughout the section, n denotes the number
of variables in V ar(Σ).

5.1 Affine Formulas

A propositional formula is said to be affine (or in XOR-CNF) (Schaefer, 1978; Kavvadias
& Sideri, 1998; Zanuttini, 2002) if it is written as a finite conjunction of linear equations
over the two-element field, e.g., φ = (x1 ⊕ x3 = 1) ∧ (x1 ⊕ x2 ⊕ x4 = 0). As can be
seen, equations play the same role in affine formulas as clauses do in CNFs; roughly, affine
formulas represent conjunctions of parity or equivalence constraints. This class proves very
interesting for knowledge representation, since on one hand it is tractable for most of the
common reasoning tasks, and on the other hand the affine approximations of a knowledge
base can be made very small and are efficiently learnable (Zanuttini, 2002). The task of
projecting an affine formula onto a subset of its variables appears to be quite easy too,
as stated in the next lemma and demonstrated in the following example (|S| denotes the
number of elements in a set S).

Lemma 1 Let φ be an affine formula containing k equations, and A ⊆ V ar(φ). Then
an affine formula ψ with M(ψ) = (M(φ))|A and containing at most k equations can be
computed in time O(k2|V ar(φ)|).

Proof Let < be a total order on V ar(φ) such that ∀x ∈ A, y /∈ A, x > y. First sort the
variables inside each equation according to <, and triangulate φ into an equivalent affine
formula φ′ with the elimination method of Gauss in time O(k2|V ar(φ)|) (Curtis, 1984). Let
ψ be the conjunction of all the equations of φ′ that contain only variables of A; we prove
that M(ψ) = (M(φ))|A. Indeed, if m |= ψ then since φ′ is triangular and the variables of
ψ (i.e., in A) are the greatest with respect to <, SelectA(m) can be extended into a model
of φ′ (i.e., of φ), thus m ∈ (M(φ))|A. Conversely, if m ∈ (M(φ))|A then there is a M with
M |= φ, thus M |= φ′, and SelectA(M) = SelectA(m), and it follows that m satisfies every
equation of ψ. �

8

Logic-Based Abduction

Example 1 Let φ = (x1⊕x2⊕x3⊕x4 = 0)∧ (x2⊕x3 = 1)∧ (x1⊕x3 = 1)∧ (x1⊕x4 = 1)
and A = {x1, x2}. A convenient order on the variables is x3 < x4 < x1 < x2, and we
rewrite φ in the following manner:

x3 x4 x1 x2 0
x3 x2 1
x3 x1 1

x4 x1 1

Applying the elimination method of Gauss we get the equivalent triangular formula φ′: x3 x4 x1 x2 0

x4 x1 1
x1 x2 0

and we get ψ = (x1 ⊕ x2 = 0).

Now we can state the result for abduction. Even if we give it with a quite general form for
α, for sake of completeness, we wish to remark that variables, literals and clauses are all
special cases of disjunctions of linear equations.

Proposition 2 If Σ is represented by an affine formula containing k equations and α by
a disjunction of k′ linear equations, and A is a subset of V ar(Σ), then searching for a best
explanation for Π = (Σ, α, A) can be done in time O((k + k′)((k + 1)2 + |A|(k + k′))n).

Proof We detail the computations of the algorithm of Section 4. Since α is a disjunction
of linear equations, an affine formula for α can be computed in time O(k′|V ar(α)|) by
replacing ∨ with ∧ between the equations and inverting the right member in each one of
them. This yields an affine formula (containing k′+ k equations and n variables) for Σ∧α;
this formula can be projected onto A in time O((k + k′)2n) (Lemma 1), and this yields an
affine formula Σ1 of at most k + k′ equations for (M(Σ ∧ α))|A and, straightforwardly, a
disjunction of at most k + k′ linear equations for Σ1.

Now we show that an affine formula for Σ′ can be obtained in polynomial time. Write
Σ1 = E1∨E2∨ . . .∨Ek+k′ , where for all i, Ei = (xi1⊕ . . .⊕xiki = bi) is a linear equation; by
distributivity of ∧ over ∨, Σ∧Σ1 can be represented by (Σ∧E1)∨(Σ∧E2)∨. . .∨(Σ∧Ek+k′);
thus the satisfiability of Σ′ can be decided by solving at most k + k′ satisfiability problems
for affine formulas; recall that SAT can be solved in time O(k2n) for an affine formula of k
equations over n variables by the elimination method of Gauss (Curtis, 1984). The model
m can be computed at the same time, in overall time O((k + k′)(k + 1)2n). There is only
left to minimize F , but since deciding Σ ∧

∧
F\{`} |= α is the same as deciding whether

Σ ∧
∧
F\{`} ∧ α is unsatisfiable, this can be done in time |A| ×O((k + k′)2n). �

5.2 DNFs

Though the class of DNF formulas has very good computational properties, abduction
remains a hard problem for it as a whole, even with additional restrictions. Recall that the
TAUTOLOGY problem is the one of deciding whether a given DNF formula represents the
identically true function, and that this problem is coNP-complete.

9

Bruno Zanuttini

Proposition 3 Deciding whether there is at least one explanation for a given abduction
problem (Σ, α, A) is NP-complete when Σ is given in DNF, even if α is a variable and
A ∪ {α} = V ar(Σ).

Proof Membership in NP is obvious, since deduction with DNFs is polynomial. To establish
completeness, we show that a DNF Σ is tautological if and only if the abduction problem
Π = (Σ ∨ (x), x, V ar(Σ)) has no explanation, where x is a variable not occuring in Σ.
First note that Σ ∨ (x) is in DNF by construction. Now if Σ is tautological, then every
hypothesis H over V ar(Σ) satisfies Σ, and thus H ∧{¬x} satisfies Σ∨ (x); finally, H is not
an explanation for Π. Conversely, if Σ is not tautological then we can find an assignment E
to V ar(Σ) with E 6|= Σ; consequently, we have E ∧ {¬x} 6|= Σ∨ (x) and E ∧ {x} |= Σ∨ (x),
thus E is an explanation for Π. �

However, when Σ is represented by a DNF the task is easier than in the general case; indeed,
for projecting Σ onto A it suffices to cancel its literals that are not formed upon A.

Lemma 2 Let φ be a DNF containing k terms, and A ⊆ V ar(φ). Then a DNF ψ with
M(ψ) = (M(φ))|A and containing at most k terms can be computed in time O(k|V ar(φ)|).

Proof Obvious since projection is distributive over ∨, and over ∧ inside each term since
the literals in a term are built upon different variables. �

Now we study classes of abduction problems that are polynomial for our algorithm and
where Σ is restricted to be in a subclass of the class of DNFs. The first result is quite
general, but we wish to note that its assumptions are satisfied by natural classes of DNFs:
e.g., that of Horn (resp. reverse Horn) DNFs, i.e., those DNFs with at most one positive
(resp. negative) literal per term; similarly, that of Horn-renamable DNFs, i.e., those that
can be turned into a Horn DNF by replacing some variables with their negation, and
simplifying double negations, everywhere in the formula; 2DNFs, those DNFs with at most
two literals per term; and finally, positive (resp. negative) DNFs, those DNFs containing
only positive (resp. negative) literals. For φ a DNF (resp. CNF), write N(φ) for the CNF
(resp. DNF) obtained from φ by replacing ∨ with ∧, ∧ with ∨ and every literal with its
negation.

Proposition 4 Let D be a class of DNFs that is stable under removal of occurrences of
literals and for which the TAUTOLOGY problem is polynomial. If Σ is restricted to belong
to D, α is a clause and A is a subset of V ar(Σ), then searching for a best explanation for
Π = (Σ, α, A) can be done in polynomial time.

Proof Write Σ = T1∨ . . .∨Tk, where each Ti is a term, and α = (`1∨ . . .∨ `k′), where each
`i is a literal. Then α can be represented by N(α) = `1∧ . . .∧ `k′ . Now write Σ[α] the DNF
obtained from Σ by propagating the `i’s, i.e., replacing every occurrence of a literal ` in Σ
with 1 if ` is a literal ofN(α) and with 0 if ` is a literal ofN(α), and simplifying the constants.
It is easily seen that Σ∧α is represented by Σ[α]∧N(α), and since V ar(Σ[α])∩V ar(N(α)) =
∅ (by construction), that (M(Σ ∧ α))|A = (M(Σ[α]))|A ∧ (M(N(α)))|A. Now since Σ[α]
is in DNF, it can be projected onto A in polynomial time (Lemma 2), yielding a DNF
φ ∈ D since D is closed under removal of occurrences of literals. Since N(α) is a term,
its projection onto A is logically equivalent to the conjunction ψ of its literals formed

10

Logic-Based Abduction

on A. Thus we can compute Σ′ = Σ ∧ (N(φ) ∨ N(ψ)), which is logically equivalent to
(Σ ∧ N(φ)) ∨ (Σ ∧ N(ψ)). As for the SATISFIABILITY problem for (Σ ∧ N(φ)), we
can distribute ∧ over ∨ for obtaining k satisfiability problems for formulas of the form
Ti ∧ N(φ); since φ ∈ D and thus the SATISFIABILITY problem for N(φ) is polynomial
(it is equivalent to the TAUTOLOGY problem for φ), the satisfiability of Σ ∧N(φ) can be
decided, and one of its models computed, in polynomial time; now since N(ψ) is a clause,
the SATISFIABILITY problem for Σ∧N(ψ) is polynomial as well. Finally, there is only left
to minimize F , which can be done in polynomial time: indeed, deciding Σ ∧

∧
F\{`} |= α

is equivalent to deciding whether Σ∧
∧
F\{`} ∧α is unsatisfiable, i.e., to deciding whether

for all terms T of Σ it holds that T ∧
∧
F\{`} ∧ α is unsatisfiable. �

Thus we can establish that abduction is tractable if (among others) Σ is in Horn-renamable
DNF (including the Horn and reverse Horn cases) or in 2DNF, and α is a clause.

Finally, let us point out that with a very similar proof we can obtain polynomiality
for some problems obtained by strengthening the restriction of Proposition 4 over Σ, but
weakening that over α.

Proposition 5 If Σ is represented by a Horn (resp. reverse Horn) DNF of k terms and
α by a positive (resp. negative) CNF of k′ clauses, and A is a subset of V ar(Σ), then
searching for a best explanation for Π = (Σ, α, A) can be done in time O((k + |A|)kk′n).
The same holds if Σ is represented by a positive (resp. negative) DNF of k terms and α by
a Horn (resp. reverse Horn) CNF of k′ clauses.

Proof We prove the result for Σ in Horn DNF and α in positive CNF; the other case is
dual. Since α is in positive CNF, one can compute in time O(k′|V ar(α)|) a negative DNF
for α as above; then distributing ∧ over ∨ (each term of the DNF for Σ being combined
with a term of the DNF for α) yields a Horn DNF of at most kk′ terms for Σ ∧ α in time
O(kk′n); indeed, the combined terms are always one Horn term and one negative term, thus
the resulting term contains at most one positive literal. It is easily seen that projecting this
DNF onto A yields a Horn DNF Σ1 of at most kk′ terms in time O(kk′n); thus a reverse
Horn CNF for Σ1 can be computed in time O(kk′n), and as for Proposition 4 we distribute
∧ over ∨ for obtaining k satisfiability problems for formulas of the form Σ1 ∧ Ti, where
Σ = T1 ∨ T2 ∨ . . .∨ Tk, each Ti being a term; since Σ1 is in reverse Horn CNF each of these
satisfiability problems can be solved in linear time O(kk′n) (Dowling & Gallier, 1984),
and m can be computed at the same time. Finally, F can be minimized in overall time
O(|A|kk′n) as in the proof of Proposition 4. �

Once again note that variables, literals and terms are all special cases of (reverse) Horn
CNFs, and that variables, positive (resp. negative) clauses and positive (resp. negative)
terms are all special cases of positive (resp. negative) CNFs.

5.3 Previously Known Classes

Finally, we wish to emphasize that our algorithm runs in polynomial time as well for previ-
ously known polynomial classes of abduction problems. Indeed, this is true for Σ given as a
2CNF (i.e., a CNF with at most two literals per term) and α as a 2DNF, since in this case
Σ∧α is in 2CNF and can be projected onto A by testing all the candidates 2clauses formed
upon A, which are only polynomially many (Marquis, 2000, Section 3.4.1); this projection is

11

Bruno Zanuttini

representation of Σ representation of α References
affine formula ∨ of linear equations *

Horn-renamable DNF clause *
2DNF clause *

Horn DNF positive CNF *
reverse Horn DNF negative CNF *

negative DNF reverse Horn CNF *
positive DNF Horn CNF *

2CNF 2DNF (Marquis, 2000), *
monotone CNF clause (Marquis, 2000), *

definite Horn CNF positive term (Eiter & Gottlob, 1995)
acyclic Horn CNF with. . . variable (Eshghi, 1993)

bounded induced kernel width literal (del Val, 2000)
characteristic models wrt B ∪BH positive formula (Khardon & Roth, 1996)

set of its models any formula *

Table 1: Summary of the polynomial classes for abduction

in 2CNF, thus the satifiability problem of the algorithm is equivalent to a linear number of
2SATISFIABILITY problems by distributing ∧ over ∨; finally, minimizing F is polynomial
because deduction with 2CNFs is.

For similar reasons, it is easily seen that our algorithm is polynomial if Σ is given as a
monotone CNF and α as a clause. More generally, Marquis (2000) shows that abduction is
tractable for these two classes of problems because the set of all the prime implicates of Σ
(resp. Σ ∧ α) can be computed efficiently. It is easily seen that when this is the case, our
algorithm is polynomial as well and its behaviour is exactly the same.

Finally, it is also easily seen that our algorithm is polynomial when Σ is represented by
the set of its models, whatever propositional formula α is.

6. Discussion and Perspectives

We have given an algorithm for propositional logic-based abduction and studied restrictions
over the knowledge base and the query that allow it to run in polynomial time. Table 1
summarizes the main known polynomial restrictions of abduction problems (where each
line corresponds to one restriction, and ’*’ in the last column means our algorithm is poly-
nomial). The new polynomial classes our algorithm allows us to identify include the one
restricting Σ to be given as an affine formula and α as a disjunction of linear equations,
and the one restricting Σ to be given as a Horn DNF and α as a positive CNF; moreover,
our algorithm is polynomial on other, previously known classes. Finally, even if there is no
gaurantee for efficiency in the general case, its presentation does not depend on the syntac-
tic form of Σ or α, and it uses only standard operations on Boolean functions (projection,
conjunction, negation).

12

Logic-Based Abduction

Another interesting feature of this algorithm is that before minimization it computes the
explanations intentionnally . Thus all the full explanations can be enumerated with roughly
the same delay that the models of the formula representing them (Σ′). However, there is no
guarantee that two of them would not be minimized into the same best explanation, which
prevents from concluding that our algorithm can enumerate all the best explanations; trying
to extend it into this direction would be an interesting problem. For more details about
enumeration we refer the reader to Eiter and Makino’s work (Eiter & Makino, 2002).

As identified by Selman and Levesque (1990), central to the task is the notion of pro-
jection onto a set of variables, and our algorithm isolates this subtask. However, as pointed
out before our notion of projection only concerns variables, and not literals, which prevents
from imposing a sign to the literals the hypotheses are formed upon, contrariwise to more
general formalizations proposed for abduction, as Marquis’ (Marquis, 2000). Even if we
think this is not a prohibiting restriction, as argued before, it would be interesting to try
to fix that weakness of our algorithm while preserving its polynomial classes.

Another problem of interest is the behaviour of our algorithm when Σ and α are not
only propositional formulas, but more generally multivalued theories, in which the domain
of variables is not restricted to be {0, 1}: e.g., signed formulas (Beckert et al., 1999). This
framework is used, for instance, for configuration problems by Amilhastre et al. (2002). It
is easily seen that our algorithm is still correct in this framework; however, there is still left
to study in which cases its running time is polynomial.

Finally, problems of great interest are those of deciding the relevance or the necessity of
an abducible (Eiter & Gottlob, 1995). An abducible x is said to be relevant to an abduction
problem Π if there is at least one best explanation for Π containing x or ¬x, and necessary
to Π if all best explanations for Π contain x or ¬x. It is easily seen that x is necessary
for Π = (Σ, α, A) if and only if Π′ = (Σ, α, A\{x}) has no explanation, hence showing that
polynomial restrictions for the search for explanations are polynomial as well for deciding
the necessity of an hypothesis as soon as they are stable under the substitution of A\{x}
for A, which is the case for all restrictions considered in this paper. Contrastingly, we do
not know of any such relation for relevance, and the study of this problem would also be of
great interest.

Acknowledgments

A much shorter version of this paper appeared in French in Proc. Huitièmes Journées
Nationales sur la Résolution Pratique de Problèmes NP-Complets (JNPC’02) (2002) 255–
268; the author wishes to thank an anonymous referee of this version for very valuable
and constructive comments. He also wishes to thank Jean-Jacques Hébrard for very useful
discussions about this work and its redaction. Finally, he wishes to thank the referees of
the version published in JAIR for constructive comments.

References

Amilhastre, J., Fargier, H., & Marquis, P. (2002). Consistency restoration and explanations
in dynamic CSPs — application to configuration. Artificial Intelligence, 135 (1–2),

13

Bruno Zanuttini

199–234.

Beckert, B., Hähnle, R., & Manyà, F. (1999). Transformations between signed and clas-
sical clause logic. In Proc. 29th International Symposium on Multiple-Valued Logics
(ISMVL’99), pp. 248–255. IEEE Computer Society Press.

Bylander, T., Allemang, D., Tanner, M., & Josephson, J. (1989). Some results concerning
the computational complexity of abduction. In Proc. 1st International Conference on
Principles of Knowledge Representation and Reasoning (KR’89), pp. 44–54. Morgan
Kaufmann.

Coste-Marquis, S., & Marquis, P. (1998). Characterizing consistency-based diagnoses.
In Proc. 5th International Symposium on Artificial Intelligence and Mathematics
(AIMATH’98).

Curtis, C. (1984). Linear algebra. An introductory approach. Springer Verlag.

Dechter, R., & Pearl, J. (1992). Structure identification in relational data. Artificial Intel-
ligence, 58, 237–270.

del Val, A. (2000). The complexity of restricted consequence finding and abduction. In
Proc. 17th National Conference on Artificial Intelligence (AAAI’00), pp. 337–342.
AAAI Press/MIT Press.

Dowling, W., & Gallier, J. (1984). Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. Journal of Logic Programming, 3, 267–284.

Eiter, T., & Gottlob, G. (1995). The complexity of logic-based abduction. Journal of the
ACM, 42 (1), 3–42.

Eiter, T., & Makino, K. (2002). On computing all abductive explanations. In Proc. 18th
National Conference on Artificial Intelligence (AAAI’02), pp. 62–67. AAAI Press.

Eshghi, K. (1993). A tractable class of abduction problems. In Proc. 13th International
Joint Conference on Artificial Intelligence (IJCAI’93), pp. 3–8. Morgan Kaufmann.

Goebel, R. (1997). Abduction and its relation to constrained induction. In Proc. IJCAI’97
workshop on abduction and induction in AI.

Hobbs, J., Stickel, M., Appelt, D., & Martin, P. (1993). Interpretation as abduction. Arti-
ficial Intelligence, 63, 69–142.

Kavvadias, D., & Sideri, M. (1998). The inverse satisfiability problem. SIAM Journal on
Computing, 28 (1), 152–163.

Khardon, R., & Roth, D. (1996). Reasoning with models. Artificial Intelligence, 87, 187–213.

Lang, J., Liberatore, P., & Marquis, P. (2002). Conditional independence in propositional
logic. Artificial Intelligence, 141, 79–121.

Marquis, P. (2000). Consequence finding algorithms. In Handbook of Defeasible Reasoning
and Uncertainty Management Systems (DRUMS), Vol. 5, pp. 41–145. Kluwer Aca-
demic.

Reiter, R., & de Kleer, J. (1987). Foundations of assumption-based truth maintenance sys-
tems: preliminary report. In Proc. 6th National Conference on Artificial Intelligence
(AAAI’87), pp. 183–188. AAAI Press/MIT Press.

14

Logic-Based Abduction

Schaefer, T. (1978). The complexity of satisfiability problems. In Proc. 10th Annual ACM
Symposium on Theory Of Computing (STOC’78), pp. 216–226. ACM Press.

Selman, B., & Levesque, H. (1990). Abductive and default reasoning: a computational core.
In Proc. 8th National Conference on Artificial Intelligence (AAAI’90), pp. 343–348.
AAAI Press.

Stumptner, M., & Wotawa, F. (2001). Diagnosing tree-structured systems. Artificial Intel-
ligence, 127, 1–29.

Zanuttini, B. (2002). Approximating propositional knowledge with affine formulas. In
Proc. 15th European Conference on Artificial Intelligence (ECAI’02), pp. 287–291.
IOS Press.

Zanuttini, B., & Hébrard, J.-J. (2002). A unified framework for structure identification.
Information Processing Letters, 81 (6), 335–339.

15

