

Journal of Artificial Intelligence Research 20 (2003) 195-238 Submitted 6/03; published 12/03

Taming Numbers and Durations in the Model Checking
Integrated Planning System

Stefan Edelkamp stefan.edelkamp@cs.uni-dortmund.de

Baroper Straße 301
Fachbereich Informatik, GB IV
Universität Dortmund
44221 Dortmund
Germany

Abstract

The Model Checking Integrated Planning System (MIPS) is a temporal least commit-
ment heuristic search planner based on a flexible object-oriented workbench architecture.
Its design clearly separates explicit and symbolic directed exploration algorithms from the
set of on-line and off-line computed estimates and associated data structures.

MIPS has shown distinguished performance in the last two international planning com-
petitions. In the last event the description language was extended from pure propositional
planning to include numerical state variables, action durations, and plan quality objective
functions. Plans were no longer sequences of actions but time-stamped schedules.

As a participant of the fully automated track of the competition, MIPS has proven to be
a general system; in each track and every benchmark domain it efficiently computed plans
of remarkable quality. This article introduces and analyzes the most important algorithmic
novelties that were necessary to tackle the new layers of expressiveness in the benchmark
problems and to achieve a high level of performance.

The extensions include critical path analysis of sequentially generated plans to generate
corresponding optimal parallel plans. The linear time algorithm to compute the parallel
plan bypasses known NP hardness results for partial ordering by scheduling plans with
respect to the set of actions and the imposed precedence relations. The efficiency of this
algorithm also allows us to improve the exploration guidance: for each encountered planning
state the corresponding approximate sequential plan is scheduled.

One major strength of MIPS is its static analysis phase that grounds and simplifies
parameterized predicates, functions and operators, that infers knowledge to minimize the
state description length, and that detects domain object symmetries. The latter aspect is
analyzed in detail.

MIPS has been developed to serve as a complete and optimal state space planner,
with admissible estimates, exploration engines and branching cuts. In the competition
version, however, certain performance compromises had to be made, including floating point
arithmetic, weighted heuristic search exploration according to an inadmissible estimate and
parameterized optimization.

1. Introduction

Practical action planning and model checking appear to be closely related. The MIPS
project targets the integration of model checking techniques into a domain-independent
action planner. With the HSF-Spin experimental model checker (Edelkamp, Leue, & Lluch-
Lafuente, 2003) we are looking towards the integration of planning technology into an

c©2003 AI Access Foundation. All rights reserved.

Edelkamp

existing model checker. Additional synergies are exploited in the automated compilation of
protocol software model checking problems into planner inputs (Edelkamp, 2003).

Model checking (Clarke, Grumberg, & Peled, 1999) is the automated process to verify if
a formal model of a system satisfies a specified temporal property or not. As an illustrative
example, take an elevator control system together with a correctness property that requires
an elevator to eventually stop on every call of a passenger or that guarantees that the door is
closed, while the elevator is moving. Although the success in checking correctness is limited,
model checkers have found many errors in current hardware and software designs. Models
often consist of many concurrent sub-systems. Their combination is either synchronous, as
often seen in hardware design verification, or asynchronous, as frequently given in commu-
nication and security protocols, or in multi-threaded programming languages like Java.

Model checking requires the exploration of very large state spaces containing all reach-
able system states. This problem is known as the state explosion problem and occurs even
when the sets of generated states is much smaller than the set of all reachable states.

An error that shows a safety property violation, like a deadlock or a failed assertion,
corresponds to one of a set of target nodes in the state space graph. Roughly speaking,
something bad has occured. A liveness property violation refers to a (seeded) cycle in the
graph. Roughly speaking, something good will never occur. For the case of the elevator
example, eventually reaching a target state where a request button was pressed is a liveness
property, while certifying closed doors refers to a safety property.

The two main validation processes in model checking are explicit and symbolic search.
In explicit-state model checking each state refers to a fixed memory location and the state
space graph is implicitly generated by successive expansions of state.

In symbolic model checking (McMillan, 1993; Clarke, McMillan, Dill, & Hwang, 1992),
(fixed-length) binary encodings of system states are used, so that each state can be rep-
resented by its characteristic function representation. This function evaluates to true if
and only if all Boolean state variables are assigned to bit values with respect to the binary
encoding of the system state. Subsequently, the characteristic function is a conjunction of
literals with a plain variable for a 1 in the encoding and a negated variable for a 0. Sets of
states are expressed as the disjunction of all individual characteristic functions.

The unique symbolic representation of sets of states as Boolean formulae through binary
decision diagrams (BDDs) (Bryant, 1992) is often much smaller than the explicit one. BDDs
are (ordered) read-once branching programs with nodes corresponding to variables, edges
corresponding to variable outcomes, and each path corresponding to an assignment to the
variables with the resulting evaluation at the leaves. One reason for the succinctness of
BDDs is that directed acyclic graphs may express exponentially many paths. The transition
relation is defined on two state variable sets. It evaluates to true, if and only if an operator
exists that transforms a state into a valid successor. In some sense, BDDs exploit regularities
of the state set and often appear well suited to regular hardware systems. In contrast, many
software systems inherit a highly asynchronous and irregular structure, so that the use of
BDDs with a fixed variable ordering is generally not flexible enough.

For symbolic exploration, a set of states is combined with the transition relation to
compute the set of all possible successor states, i.e. the image. Starting with the initial
state, iteration of image computations eventually explores the entire reachable state space.

196

Taming Numbers and Durations in MIPS

To improve the efficiency of image computations, transition relations are often provided in
partitioned form.

The correspondence between action and model checking (Giunchiglia & Traverso, 1999)
can be roughly characterized as follows. Similar to model checkers, action planners im-
plicitly generate large state spaces, and both exploration approaches are based on applying
operators to the current state. States spaces in model checking and in planning problems are
often modelled as Kripke structures, i.e. state space graphs with states labelled by propo-
sitional predicates. The satisfaction of a specified property on the one side corresponds to
a complete exploration, and an unsolvable problem on the other side. In this respect, the
goal in action planning can be cast as an error with the corresponding trail interpreted as a
plan. In the elevator example, the goal of a planning task is to reach a state, in which the
doors are open and the elevator is moving. Action planning refers to safety properties only,
since goal achievement in traditional and competition planning problems have not yet been
extended with temporal properties. However, temporally extended goals are of increasing
research interest (Kabanza, Barbeau, & St-Denis, 1997; Pistore & Traverso, 2001; Lago,
Pistore, & Traverso, 2002).

In contrast to model checkers that perform either symbolic or explicit exploration, MIPS
features both. Moreover, it combines symbolic and explicit search planning in the form of
symbolic pattern databases (Edelkamp, 2002b). The planner MIPS implements heuristic
search algorithms like A* (Pearl, 1985) and IDA* (Korf, 1985) for exploration, which include
state-to-goal approximation into the search process to rank the states to be expanded next.
Heuristic search has brought considerable gains to both planning (Bonet & Geffner, 2001;
Refanidis & Vlahavas, 2000; Hoffmann & Nebel, 2001; Bertoli, Cimatti, & Roveri, 2001a;
Jensen, Bryant, & Veloso, 2002; Feng & Hansen, 2002) and model checking (Yang & Dill,
1998; Edelkamp et al., 2003; Groce & Visser, 2002; Bloem, Ravi, & Somenzi, 2000; Ruys,
2003).

Including resource variables, like the fuel level of a vehicle or the distance between two
different locations, as well as action duration are relatively new aspects for competitive
planning (Fox & Long, 2003). The input format PDDL2.1 is not restricted to variables of
finite domain, but also includes rational (floating-point) variables in both precondition and
effects. Similar to a set of atoms described by a propositional predicate, a set of numerical
quantities can be described by a set of parameters. Through the notation of PDDL2.1, we
refer to parameterized numerical quantities as functions. For example, the fuel level might
be parameterized by the vehicle that is present in the problem instance file description.

In the competition, domains were provided in different tracks according to different lay-
ers of language expressiveness: i) pure propositional planning, ii) planning with numerical
resources, iii) planning with numerical resources and constant action duration, iv) planning
with numerical resources and variable action duration, and, in some cases, v) complex prob-
lems usually combining time and numbers in more interesting ways. MIPS competed as a
fully automated system and performed remarkably well in all five tracks; it solved a large
number of problems and was the only fully automated planner that produced solutions in
each track of every benchmark domain.

In this paper the main algorithmic techniques for taming rational numbers, objective
functions, and action duration are described. The article is structured as follows. First,
we review the development of the MIPS system and assert its main contributions. Then

197

Edelkamp

we address the object-oriented heuristic search framework of the system. Subsequently, we
introduce some terminology that allows us to give a formal definition of the syntax and
the semantics of a grounded mixed numerical and propositional planning problem instance.
We then introduce the core contributions: critical path scheduling for concurrent plans,
and efficient methods for detecting and using symmetry cuts. PERT scheduling produces
optimal parallel plans in linear time given a sequence of operators and a precedence relation
among them. The paper discusses pruning anomalies and the effect of different optimization
criteria. We analyze the correctness and efficiency of symmetry detection in detail. The
article closes with related work and concluding remarks.

2. The Development of MIPS

The competition version of MIPS refers to initial work (Edelkamp & Reffel, 1999a) in
heuristic symbolic exploration of planning domains with the µcke model checker (Biere,
1997). This approach was effective in sample puzzle solving (Edelkamp & Reffel, 1998) and
in hardware verification problems (Reffel & Edelkamp, 1999).

For implementing a propositional planner, we first used our own BDD library called
StaticBdd, in which large node tables are allocated prior to their use. During the imple-
mentation process we changed the BDD representation mainly to improve performance for
small planning problems. We selected the public domain c++ BDD package Buddy (Lind-
Nielsen, 1999), which is more flexible. The planning process was semi-automated (Edelkamp
& Reffel, 1999b); variable encodings were provided by hand, while the representations of
all operators were established by enumerating all possible parameter instances. Once the
state space encoding and action transition relation were fixed, exploration in the form of
a symbolic breadth-first search of the state-space could be executed. At that time, we
were not aware of any other work in BDD-based planning such as the work of Cimatti et al.
(1997), which is likely the first link to planning via symbolic model checking. The team used
the model checker (nu)SMV as the basis with an atom-to-variable planning state encoding
scheme on top of it.

Later on, we developed a parser and a static analyzer to automate the inference of state
encodings, the generation of the transition relations, and the extraction of solution paths.
In order to minimize the length of the state encoding, the new analyzer clustered atoms into
groups (Edelkamp & Helmert, 1999). As confirmed by other attempts (Weismüller, 1998),
who started experimenting with PDDL specification in µcke, state minimization is in fact
crucial. The simple encoding using one variable for each atom appears not to be competitive
with respect to Graphplan-based (Blum & Furst, 1995) and SAT-plan based planners (Kautz
& Selman, 1996). Subsequently, MIPS was the first fully automated planning system based
on symbolic model checking technology that could deal with large domain descriptions.

In the second international planning competition MIPS (Edelkamp & Helmert, 2001)
could handle the STRIPS (Fikes & Nilsson, 1971) subset of the PDDL language (McDer-
mott, 2000) and some additional features from ADL (Pednault, 1989), namely negative
preconditions and (universal) conditional effects. MIPS was one of five planning systems to
be awarded for “Distinguished Performance” in the fully automated track. The competition
version (Edelkamp & Helmert, 2000) already included explicit heuristic search algorithms
based on a bit-vector state representation and the relaxed planning heuristic (RPH) (Hoff-

198

Taming Numbers and Durations in MIPS

mann & Nebel, 2001) as well as symbolic heuristic search based on the HSP heuristic (Bonet
& Geffner, 2001) and a one-to-one atom derivative of RPH. In the competition, we used
breadth-first bi-directional symbolic search whenever the single state heuristic search engine
got stuck in its exploration.

In between the planning competitions, explicit (Edelkamp, 2001c) and symbolic pattern
databases (Edelkamp, 2002b) were proposed as off-line estimators for completely explored
problem abstractions. Roughly speaking, pattern database abstractions slice the state vec-
tor of fluents into pieces and adjust the operators accordingly. The completely explored
subspaces then serve as admissible estimates for the overall search and are competitive with
the relaxed planning heuristic in several benchmark domains.

For the third planning competition new levels of the planning domain description lan-
guage (PDDL) were designed. Level 1 considers pure propositional planning. Level 2 also
includes numerical resources and objective functions to be minimized. Level 3 additionally
allows the specification of actions with durations. Consequently, MIPS has been extended
to cope with these new forms of expressiveness.

First results of MIPS in planning PDDL2.1 problems are presented in (Edelkamp,
2001b). The preliminary treatment illustrates the parsing process in two simple bench-
mark domains. Moreover, propositional heuristics and manual branching cuts were applied
to accelerate sequential plan generation. This work was extended in (Edelkamp, 2002a),
where we presented two approximate exploration techniques to bound and to fix numerical
domains, first results on symmetry detection based on fact groups, critical path scheduling,
an any-time wrapper to produce optimal plans, and a numerical extension to RPH.

3. Architecture of MIPS

Figure 1 shows the main components of MIPS and the data flow from the input definition
of the domain and the problem instance to the resulting temporal plan in the output. As
shown shaded in light gray, MIPS is divided into four parts: pre-compilation, heuristics,
search algorithms, and post-compilation (scheduling). Henceforth, the planning process
will be coarsely grouped into three stages, pre-compilation, heuristic search planning, and
the construction of temporal plans. The problem and domain description files are fed into
the system, analyzed and grounded. This fixes the state space problem to be solved. The
intermediate result is implicit, but can be saved in a file for use by other planners and model
checkers. The basics of pre-compilation are covered in Section 3.2.

The next stage defines the planning process. The object-oriented workbench design
of the planner allows different heuristic estimates to be combined with different search
strategies and access data structures. Possible choices are listed in Sections 3.3 and 3.4.
Temporal planning is based on (PERT) scheduling. This issue of rearranging sequential
(relaxed) plans is addressed in detail in Section 4.3.

The planning system was developed in the spirit of the heuristic search framework,
HSF for short (Edelkamp, 1999), which allows attachment of newly implemented problem
(puzzle) domains to an already compiled system. Similar to the approach that we took
in model checking within HSF-Spin, we kept the extensible and general design. In fact
we characterized both action planning and protocol validation as single-agent challenges.
In contrast to the model checking approach, for planning we devised a hierarchy of system

199

Edelkamp

Scheduler

Precompiler

Critical Path

problem.pddldomain.pddl

static analyzer

numerical

sequential plan

temporal plan

intermediate representation

symbolic search explicit search

EHC

scheduling
RPH

RPH
BDD-BFSBDDA*, IDA*,A*,

RPH

relaxed planSearch Algorithms

Heuristics

explicit PDBssymbolic PDBs

relaxed
temporal plan

PERT

clustersymmetryground

Figure 1: Architecture of MIPS.

states: the implementation for numerical states is a derived class of the one for propositional
states.

Similarily, the heuristic search algorithms are all based on an abstract search class. The
main procedures that have to be provided to the search algorithm are a state expansion
procedure, and a heuristic search evaluation function, both located in one of the hierarchi-
cally organized heuristic estimator classes. In this sense, algorithms in MIPS are general
node expanding schemes that can be adapted to very different problems. Additional data
structures for the horizon list Open and the visited list Closed are constructed as parame-
ters of the appropriate search algorithms. As a result, the implementations of the heuristic
search algorithms and the associated data structures in the planner MIPS almost match
those in our model checker.

3.1 Example Problem

The running example for the paper is an instance of a rather simple PDDL2.1 problem in
Zeno-Travel. It is illustrated in Figure 2. The initial configuration is drawn to the left of

200

Taming Numbers and Durations in MIPS

C

600

8001000

1000

Scott

Dan

Ernie

A

D

B

C

600

8001000

1000
Scott

Ernie

DanA

D

B

Figure 2: An instance for the Zeno-Travel domain with initial state (left) and goal state(s)
(right).

the figure and the goal configuration to its right. Some global and local numeric variable
assignments are not shown.

Figures 3 and 4 provide the domain and problem specifications1. The instance asks for
a temporal plan to fly passengers (dan, scott, and ernie) located somewhere on a small
map (including the cities city-a, city-b, city-c, and city-d) with an aircraft (plane)
to their respective target destinations. Boarding and debarking take a constant amount of
time. The plane has a fixed fuel capacity. Fuel and time are consumed according to the
distances between the cities and the travel speed. Fuel can be restored by refueling the
aircraft. As a result, the total amount of fuel is also maintained as a numerical quantity.

3.2 Precompiler

The static analyzer takes the domain and problem instance as an input, grounds its proposi-
tional state information and infers different forms of planner independent static information.

Parsing Our simple Lisp parser generates a tree of Lisp entities. It reads the input files
and recognizes the domain and problem name. To cope with variable typing, we tem-
porarily assert constant typed predicates to be removed together with other constant
predicates in a further pre-compilation step. Thereby, we infer a type hierarchy and
an associated mapping of objects to types.

Indexing Based on the number of counted objects, indices for the grounded predicates,
functions and actions are devised. Since in our example problem we have eight ob-
jects and the predicates at and in have two parameters, we reserve 2 · 8 · 8 = 128
index positions. Similarly, the function distance consumes 64 indices, while fuel,

1. [...] denotes that source fragments were omitted for the sake of brevity. In the given example these
are the action definitions for passenger debarking and flying the airplane.

201

Edelkamp

(define (domain zeno-travel)
(:requirements :durative-actions :typing :fluents)
(:types aircraft person city)
(:predicates (at ?x - (either person aircraft) ?c - city)

(in ?p - person ?a - aircraft))
(:functions (fuel ?a - aircraft) (distance ?c1 - city ?c2 - city)

(slow-speed ?a - aircraft) (fast-speed ?a - aircraft)
(slow-burn ?a - aircraft) (fast-burn ?a - aircraft)
(capacity ?a - aircraft) (refuel-rate ?a - aircraft)
(total-fuel-used) (boarding-time) (debarking-time))

(:durative-action board
:parameters (?p - person ?a - aircraft ?c - city)
:duration (= ?duration boarding-time)
:condition (and (at start (at ?p ?c))

(over all (at ?a ?c)))
:effect (and (at start (not (at ?p ?c)))

(at end (in ?p ?a))))
[...]
(:durative-action zoom
:parameters (?a - aircraft ?c1 ?c2 - city)
:duration (= ?duration (/ (distance ?c1 ?c2) (fast-speed ?a)))
:condition (and (at start (at ?a ?c1))

(at start (>= (fuel ?a) (* (distance ?c1 ?c2) (fast-burn ?a)))))
:effect (and (at start (not (at ?a ?c1)))

(at end (at ?a ?c2))
(at end (increase total-fuel-used

(* (distance ?c1 ?c2) (fast-burn ?a))))
(at end (decrease (fuel ?a)

(* (distance ?c1 ?c2) (fast-burn ?a))))))
(:durative-action refuel
:parameters (?a - aircraft ?c - city)
:duration (= ?duration (/ (- (capacity ?a) (fuel ?a)) (refuel-rate ?a)))
:condition (and (at start (< (fuel ?a) (capacity ?a)))

(over all (at ?a ?c)))
:effect (at end (assign (fuel ?a) (capacity ?a))))
)

Figure 3: Zeno-Travel domain description in PDDL2.1.

slow-speed, fast-speed, slow-burn, fast-burn, capacity, and refuel-rate each
reserve eight index positions. For the quantities total-fuel-used, boarding-time,
debarking-time only a single fact identifier is needed. Last but not least we model
duration as an additional quantity total-time. This special variable is the only one
that is overwritten in the least commitment planning approach when scheduling plans
as described in Section 4.

202

Taming Numbers and Durations in MIPS

(define (problem zeno-travel-1)
(:domain zeno-travel)
(:objects plane - aircraft

ernie scott dan - person
city-a city-b city-c city-d - city)

(:init (= total-fuel-used 0) (= debarking-time 20) (= boarding-time 30)
(= (distance city-a city-b) 600) (= (distance city-b city-a) 600)
(= (distance city-b city-c) 800) (= (distance city-c city-b) 800)
(= (distance city-a city-c) 1000) (= (distance city-c city-a) 1000)
(= (distance city-c city-d) 1000) (= (distance city-d city-c) 1000)
(= (fast-speed plane) (/ 600 60)) (= (slow-speed plane) (/ 400 60))
(= (fuel plane) 750) (= (capacity plane) 750)
(= (fast-burn plane) (/ 1 2)) (= (slow-burn plane) (/ 1 3))
(= (refuel-rate plane) (/ 750 60))
(at plane city-a) (at scott city-a) (at dan city-c) (at ernie city-c))

(:goal (and (at dan city-a) (at ernie city-d) (at scott city-d)))
(:metric minimize total-time)

)

Figure 4: Zeno-Travel problem instance.

Flattening Temporal Identifiers We interpret each action as an integral entity, so that
all timed propositional and numerical preconditions can be merged. Similarly, all
effects are merged, independent of time at which they happen. Invariant conditions
like (over all (at ?a ?c)) in the action board are added into the precondition set.
We discuss the rationale for this step in Section 4.1.

Grounding Propositions Fact-space exploration is a relaxed enumeration of the planning
problem to determine a superset of all reachable facts. Algorithmically, a FIFO fact
queue is compiled. Successively extracted facts at the front of the queue are matched
to the operators. Each time all preconditions of an operator are fulfilled, the resulting
atoms according to the positive effect (add) list are determined and enqueued. This
allows us to separate off constant facts from fluents, since only the latter are reached
by exploration.

Clustering Atoms For a concise encoding of the propositional part we separate fluents
into groups, so that each state in the planning space can be expressed as a conjunc-
tion of (possibly trivial) facts drawn from each fact group (Edelkamp & Helmert,
1999). More precisely, let #pi(o1, . . . , oi−1, oi+1, . . . , on) be the number of objects oi

for which the fact (p o1 . . . on) is true. We establish a single-valued invariant at i
if #pi(o1, . . . , oi−1, oi+1, . . . , on) = 1. To allow for a better encoding, some predicates
like at and in are merged. In the example, three groups determine the unique position
of the persons (one of five) and one group determines the position of the plane (one
of four). Therefore, 3 · dlog 5e + 1 · dlog 4e = 11 bits suffice to encode the total of 19
fluents.

203

Edelkamp

Grounding Actions Fact-space exploration also determines all grounded operators. Once
all preconditions are met and grounded, the symbolic effect lists are instantiated. In
our case we determine 98 instantiated operators, which, by some further simplifications
that eliminate duplicates and trivial operators (no-ops), are reduced to 43.

Grounding Functions Simultanous to fact space exploration of the propositional part of
the problem, all heads of the numerical formulae in the effect lists are grounded. In
the example case only three instantiated formulae are fluent (vary with time): (fuel
plane) with initial value 750 as well as total-fuel-used and total-time both ini-
tialized with zero. All other numerical predicates are in fact constants that can be
substituted in the formula-bodies. In the example, the effect in (board dan city-a)
reduces to (increase (total-time) 30), while (zoom plane city-a city-b) has
the numerical effects (increase (total-time) 150),(increase (total-fuel-used)
300)), and (decrease (fuel plane) 300). Refuelling, however, does not reduce to
a single rational number, for example the effects in (refuel plane city-a) only
simplify to (increase (total-time) (/ (- (750 (fuel plane)) / 12.5))) and
(assign (fuel plane) 750). To evaluate the former assignment especially for a for-
ward chaining planner, the variable (total-time) has to be instantiated on-the-fly.
This is due to the fact that the value of the quantity (fuel plane) is not constant
and itself changes over time.

Symmetry Detection Regularities of the planning problem with respect to the transpo-
sition of domain objects is partially determined in the static analyzer and is addressed
in detail in Section 5.

The intermediate textual format of the static analyzer in annotated grounded PDDL-
like representation serves as an interface for other planners or model checkers, and as an
additional resource for plan visualization. Figures 5 and 6 show parts of the intermediate
representation as inferred in the Zeno-Travel example.

3.3 Heuristics

MIPS incorporates the following heuristic estimates.

Relaxed planning heuristic (RPH) Approximation of the number of planning steps
needed to solve the propositional planning problem with all delete effects removed (Hoff-
mann & Nebel, 2001). The heuristic is constructive, that is it returns the set of
operators that appear in the relaxed plan.

Numerical relaxed planning heuristic (numerical RPH) Our extension to RPH to
deal with with numbers is a combined propositional and numerical approximation
scheme allowing multiple operator application.

Pattern database heuristic (explicit PDB) Different planning space abstractions are
found in a greedy manner, yielding a selection of pattern databases that fit into main
memory. In contrast to RPH, pattern database can be designed to be disjoint yielding
an admissible estimate as needed for optimal planning in A* (Edelkamp, 2001c).

204

Taming Numbers and Durations in MIPS

(define (grounded zeno-travel-zeno-travel-1)
(:fluents

(at dan city-a) (at dan city-b) (at dan city-c) (at dan city-d)
(at ernie city-a) (at ernie city-b) (at ernie city-c) (at ernie city-d)
(at plane city-a) (at plane city-b) (at plane city-c) (at plane city-d)
(at scott city-a) (at scott city-b) (at scott city-c) (at scott city-d)
(in dan plane) (in ernie plane) (in scott plane))

(:variables (fuel plane) (total-fuel-used) (total-time))
(:init

(at dan city-c) (at ernie city-c) (at plane city-a) (at scott city-a)
(= (fuel plane) 750) (= (total-fuel-used) 0) (= (total-time) 0))

(:goal (at dan city-a) (at ernie city-d) (at scott city-d))
(:metric minimize (total-time))
(:group dan
(at dan city-a) (at dan city-b) (at dan city-c) (at dan city-d)
(in dan plane))

(:group ernie
(at ernie city-a) (at ernie city-b) (at ernie city-c) (at ernie city-d)
(in ernie plane))

(:group plane
(at plane city-a) (at plane city-b) (at plane city-c) (at plane city-d))

(:group scott
(at scott city-a) (at scott city-b) (at scott city-c) (at scott city-d)
(in scott plane))

Figure 5: Grounded representation of Zeno-Travel domain.

Symbolic pattern database heuristic (symbolic PDB) Symbolic PDBs apply to ex-
plicit and symbolic heuristic search engines (Edelkamp, 2002b). Due to the succinct
BDD-representation of sets of states, symbolic PDBs are often orders of magnitudes
larger than explicit ones.

Scheduling relaxed plan heuristic (scheduling RPH) Critical-path analysis through
scheduling guide the plan finding phase. Like RPH, which computes the length of the
greedily extracted sequential plan, scheduling RPH also takes the relaxed sequence
of operators into account, but searches for a suitable parallel arrangement, which in
turn defines the estimator function.

3.4 Exploration Algorithms

The algorithm portfolio includes three main explicit heuristic search algorithms.

A* The A* algorithm (Hart, Nilsson, & Raphael, 1968) is a variant of Dijkstra’s single-
source shortest path exploration scheme executed on a re-weighted state space graph.
For lower bound heuristics, A* can be shown to generate optimal plans (Pearl, 1985).
Weighting the influence of the heuristic estimate may accelerate solution finding, but
also affects optimality (Pohl, 1977).

205

Edelkamp

(:action board dan plane city-a
:condition
(and (at dan city-a) (at plane city-a))

:effect
(and (in dan plane) (not (at dan city-a))

(increase (total-time) (30.000000))))
[...]
(:action zoom plane city-a city-b
:condition
(and

(at plane city-a)
(>= (fuel plane) (300.000000)))

:effect
(and (at plane city-b) (not (at plane city-a))

(increase (total-time) (60.000000))
(increase (total-fuel-used) (300.000000))
(decrease (fuel plane) (300.000000))))

[...]
(:action refuel plane city-a
:condition
(and

(at plane city-a)
(< (fuel plane) (750.000000)))

:effect
(and

(increase (total-time) (/ (- (750.000000) (fuel plane)) (12.500000)))
(assign (fuel plane) (750.000000))))

[...]
)

Figure 6: Grounded representation of Zeno-Travel domain (cont.).

Iterative-Deepening A* (IDA*) The memory-limited variant of A* is suited to large
exploration problems with evaluation functions of small integer range and low time
complexity (Korf, 1985). IDA* can be extended with bit-state hashing (Edelkamp &
Meyer, 2001) to improve duplicate detection with respect to ordinary transposition
tables (Reinefeld & Marsland, 1994).

(Enforced) Hill Climbing (HC) The approach is another compromise between explo-
ration and exploitation. Enforced HC searches with an improved evaluation in a
breadth-first manner and commits established action selections as final (Hoffmann,
2000). Enforced HC is complete in undirected problem graphs.

MIPS also features the following two symbolic search algorithms2.

2. For non-deterministic domains, we have started implementing the weak, strong and strong cyclic explo-
ration algorithms of (Cimatti, Roveri, & Traverso, 1998).

206

Taming Numbers and Durations in MIPS

Bidirectional Symbolic Breadth-First-Search (BDD-BFS) The implementation per-
forms bidirectional blind symbolic search, choosing the next search direction to favor
the faster execution from the previous iterations (Edelkamp & Helmert, 1999).

Symbolic A* (BDDA*) The algorithm (Edelkamp & Reffel, 1998) performs guided sym-
bolic search and takes a (possibly partitioned) symbolic representation of the heuristic
as an additional input.

3.5 Composition of the Competition Version

In Figure 1 we have shaded the parts that were actually used in the competition version of
MIPS in dark gray. We used the relaxed planning heuristic for sequential plan generation.
The scheduling relaxed planning heuristic was used in temporal domains. Only in Level 2
problems did we use the numerically extended RPH, since it was added to the system in the
final weeks of the competition. We experimented with (symbolic) pattern databases with
mixed results. Since pattern databases are purely propositional in our implementation and
do not provide the retrieval of operators in the optimal abstract plan, we did not include
them in the competition version.

Our approach to extend the relaxed planning heuristic with numerical information helps
to find plans in challenging numerical domains like Settlers and was influenced by Hoff-
mann’s work on his competing planner Metric-FF (Hoffmann, 2002a). It builds a relaxed
planning graph by computing a fixed-point of a state vector restricted to monotonically
increasing propositional and numerical variables. Our version for integrating numbers into
the relaxed planning heuristic is not as general as Hoffmann’s contribution: it is restricted
to variable-to-constant comparisons and lacks the ability to simplify linear constraints.
Therefore, we omit the algorithmic details in this paper.

We decided not to employ (enforced) hill climbing for explicit plan generation as is done
in Metric-FF and probably LPG. Instead we applied A* with weight 2, that is the merit for
all states S ∈ S was fixed as f(S) = g(S)+2 ·h(S). The more conservative plan generation
engine was chosen to avoid unrecognized dead-ends, which we expected to be present in
benchmark problems. Our objective was that, at least, completeness should be preserved.
We also avoided known incomplete pruning rules, like action relevance cuts (Hoffmann &
Nebel, 2001) and goal ordering cuts (Koehler & Hoffmann, 2000).

In MIPS, (weighted) A* accesses both a Dial and a Weak-Heap priority queue data
structure. The former is used for propositional planning only, while the latter applies to
general planning with scheduling estimates. A Dial priority queue (Dial, 1969) has linear
run time behavior, if the maximal value w(u, v) + h(v) − h(u) of all edges (u, v) in the
weighted state space graph (labelled with heuristic h) is bounded by a constant. Weak-
Heaps (Edelkamp & Stiegeler, 2002) are simple and efficient relaxations to ordinary heaps.
Priority queues have been implemented as dynamic tables that double their sizes if they
become filled. Moreover, MIPS stores all generated and expanded states in a hash table
with chaining 3. As a further compression of the planning state space, all variables that
appear in the objective function are neglected from hash address calculations and state

3. An alternative storage structure is a collection of persistent trees (Bacchus & Kabanza, 2000), one for
each predicate. In the best case, queries and update times for the structure are logarithmic in the number
of represented atoms.

207

Edelkamp

comparisons. In general, this may lead to a sub-optimal pruning of duplicates. However,
for most benchmark domains this will not destroy optimality, since variables addressed in
the objective function are frequently monotonic and synonyms found later in the search
refer to worse solutions.

The price to be paid for selecting A*, especially in planning problems with large branch-
ing factors, is that storing all frontier nodes is space consuming. Recent techniques for
partial expansion of the horizon list (Yoshizumi, Miura, & Ishida, 2000) or reduced storage
of the visited list (Korf & Zhang, 2000; Zhou & Hansen, 2003) have not been included to
the system. In most cases, the number of expanded nodes was often not that large, while
computing the relaxed planning estimate appeared to be the computational bottleneck.
In retrospect, in the domains that were chosen, dead-ends were not central, so that hill
climbers appeared to be more effective at finding solutions.

In temporal domains we introduced an additional parameter δ to scale the influence
between propositional estimates (fp(S) = gp(S) + 2 · hp(S)) and scheduled ones (fs(S) =
gs(S)+2 ·hs(S)). More precisely, we altered the comparison function for the priority queue,
so that a comparison of parallel length priorities was invoked if the propositional difference
of values was not larger than δ ∈ IN0. A higher value of δ refers to a higher influence of the
scheduling RPH, while δ = 0 indicates no scheduling at all. In the competition we produced
data with δ = 0 (pure MIPS), and δ = 2 (optimized MIPS). In most comparisons of MIPS
to other planners the plain version is used, since it produces more solutions.

In (Edelkamp, 2002a) we experimented with an enumeration approach to fix numerical
variables to a finite domain, and with an any-time wrapper for optimization of objective
functions. These options were excluded from the competition version because of their
unpredictable impact on the planner’s performance.

3.6 Visualization

Visualization is important to ease plan understanding and to quickly detect inefficiencies
in the plan generation module. For visualization of plans with MIPS we extended the
animation system Vega (Hipke, 2000); a Client-Server architecture that runs an annotated
algorithm on the server side, which is visualized on the client side in a Java frontend. The
main purpose of the server is to make algorithms accessible through TCP/IP. It is able to
receive commands from multiple clients at the same time. We have extended Vega in two
ways (cf. Figures 7 and 8).

Gannt Chart Visualization Gannt Charts are representations for schedules, in which
horizontal bars are drawn for each activity, indicating estimated duration/cost. The
user selects any planner to be executed and the domain and problem file, which are
interpreted as command line options. Alternatively, established plans can be sent
directly to the visualizer with a void planner that merely mirrors the solution file.

Benchmark Visualization The second extension is a program suite to visualize all com-
petition domains. At the moment, only sequential plans are shown. For temporal
plans, a refined simulation is required, like the one produced by the PDDL2.1 plan
validator. Fortunately, in MIPS each temporal plan is a rescheduling of a sequential
one.

208

Taming Numbers and Durations in MIPS

Figure 7: Visualization of a plan in Gannt Chart format.

The images that represent domain objects were collected with an image web search
engine4. To generalize from specific instances, we advised the MIPS planner to export
propositional and numeric state infomation of an established plan in c-like syntax,
which in turn is included as a header by the domain visualizer.

4. PDDL2.1 Planning

In this section we elaborate on metric and temporal planning in MIPS. We give a formal
description on grounded planning instances and introduce the temporal model that we have

4. We used Google (cf. www.google.de) and searched for small GIFs

209

Edelkamp

Figure 8: Visualization of a planning problem instance of Settlers.

chosen. Next we look at operator dependency and the resulting action precedence relation.
We discuss optimality of the approach and some anomalies that can occur during state
space pruning. Last but not least, we turn to the treatment of arbitrary plan objective
functions.

Table 1 displays the basic terminology for sets used in this paper. As in most currently
successful planning system, MIPS grounds parameterized information present in the domain
description. For each set we infer a suitable index set, indicated by a bijective mapping φ
from each set to a finite domain. This embedding is important to deal with unique identifiers
of entities instead of their textual or internal representation. The arrays containing the
corresponding information can then be accessed in constant time.

210

Taming Numbers and Durations in MIPS

Set Descriptor Example(s)
OBJ objects dan, city-a, plane, . . .
T YPE object types aircraft, person, . . .
PRED predicates (at ?a ?c), (in ?p ?a), . . .
FUNC functions (fuel ?a), (total-time), . . .
ACT actions (board ?a ?p), (refuel ?a), . . .
O operators (board plane scott), . . .
F fluents/atoms (at plane city-b), . . .
V variables (fuel plane), (total-time), . . .

Table 1: Basic set definitions.

Consequently, like several other planning systems, MIPS refers to grounded planning
problem representations.

Definition 1 (Grounded Planning Instance) A grounded planning instance is a quadruple
P = 〈S, I,O,G〉, where S is the set of planning states, I ∈ S is the initial state, G ⊆ S is
the set of goal states. In a mixed propositional and numerical planning problem the state
space S is given by

S ⊆ 2F × IR|V|,

where 2F is the power set of F . Therefore, a state S ∈ S is a pair (Sp, Sn) with propositional
part Sp ∈ 2F and numerical part Sn ∈ IR|V|.

For the sake of brevity, we assume the operators are in normal form, which means that
propositional parts (preconditions and effects) satisfy standard STRIPS notation (Fikes &
Nilsson, 1971) and numerical parts are given in the form of arithmetic trees t taken from
the set of all trees T with arithmetic operations in the nodes and numerical variables and
evaluated constants in the leaves. However, there is no fundamental difference for a more
general representation of preconditions and effects. The current implementation in MIPS
simplifies ADL expressions in the preconditions and takes generic precondition trees for the
numerical parts, thereby including comparison symbols, logical operators and arithmetic
subtrees5.

Definition 2 (Syntax of Grounded Planning Operators) An operator o ∈ O in normal form
o = (α, β, γ, δ) has propositional preconditions α ⊆ F , propositional effects β = (βa, βd) ⊆
F2 with add list βa and delete list βd, numerical preconditions γ, and numerical effects δ. A
numerical precondition c ∈ γ is a triple c = (hc,⊗, tc), where hc ∈ V, ⊗ ∈ {≤, <, =, >,≥},
and tc ∈ T , where T is an arithmetic tree. A numerical effect m ∈ δ is a triple m =
(hm,⊕, tm), where hm ∈ V, ⊕ ∈ {←, ↑, ↓} and tm ∈ T . In this case, we call hm the head of
the numerical effect.

5. In newer versions of MIPS mixing numerical and logical preconditions of the form (or P (< F 3)), with
P ∈ F and F ∈ V is in fact feasible. Boolean expressions are put into negational normal form and a
disjunction in the precondition will produce different action instantiations.

211

Edelkamp

Obviously, ⊗ ∈ {≤, <, =, >,≥} represents the associated comparison relation, ← de-
notes an assignment to a variable, while ↑ and ↓ indicate a respective increase or decrease
operation.

Definition 3 (Constraint Satisfaction and Modifier Update) Let φ be the index mapping
for variables. A vector Sn = (S1, . . . , S|V|) of numerical variables satisfies a numerical
constraint c = (hc,⊗, tc) ∈ γ if Sφ(hc) ⊗ eval(Sn, tc) is true, where eval(Sn, tc) ∈ IR is
obtained by substituting all v ∈ V in tc by Sφ(hc) followed by a simplification of tc.

A vector Sn = (S1, . . . , S|V|) is updated to the vector S′n = (S′1, . . . , S
′
|V|) by modifier

m = (hm,⊕, tm) ∈ δ, if

• S′φ(hm) = eval(Sn, tm) for ⊕ = ←,

• S′φ(hm) = Sφ(hm) + eval(Sn, tm) for ⊕ = ↑, and

• S′φ(hm) = Sφ(hm) − eval(Sn, tm) for ⊕ = ↓.

We next formalize the application of planning operators to a given state.

Definition 4 (Semantics of Grounded Planning Operator Application) An operator o =
(α, β, γ, δ) ∈ O applied to a state S = (Sp, Sn), Sp ∈ 2F and Sn ∈ IR|V|, yields a successor
state S′ = (S′p, S

′
n) ∈ 2F × IR|V| as follows.

If α ⊆ Sp and Sn satisfies all c ∈ γ then S′p = (Sp \βd)∪βa and the vector Sn is updated
for all m ∈ δ .

The propositional update S′p = (Sd \ βd) ∪ βa is defined as in standard STRIPS. As an
example take the state S = (Sp, Sn) with

Sp ={(at ernie city-d), (at plane city-a), (at scott city-d), (in dan plane)}
Sn ={(fuel plane) : 83.3333, (total-fuel-used) : 1666.6667, (total-time) : 710}.

The successor S′n = (S′p, S
′
n) of S due to action (debark dan plane city-a) with

S′p ={(at dan city-a), (at ernie city-d), (at plane city-a), (at scott city-d)}
S′n ={(fuel plane) : 83.3333, (total-fuel-used) : 1666.6667, (total-time) : 730}.

In some effect lists the order of update operations is important. For example when
refuelling the aircraft in ZenoTravel, cf. Figure 6, the fuel level has to be reset after variable
total-time is updated.

The set of goal states G is often given as G = (Gp,Gn) with a partial propositional state
description Gp ⊂ F , and Gn as a set of numerical conditions c = (hc,⊗, tc). Moreover,
the arithmetic trees tc usually collapses to simple leaves labelled with numerical constants.
Hence, only for the sake of simplifying the complexity analysis for object symmetry we
might assume that |Gn| ≤ |V|. Complex goal description are no limitation to the planner,
since they can easily transformed to preconditions of an goal-enabling opererator.

212

Taming Numbers and Durations in MIPS

4.1 Temporal Model

The simplest approach for solving a temporal planning problem is to generate a sequential
plan. Of course, this option assumes that the temporal structure contributes only to the
value of the plan and not to its correctness. That is, it assumes that there is no necessary
concurrency in a valid plan. In cases in which actions achieve conditions at their start
points and delete them at their end points, for example, concurrency can be a necessary
part of the structure of a valid plan.

Definition 5 (Sequential Plan) A solution to a planning problem P = 〈S, I,O,G〉 in the
form of a sequential plan πs is an ordered sequence of operators Oi ∈ O, i ∈ {1, . . . , k},
that transforms the initial state I into one of the goal states G ∈ G, i.e., there exists a
sequence of states Si ∈ S, i ∈ {0, . . . , k}, with S0 = I, Sk = G such that Si is the outcome
of applying Oi to Si−1, i ∈ {1, . . . , k}.

The time stamp ti for a durational operator Oi, i ∈ {1, . . . , k} is its starting time. If
d(Oi) is the duration of operator Oi, then ti =

∑i−1
j=1 d(Oj).

For sequential plans, time stamps are calculated in MIPS using the extra variable
total-time. This variable is updated when scheduling operators. An example of a se-
quential plan with time stamps is shown in Figure 12.

Minimizing sequential plan length was the only objective in the first and second plan-
ning competitions. Since Graphplan-like planners (Blum & Furst, 1995) like IPP (Koehler,
Nebel, & Dimopoulos, 1997) and STAN (Long & Fox, 1998) already produced parallel plans
(assuming action duration 1), this was indeed a limiting factor in evaluating plan quality.
The most important reason for this artificial restriction was that total-ordered plans were
easier to automatically validate, a necessity for checking correctness in a competition.

PDDL 2.1 domain descriptions include temporal modifiers at start, over all, and at end,
where the label at start denotes the preconditions and effects at invocation time of the
action, over all refers to an invariance condition and at end to the finalization conditions
and consequences of the action.

In Figure 9 we show two different options for flattening this information to simple
preconditions and effects in order to derive the semantic for sequential plans. In the first
case (top right), the compound operator is split into three smaller parts, one for action
invocation, one for invariance maintenance, and one for action termination. This is the
semantics suggested by (Fox & Long, 2003).

In PDDL2.1 there are no effects in the invariance pattern, i.e. B′ = ∅. As in action
board, it is quite natural to code invariance in the form of conditions (B) that perform no
actual status change: when a person boards an aircraft in a city the aircraft is required to
remain at the city throughout the action. When moving through a corridor, the status of
being in the corridor that could be encoded in the invariant would change at the starting
time of the action execution.

Moreover, we found that in the benchmarks it is uncommon that new effects in at-start
are preconditioned for termination control or invariance maintenance, i.e. A′ ∩ (B ∪ C) = ∅.
Even though the intersection of conditions and effects are not formally defined yet, this can
be interpreted as executing one construct does not interfere with the other one. This reflects

213

Edelkamp

cond:

eff:
pre:

pre: pre: eff: pre: eff:

eff:

eff:
at-endat-start

A B C

A′ B′ C ′

A A′ B B′ C C ′

ABC A′B′C ′

over-all

Figure 9: Compiling temporal modifiers into operators.

a possible partition of an operator into sub-operators A, B, C, A′, B′, and C ′. Dependence
and transposition of such separated conditions and effects are considered in Section 4.2.

If we consider the example problem once more, we observe, that in the action board, A′

consists of the at (person airplane) predicate. As seen above, B requires the plane to stay
at the city of boarding, while C is empty. In action zoom, A′ contains the effect that the
plane is no longer at the location where the flight started, and B and C are both empty. In
all cases we have A′ ∩ (B ∪ C) = ∅.

If B′ = ∅ and A′ ∩ (B ∪ C) = ∅ then the sequential execution of the sequence of
sub-operators (A,A′, B, B′, C, C ′) is equal to the execution sequence (A,B, C, A′, B′, C ′).
The reasoning is as follows. Since B′ = ∅ we have (A,A′, B, B′, C, C ′) = (A,A′, B, C, C ′).
Conditions A′ ∩ B = ∅ and A′ ∩ C = ∅ allows us to exchange the order of the corresponding
items, so that (A,A′, B, C, C ′) = (A,B, C, A′, C ′). Once more, we apply B′ = ∅ to derive
(A,B, C, A′, C ′) = (A,B, C, A′, B′, C ′). The consequence remains valid if the condition
B′ = ∅ is weakened to B′ ∩ C = ∅.

In MIPS the operator representation at the bottom right of Figure 9 was chosen. Note
that the intermediate format of the example problem in Figures 5 and 6 implicitly assumed
this temporal model. For sequential planning in the competition benchmark domains we
have not observed many deficiencies with this model6.

However, the applicability of the model for exploiting parallelism is limited. For example
consider two people that lift a table from two sides at once, which could not be done with
just one person alone. In this case we have a parallel execution of a set of actions that
cannot be totally ordered. This is not allowed in MIPS. It may be argued that defining
such an action that requires two different persons to be at a certain place would require
the equality construct in PDDL or some form of numerical maintenance of the number of
people in the room, but we found another (artificial) example of a planning problem with
no total order. Consider the simple STRIPS planning problem domain with I = {B},
G = {{A,C}}, and O = {({B}, {A}, {B}), ({B}, {C}, {B})}. Obviously, both operators
are needed for goal achievement, but there is no sequential plan of length 2, since B is
deleted in both operators. However, a parallel plan could be devised, since all precondition
are fulfilled at the first time step.

6. In current versions of MIPS we have refined the model, where at-start, over all, and at-end information
is preserved through the grounding process and is attached to each action. The approach does allow
dependent operators to overlap and minimizes the number of ε gaps, between start-start, start-end and
end-end exclusions. In some of the domains, this improvement yields much better solutions.

214

Taming Numbers and Durations in MIPS

4.2 Operator Dependency

The definition of operator dependency enables computing optimal schedules of sequential
plans with respect to the generated action sequence and its causal operator dependency
structure. If all operators are dependent (or void with respect to the optimizer function),
the problem is inherently sequential and no schedule leads to any improvement.

Definition 6 (Dependency/Mutex Relation) Let L(t) denote the set of all leaf variables in
the tree t ∈ T . Two grounded operators O = (α, β, γ, δ) and O′ = (α′, β′, γ′, δ′) in O are
dependent/mutex, if one of the following three conflicts hold.

Propositional conflict The propositional precondition set of one operator has a non-
empty intersection with the add or the delete list of the other, i.e., α ∩ (β′a ∪ β′d) 6= ∅
or (βa ∪ βd) ∩ α′ 6= ∅.

Direct numerical conflict The head of a numerical modifier of one operator is contained
in some condition of the other one, i.e. there exists a c′ = (h′c,⊗, t′c) ∈ γ′ and an
m = (hm,⊕, tm) ∈ δ with hm ∈ L(t′c) ∪ {h′c} or there exists a c = (hc,⊗, tc) ∈ γ and
an m′ = (h′m,⊕, t′m) ∈ δ′ with h′m ∈ L(tc) ∪ {hc}.

Indirect numerical conflict The head of the numerical modifier of one operator is con-
tained in the formula body of the modifier of the other one, i.e., there exists an
m = (hm,⊕, tm) ∈ δ and m′ = (h′m,⊕, t′m) ∈ δ′ with hm ∈ L(t′m) or h′m ∈ L(tm).

As an example, the operators (board scott plan city-a) and (fly plane city-a
city-c) have a propositional conflict on the fluent (at plane city-a), while (refuel
plane-a city-a) and (fly plane city-a city-c) have a direct numerical conflict on
the variable (fuel plane). Indirect conflicts are more subtle, and do not appear in the
example problem.

We will use dependency to find an optimal concurrent arrangement of the operators in
the sequential plan. If O2 is dependent on O1 and O1 appears before O2 in the sequential
plan, O1 has to be invoked before O2 starts. The dependence relation is reflexive, i.e. if O
is in conflict with O′ then O′ is in conflict with O. Moreover, it appears restrictive when
compared to the PDDL 2.1 guidelines for mutual exclusion (Fox & Long, 2003), which
allows operators to be partially overlapping even if they are dependent.

However, it is possible to generalize our approach. If, according to the model of Fox
and Long, the two actions Oi are represented as (Ai, A

′
i, Bi, B

′
i, Ci, C

′
i), i ∈ {1, 2}, the

dependency violation between O1 and O2 can be located by identifying the sub-operators
that interact. In fact we may identify eight possible refined conflicts in which (A1 ∪ A′

1)
interacts with (A2 ∪ A′

2), (A1 ∪ A′
1) interacts with (B2 ∪ B′

2), (A1 ∪ A′
1) interacts with

(C2 ∪C ′
2), (B1 ∪B′

1) interacts with (A2 ∪A′
2), (B1 ∪B′

1) interacts with (C2 ∪C ′
2), (C1 ∪C ′

1)
interacts with (A2 ∪ A′

2), (C1 ∪ C ′
1) interacts with (A2 ∪ A′

2), or (C1 ∪ C ′
1) interacts with

(A2∪A′
2). By asserting duration zero for the pair (Ai, A

′
i), d(A) for (Bi, B

′
i), and again zero

for the pair (Ci, C
′
i), one can fix the earliest start and end time of O2 with respect to O1.

In the competition version of MIPS, we stick to the simplified temporal model. For
the competition domains, improving sequential plans according to this dependency relation
turned out to produce plans of sufficient quality.

215

Edelkamp

In our implementation, the dependence relation is computed beforehand and tabulated
for constant time access. To improve the efficiency of pre-computation, the set of leaf
variables is maintained in an array, once the grounded operator is constructed.

The original Graphplan definition of the propositional mutex relation is close to ours.
It fixes interference as β′d ∩ (βa ∪ α) 6= ∅ and (β′a ∪ α′) ∩ βd 6= ∅.

Lemma 1 If βd ⊆ α and β′d ⊆ α′, operator inference in the Graphplan model is implied
by the propositional MIPS model of dependence.

Proof: If βd ⊆ α and β′d ⊆ α′, for two independent operators o = (α, β) and o′ = (α′, β′):
α∩ (β′a∪β′d) = ∅ implies βd∩ (β′a∪β′d) = ∅, which in turn yields βa∩β′d = ∅. The condition
β′a ∩ βd = ∅ is inferred analogously.

The notion of dependency is also related to partial order reduction in explicit-state model
checking (Clarke et al., 1999), where two operators O1 and O2 are independent if for each
state S ∈ S the following two properties hold:

1. Neither O1 or O2 disable the execution of the other.

2. O1 and O2 are commutative, i.e. O1(O2(S)) = O2(O1(S)) for all S.

The next result indicates that both state space enumeration approaches refer to the
same property.

Theorem 1 (Commutativity) Two independent (STRIPS) operators O = (α, β) and O′ =
(α′, β′) with βd ⊆ α and β′d ⊆ α′ are commutative and preserve the enabled property (i.e.
if O and O′ are enabled in S then O is enabled in O′(S) and O′ is enabled in O(S)).

Proof: Since βd ⊆ α and β′d ⊆ α′, we have βa∩β′d = ∅ and β′a∩βd = ∅ by Lemma 1. Let
S′ be the state ((S \βd)∪βa) and let S′′ be the state ((S \β′d)∪β′a). Since (β′a∪β′d)∩α = ∅,
O is enabled in S′′, and since (βa ∪ βd) ∩ α′ = ∅, O′ is enabled in S′. Moreover,

O(O′(S)) = (((S \ β′d) ∪ β′a) \ βd) ∪ βa

= (((S \ β′d) \ βd) ∪ β′a) ∪ βa

= S \ (β′d ∪ βd) ∪ (β′a ∪ βa)
= S \ (βd ∪ β′d) ∪ (βa ∪ β′a)
= (((S \ βd) \ β′d) ∪ βa) ∪ β′a

= (((S \ βd) ∪ βa) \ β′d) ∪ β′a = O′(O(S)).

As a consequence, operator independence indicates possible transpositions of two op-
erators O1 and O2 to prune exploration in sequential plan generation. A less restrictive
notion of independence, in which several actions may occur at the same time even if one
deletes an add-effect of another is provided in (Knoblock, 1994). To detect domains for
which parallelization leads to no improvement, we utilize the following sufficient criterion.

216

Taming Numbers and Durations in MIPS

Definition 7 (Inherent Sequential Domains) A planning domain is said to be inherently
sequential if each operator in any sequential plan is either instantaneous (i.e. with zero
duration) or dependent on its immediate predecessor.

The static analyzer checks this by testing each operator pair. While some benchmark do-
mains like DesertRats and Jugs-and-Water are inherently sequential, others like ZenoTravel
and Taxi are not.

Definition 8 (Parallel Plan) A solution to a planning problem P = 〈S, I,O,G〉 in the
form of a parallel plan πc = ((O1, t1), . . . , (Ok, tk)) is an arrangement of operators Oi ∈ O,
i ∈ {1, . . . , k}, that transforms the initial state I into one of the goal states G ∈ G, where
Oi is executed at time ti ∈ IR≥0.

An example of a parallel plan for the ZenoTravel problem is depicted in Figure 12.
Backstöm (1998) clearly distinguishes partially ordered plans (O1, . . . , Ok,�), with the

relation � ⊆ {O1, . . . , Ok}2 being a partial order (reflexive, transitive, and antisymmet-
ric), from parallel plans (O1, . . . , Ok,�,#), with # ⊆ (� ∪ �−1) (irreflexive, symmetric)
expressing, which actions must not be executed in parallel.

Definition 9 (Precedence Ordering) An ordering �d induced by the operators O1, . . . , Ok

is defined by

Oi �d Oj :⇐⇒ Oi and Oj are dependent and 1 ≤ i < j ≤ k.

Precedence is not a partial ordering, since it is neither reflexive nor transitive. By computing
the transitive closure of the relation, however, precedence could be extended to a partial
ordering. A sequential plan O1, . . . , Ok produces an acyclic set of precedence constraints
Oi �d Oj , 1 ≤ i < j ≤ k, on the set of operators. It is also important to observe, that the
constraints are already topologically sorted according to �d with the index order 1, . . . , k.

Definition 10 (Respecting Precedence Ordering in Parallel Plan) For O ∈ O let d(O) ∈
IR≥0 be the duration of operator O in a sequential plan. In a parallel plan πc = ((O1, t1),
. . . , (Ok, tk)) that respects �d, we have ti + d(Oi) ≤ tj for Oi �d Oj, 1 ≤ i < j ≤ k.

For optimizing plans (Bäckström, 1998) defines parallel execution time as max{ti +
d(Oi) | Oi ∈ {O1, . . . , Ok}}, so that if Oi � Oj , then ti + d(Oi) ≤ tj , and if Oi#Oj , then
either ti + d(Oi) ≤ tj or tj + d(Oj) ≤ ti. These two possible choices in # are actually not
apparent in our approach, since we already have a precedence relation at hand and just
seek the optimal arrangement of operators. Consequently we assert that only one option,
namely ti + d(Oi) ≤ tj can be true, reducing # to �d. In order to find optimal schedules
of sequential plans an approach similar to (Bäckström, 1998) would be necessary. This
would dramatically increase the computational complexity, since optimal scheduling of a
set of fixed-timed operators is NP-hard. Therefore, we decided to restrict the dependency
relation to �d.

Definition 11 (Optimal Parallel Plan) An optimal parallel plan with respect to a sequence
of operators O1, . . . , Ok and precedence ordering �d is a plan π∗ = ((O1, t1), . . . , (Ok, tk))
with minimal parallel execution time OPT = max{ti + d(Oi) | Oi ∈ {O1, . . . , Ok}} among
all parallel plans πc = ((O1, t

′
1), . . . , (Ok, t

′
k)) that respect �d.

217

Edelkamp

Procedure Critical-Path
Input: Sequence of operators O1, . . . , Ok, precedence ordering �d

Output: Optimal parallel plan length max{ti + d(Oi) | Oi ∈ {O1, . . . , Ok}}
for all i ∈ {1, . . . , k}

e(Oi)← d(Oi)
for all j ∈ {1, . . . , i− 1}

if (Oj �d Oi)
if e(Oi) < e(Oj) + d(Oi)

e(Oi)← e(Oj) + d(Oi)
return max1≤i≤k e(Oi)

Figure 10: Algorithm to compute critical path costs.

Many algorithms have been suggested to convert sequential plans into partially ordered
ones (Pednault, 1986; Regnier & Fade, 1991; Veloso, Pérez, & Carbonell, 1990). Most
of them interpret a totally ordered plan as a maximal constrained partial ordering � =
{(Oi, Oj) | 1 ≤ i < j ≤ k} and search for less constrained plans. However, the problem of
minimum constraint “deordering” has also been proven to be NP-hard, unless the so-called
validity check is polynomial (Bäckström, 1998), where deordering maintains validity of the
plan by lessening its constrainedness, i.e. �′⊆� for a new ordering �′.

Since we have an explicit model of dependency and time, optimal parallel plans will not
change the ordering relation �d at all.

4.3 Critical Path Analysis

The Project Evaluation and Review Technique (PERT) is a critical path analysis algorithm
usually applied to project management problems. A critical path is a sequence of activities
such that the total time for activities on this path is greater than or equal to any other
path of operators. A delay in any tasks on the critical path leads to a delay in the project.
The heart of PERT is a network of tasks needed to complete a project, showing the order
in which the tasks need to be completed and the dependencies between them.

As shown in Figure 10, PERT scheduling reduces to a variant of Dijkstra’s shortest
path algorithm in acyclic graphs (Cormen, Leiserson, & Rivest, 1990). As a matter of fact,
the algorithm returns the length of the critical path and not the inferred partially ordered
plan. However, obtaining the temporal plan is easy. In the algorithm, e(Oi) is the tentative
earliest end time of operator Oi, i ∈ {1, . . . , k}, while the earliest starting times ti for all
operators in the optimal plan are given by ti = e(Oi)− d(Oi).

Theorem 2 (PERT Scheduling) Given a sequence of operators O1, . . . , Ok and a prece-
dence ordering �d, an optimal parallel plan π∗ = ((O1, t1), . . . , (Ok, tk)) can be computed in
optimal time O(k + | �d |).

Proof: The proof is by induction on i ∈ {1, . . . , k}. The induction hypothesis is that
after iteration i the value e(Oi) is correct, e.g. e(Oi) is the earliest end time of operator

218

Taming Numbers and Durations in MIPS

Oi. This is clearly true for i = 1, since e(O1) = d(O1). We now assume that the hypothesis
is true 1 ≤ j < i and look at iteration i. There are two choices. Either there is a j ∈
{1, . . . , i − 1} with Oj �d Oi. For this case after the inner loop is completed, e(Oi) is
set to max{e(Oj) + d(Oj) | Oj �d Oi, j ∈ {1, . . . , i − 1}}. On the other hand, e(Oi) is
optimal, since Oi cannot start earlier than max{e(Oj) | Oj �d Oi, j ∈ {1, . . . , i− 1}}, since
all values e(Oj) are already the smallest possible by the induction hypothesis. If there is
no j ∈ {1, . . . , i− 1} with Oj �d Oi, then e(Oi) = d(Oi) as in the base case. Therefore, at
the end, max1≤i≤k e(Oi) is the optimal parallel path length.

The time and space complexity of the algorithm Critical-Path are clearly in O(k2),
where k is the length of the sequential plan. Using an adjacency list representation these
efforts can be reduced to time and space proportional to the number of vertices and edges
in the dependence graph, which are of size O(k + | �d |). The bound is optimal, since the
input consists of Θ(k) operators and Θ(| �d |) dependencies among them.

Can we apply critical path scheduling, even if we consider the temporal model of Fox
and Long, allowing overlapping operator execution of dependent operators? The answer is
yes. We have already seen that when considering two dependent operators Oi and Oj in the
Fox and Long model, we can determine the earliest start (and end) time of Oj with respect
to the fixed start time of Oi. This is all that we need. The proof of Theorem 2 shows that
we can determine the earliest end time for the operators sequentially.

4.4 On the Optimality of MIPS

Since MIPS optimally schedules sequential plans, the question remains, will the system
eventually find an optimal plan? In the competition, the system terminates when the
first sequential plan is found. Since the relaxed planning heuristic is not admissible, all
A* variants cannot guarantee optimal (sequential or parallel) plans. However, computing
optimal plans is desirable, even if – due to limited computational resources – finding optimal
plans is hard.

According to our temporal model, in an optimal parallel plan, each operator either starts
or ends at the start or end time of another operator. Therefore, at least for a finite number
of actions in the optimal plan, we have a possibly exponential but finite number of possible
parallel plans.

This immediately leads to the following naive plan enumeration algorithm: For all |O|i
operator sequences of length i, i ∈ IN, generate all possible parallel plans, check for each
individual schedule if it transforms the initial state into one of the goals, and take the
sequence with smallest parallel plan length. Since all parallel plans are computed, this yields
a complete and optimal algorithm. As seen in the example of two persons lifting a table,
this approach can be more expressive than applying any algorithm that finds sequential
plans first. However, the algorithm is very inefficient.

In practice, the natural assumption is that each parallel plan corresponds to at least one
(possible many) sequential one(s). Conversely, each partially ordered plan can be established
by generating a totally ordered plan first and then applying a scheduling algorithm to it to
find its best partial-order.

The algorithm in the Figure 11 indicates how to wrap a forward chaining planner so
that it has any-time performance and gradually improves plan quality. The general state

219

Edelkamp

Procedure Any-Time
Input: Planning Problem 〈S, I,O,G〉
Output: Optimal parallel plan length α

α←∞
Open← I
while (Open 6= ∅)

S ← Extract(Open)
for all S′ ∈ expand(S)

if (S′ ∈ G)
cp← Critical-Path (path(S′),�d)
if (cp < α)

α← cp
else

Change(Open, S′)
return α

Figure 11: General any-time search algorithm.

expanding scheme maintains the search horizon in the list Open. For simplicity the main-
tenance of stored nodes in the list Closed is not shown. In the algorithm, the current best
critical path cost α bounds the upcoming exploration process. In turn α is updated each
time a plan is found with a shorter critical path.

As in the CriticalPath procedure above, the algorithm returns the execution time only,
and not the established plan. To compute the plan that meets the returned value α, we also
store the schedule of the generating sequence path(S′) in a global record. In most cases,
storing S′ is sufficient, since the path and its PERT scheduling can be restored by calling
procedure CriticalPath at the end of the procedure.

Assuming that each optimal parallel plan is a schedule of a sequential plan and the state
space is finite, the any-time extension for a cycle-avoiding enumeration strategy is indeed
complete and optimal. The reason for completeness in finite graphs is that the number of
acyclic paths in G is finite and with every node expansion, such an algorithm adds new
links to its traversal tree. Each newly added link represents a new acyclic path, so that,
eventually, the reservoir of paths must be exhausted.

Are there also valid parallel plans that cannot be produced by PERT scheduling of a
sequential plan? The answer is no. If a partial ordering algorithm terminates with an
optimal schedule, we can generate a corresponding sequential plan while preserving the
dependency structure. Optimal PERT-scheduling of this plan with respect to the set of
operators and the imposed precedence relation will yield the optimal parallel plan. If all
sequential plans are eventually generated, the optimal parallel plan will also be found by
PERT scheduling.

The problem of enumeration in infinite state spaces is that there can be infinite plateaus
where the plan objective function has a constant value. Normally increasing the length of
a plan increases the cost. However, this is not true in all benchmark problems, since there

220

Taming Numbers and Durations in MIPS

may be an infinite sequence of events that do not contribute to the plan objective. For
example, loading and unloading tanks in the pre-competition test domain DesertRats does
not affect total-fuel consumption, which has to be minimized in one of the instances.

Enumeration schemes do not contradict known undecidability results in numerical plan-
ning (Helmert, 2002). If we have no additional information like a bound on the maximal
number of actions in a plan or on the number of actions that can be executed in parallel, we
cannot decide whether a cycle-free enumeration will terminate or not. On the other hand
if there is a solution, the any-time algorithm will eventually find it.

4.5 Pruning Anomalies

Acceleration techniques like duplicate detection in sequential plan generation have to be
chosen carefully to maintain parallel plan length optimality. This approach does affect
parallel optimality, as the following example shows. In the ZenoTravel problem consider
the sequences

(zoom city-a city-c plane), (board dan plane city-c),
(refuel plane city-c), (zoom city-c city-a plane),
(board scott plane city-a), (debark dan plane city-a), (refuel plane city-a),

and

(board scott plane city-a), (zoom city-a city-c plane),
(board dan plane city-c), (refuel plane city-c),
(zoom city-c city-a plane), (debark dan plane city-a), (refuel plane city-a)

The two sets of operators are the same and so are the resulting (sequentially generated)
states. However, the PERT schedule for the first sequence is shorter than the schedule for
the second one, because boarding scott can be done in parallel with the final two actions
in the plan.

For small problems, such anomalies can be avoided by omitting duplicate pruning. As
an example Figure 12 depicts a sequential plan for the example problem instance and its
PERT schedule, which turns out to be the overall optimal parallel plan. Another option is
to store the resulting parallel plan for state caching instead of the sequential one. Note that
in order to ease generation of sequential solutions for large planning problem instances, in
the competition version of MIPS we used sequential state pruning.

4.6 Heuristic Search

The main drawback of blind path enumeration is that it is seemingly too slow for practical
planning. Heuristic search algorithms like A* and IDA* reorder the traversal of states,
and (assuming no state caching) do not affect completeness and optimality of the any-
time wrapper. The efficiency of the wrapper directly depends on the quality of the path
enumeration. In the competition version of MIPS we omitted any-time wrapping, since
optimal solutions were not required and the practical run-time behavior is poor.

Instead we used an A* search engine, that terminates on the first established solution.
The question remains: is there still hope of finding near optimal parallel plans? A general
result also applicable for infinite graphs was established by (Pearl, 1985): If the cost of every

221

Edelkamp

0: (zoom plane city-a city-c) [100]
100: (board dan plane city-c) [30]
130: (board ernie plane city-c) [30]
160: (refuel plane city-c) [40]
200: (zoom plane city-c city-a) [100]
300: (debark dan plane city-a) [20]
320: (board scott plane city-a) [30]
350: (refuel plane city-a) [40]
390: (zoom plane city-a city-c) [100]
490: (refuel plane city-c) [40]
530: (zoom plane city-c city-d) [100]
630: (debark ernie plane city-d) [20]
650: (debark scott plane city-d) [20]

0: (zoom plane city-a city-c) [100]
100: (board dan plane city-c) [30]

(board ernie plane city-c) [30]
100: (refuel plane city-c) [40]
140: (zoom plane city-c city-a) [100]
240: (debark dan plane city-a) [20]

(board scott plane city-a) [30]
(refuel plane city-a) [40]

280: (zoom plane city-a city-c) [100]
380: (refuel plane city-c) [40]
420: (zoom plane city-c city-d) [100]
520: (debark ernie plane city-d) [20]

(debark scott plane city-d) [20]

Figure 12: A sequential plan for Zeno-Travel (left) and its PERT schedule (right).

infinite path is unbounded, A*’s cost function f = g + h will preserve optimality. This is
additional rationale for choosing an A*-like exploration in MIPS instead of hill climbing or
best-first. As in breadth-first search, the rising influence of the g-value is crucial.

To find an adequate heuristic estimate for parallel plans is not easy. In fact we have
not established a competitive and admissible heuristic, which is required for optimal plan
finding in A*. Our choice was a scheduling extension to RPH. In contrast to the RPH, the
new heuristic takes the relaxed sequence of operators and searches for a suitable parallel
arrangement, which in turn defines the estimator function.

We found that adding PERT-schedules for the path to a state and for the sequence of
actions in the relaxed plan is not as accurate as the PERT-schedule of the combined paths.
Therefore, the classical merit function of A*-like search engines f = g+h of generating path
length g and heuristic estimate h has no immediate correspondence for parallel planning.
Consequently, we define the heuristic value of scheduling RPH as the parallel plan length
of the combined path minus the parallel plan length of the generating path.

4.7 Arbitrary Plan Objectives

In PDDL 2.1 plan metrics other than minimizing total (parallel) execution time can be
specified. This influences the inferred solutions. In Figure 13 we depict two plans found
by MIPS for the objective functions of minimizing total-fuel-used, and minimizing the
compound (+ (* 10 (total-time)) (* 1 (total-fuel-used))).

For the first case we computed an optimal value of 1,333.33, while for the second case we
established 7,666.67 as the optimized merit. When optimizing time, the ordering of board
and zoom actions is important. When optimizing total-fuel we reduce speed to save fuel
consumption to 333.33 per flight but we may board the first passenger immediately. We
also save two refuel actions with respect to the first case.

When increasing the importance of time we can trade refueling actions for time, so that
both zooming and flight actions are chosen for the complex minimization criterion.

The first attempt to include arbitrary plan objectives was to alter the PERT scheduling
process. However, the results did not match the ones produced by the validator (Long &

222

Taming Numbers and Durations in MIPS

0: (board scott plane city-a) [30]
30: (fly plane city-a city-c) [150]
180: (board ernie plane city-c) [30]

(board dan plane city-c) [30]
210: (fly plane city-c city-a) [150]
360: (debark dan plane city-a) [20]

(refuel plane city-a) [53.33]
413.33: (fly plane city-a city-c) [150]
563.33: (fly plane city-c city-d) [150]
713.33: (debark ernie plane city-d)[20]

(debark scott plane city-d)[20]

0: (zoom plane city-a city-c) [100]
100: (board dan plane city-c) [30]

(board ernie plane city-c) [30]
(refuel plane city-c) [40]

140: (zoom plane city-c city-a) [100]
240: (debark dan plane city-a) [20]

(board scott plane city-a) [30]
(refuel plane city-a) [40]

280: (fly plane city-a city-c) [150]
430: (fly plane city-c city-d) [150]
580: (debark ernie plane city-d) [20]

(debark scott plane city-d) [20]

Figure 13: Optimized plans in Zeno-Travel according to different plan objectives.

Fox, 2001), in which the final time is substituted in the objective function after the plan
has been built.

The way MIPS evaluates objective functions with time is as follows. First it schedules the
(relaxed or final) sequential plan. Variable total-time is temporarily substituted for the
critical path value and the objective formula is evaluated. To avoid conflicts in subsequent
expansions, afterwards value total-time is set back to the optimal one in the sequential
plan.

5. Object Symmetries

An important feature of parameterized predicates, functions and action descriptions in the
domain specification file is that actions are transparent to different bindings of parameters
to objects. Disambiguating information is only present in the problem instance file.

In the case of typed domains, many planners, including MIPS, compile all type infor-
mation into additional predicates, attach additional preconditions to actions and enrich the
initial states by suitable object-to-type atoms.

As a consequence, a symmetry is viewed as a permutation of objects that are present in
the current state, in the goal representation, and transparent to the set of operators.

There are n!, n = |OBJ |, possible permutations of the set of objects. Taking into
account all type information reduces the number of all possible permutation to(

n

t1, t2, . . . , tk

)
=

n!
t1!t2! . . . tk!

.

where ti is the number of objects with type i, i ∈ {1, . . . , k}. In a moderate sized logistic
domain with 10 cities, 10 trucks, 5 airplanes, and 15 packages, this results in 40!/(10! · 10! ·
5! · 15!) ≥ 1020 permutations.

To reduce the number of potential symmetries to a tractable size we restrict symmetries
to object transpositions, for which we have at most n(n− 1)/2 ∈ O(n2) candidates. Using
type information this number reduces to

k∑
i=1

(
ti
2

)
=

k∑
i=1

ti(ti − 1)/2.

223

Edelkamp

In the following, the set of typed object transpositions is denoted by SYMM. For the
Logistics example, we have |SYMM| = 45 + 45 + 10 + 105 = 205.

5.1 Generating Object Symmetries for Planning Problems

In this section we compute the subset of SYMM that includes all object pairs for which the
entire planning problem is symmetric. We start with object transpositions for the smallest
entities of a planning problem.

Definition 12 (Object Transpositions for Fluents, Variables, and Operators) A transposi-
tion of objects (o, o′) ∈ SYMM applied to a fluent f = (p o1, . . . , ok(p)) ∈ F , written as
f [o ↔ o′], is defined as (p o′1, . . . , o

′
k(p)), with o′i = oi if oi /∈ {o, o′}, oi = o′ if oi = o,

and oi = o if oi = o′, i ∈ {1, . . . , k(p)}. Object transpositions [o↔ o′] applied to a variable
v = (f o1, . . . , ok(f)) ∈ V or to an operator O = (a o1, . . . , ok(a)) ∈ O are defined analogously.

For example, in the ZenoTravel problem we have (at scott city-a)[scott↔ dan] =
(at dan city-a).

Lemma 2 For all f ∈ F , v ∈ V, O ∈ O, and (o, o′) ∈ SYMM: f [o ↔ o′] = f [o′ ↔ o],
v[o ↔ o′] = v[o′ ↔ o], and O[o ↔ o′] = O[o′ ↔ o], as well as f [o ↔ o′][o ↔ o′] = f ,
v[o↔ o′][o↔ o′] = v, and O[o↔ o′][o↔ o′] = O.

The brute-force time complexity for computing f [o↔ o′] ∈ F is of order O(k(p)), where
k(p) is the number of object parameters in p. However, by pre-computing a O(|SYMM| ·
|F|) sized lookup table, containing the index of f ′ = f [o ↔ o′] for all (o, o′) ∈ SYMM,
this time complexity can be reduced to O(1).

Definition 13 (Object Transpositions for States) Let φ be the mapping from set T to
{1, . . . , |T |}. An object transposition [o ↔ o′] applied to state S = (Sp, Sn) ∈ S with
Sn = (v1, . . . , vk), k = |V|, written as S[o↔ o′], is equal to (Sp[o↔ o′], Sn[o↔ o′]) with

Sp[o↔ o′] = {f ′ ∈ F | f ∈ Sp ∧ f ′ = f [o↔ o′]}

and Sn[o↔ o′] = (v′1, . . . , v
′
k) with vi = v′j if φ−1(i)[o↔ o′] = φ−1(j) for i, j ∈ {1, . . . , k}.

In the initial state of the example problem we have I[dan↔ ernie] = I. The definition
for variables is slightly more difficult than for predicates, since, in this case, the variable
contents, not just their availability, must match.

The time complexity to compute Sn[o ↔ o′] is O(k), since testing φ−1(i)[o ↔ o′] =
φ−1(j) is available in time O(1) by building another O(|SYMM| · |V|) sized pre-computed
look-up table. Note that these times are worst-case. We can terminate the computation of
an object symmetry if a fluent or variable is contradictory. We summarize the complexity
results as follows.

Lemma 3 The worst-case time complexity to compute S[o↔ o′] for state S = (Sp, Sn) ∈ S
and (o, o′) ∈ SYMM is O(|Sp|+ |V|) using O(|SYMM| · (|F|+ |V|)) space.

The next step is to lift the concept of object transposition to planning problems.

224

Taming Numbers and Durations in MIPS

Definition 14 (Object Transpositions for Domains) A planning problem P = 〈S,O, I,G〉
is symmetric with respect to the object transposition [o ↔ o′], abbreviated as P[o ↔ o′], if
I[o↔ o′] = I and ∀ G ∈ G: G[o↔ o′] ∈ G.

Since goal descriptions are partial, we prefer writing G[o↔ o′] ∈ G instead of ∀ G ∈ G:
G[o ↔ o′] ∈ G. Moreover, we assume the goal description complexity for G to be bounded
by O(|Gp|+ |V|).

For the ZenoTravel problem, the goal descriptor is purely propositional, containing three
facts for the target location of dan, ernie, and scott. In the initial state of the running
example the planning problem contains no object symmetry, since I[scott ↔ ernie] 6= I
and G[dan↔ ernie] 6= G.

Applying Lemma 3 for all (o, o′) ∈ SYMM yields the time complexity needed to es-
tablish all object symmetries.

Theorem 3 (Time Complexity for Object Symmetry Detection) The worst-case run-time to
determine the set of all object transpositions for which a planning problem P = 〈S,O, I,G〉
is symmetric is O(|SYMM| · (|Gp|+ |Ip|+ |V|)).

5.2 Including Goal Symmetry Conditions

Symmetries that are present in the initial state may vanish or reappear during exploration in
a forward chaining planner like MIPS. In the DesertRats domain, for example, the initial set
of supply tanks is indistinguishable so that only one should be loaded into the truck. Once
the fuel levels of the supply tanks decrease or tanks are transported to another location,
previously existing symmetries are broken. However, when two tanks in one location become
empty, they can once again be considered symmetric.

Goal conditions, however, do not change over time, only the initial state I transforms
into the current state C. Therefore, in a pre-compiling phase we refine the set SYMM to

SYMM′ ←
{
(o, o′) ∈ SYMM | G[o↔ o′] = G

}
.

Usually, |SYMM′| is much smaller than |SYMM|. For the ZenoTravel problem instance,
the only object symmetry left in SYMM′ is the transposition of scott and ernie.

Therefore, we can efficiently compute the set

SYMM′′(C)← {(o, o′) ∈ SYMM′ | C[o↔ o′] = C}

of symmetries that are present in the current state. In the initial state I of the example
problem of Zeno-Travel we have SYMM′′(I) = ∅, but once scott and ernie share the
same location in a state C this object pair would be included in SYMM′′(C).

The definition requires C[o ↔ o′] = C. This does not include symmetric paths from
different states. Let C = {(at ernie city-c), (at scott city-d)}. It is possible that
there is a symmetric plan for {(at ernie city-d), (at scott city-c)} to a common
goal. Viewed differently, complex object symmetries of the form [o1 ↔ o′1][o2 ↔ o′2] are not
detected. For the example we observe C[scott↔ ernie][city-c↔ city-d] = C.

With respect to Theorem 3 this additional restriction reduces the time complexity to
detect all remaining object symmetries to O(|SYMM′| · (|Cp|+ |V|)).

225

Edelkamp

5.3 Pruning Operators

If a planning problem with current state C ∈ S is symmetric with respect to the operator
transposition [o ↔ o′] then either the application of operator O ∈ O or the application
of operator O[o ↔ o′] is neglected, significantly reducing the branching factor. Lemma 4
indicates how symmetry is used to reduce exploration.

Lemma 4 If operator O is applicable in S and S = S[o↔ o′] then O[o↔ o′] is applicable
in S and

O(S)[o↔ o′] = O[o↔ o′](S).

Proof: If O is applicable in S then O[o ← o′] is applicable in S[o ← o′]. Since S =
S[o↔ o′], O[o↔ o′] is applicable in S, and

O[o↔ o′](S) = O[o↔ o′](S[o↔ o′]) = O(S)[o↔ o′].

By pre-computing an O(|SYMM| · |O|) sized table the index φ(O′) of operator O′ =
O[o↔ o′] can be determined in time O(1) for each (o, o′) ∈ SYMM′.

Definition 15 (Pruning Set) Let φ be the index mapping from set T to {1, . . . , |T |} and let
Γ(C) be the set of operators that are applicable in state C ∈ S. The pruning set ∆(C) ⊂ Γ(C)
is defined as the set of all operators that have a symmetric counterpart and that are not of
minimal index. The symmetry reduction Γ′(C) ⊆ Γ(C) is defined as Γ(C) \∆(C).

Theorem 4 (Correctness of Operator Pruning) Reducing the operator set Γ(C) to Γ′(C)
during the exploration of planning problem P = 〈S,O, I,G〉 preserves completeness7.

Proof: Suppose that for some expanded state C, reducing the operator set Γ(C) to Γ′(C)
during the exploration of planning problem P = 〈S,O, I,G〉 does not preserve completeness.
Furthermore, let C be the state with this property that is maximal in the exploration order.

Then there is a sequential plan π = (O1 . . . , Ok) in PC = 〈S,O, C,G〉 with associated
state sequence (S0 = C, . . . , Sk ⊆ G). Obviously, Oi ∈ Γ(Si−1), i ∈ {1, . . . , k}. By the
choice of C we have O1 ∈ Γ(S0) \ Γ′(S0) = ∆(S0). By the definition of the pruning set
∆(S0) there exists O′

1 = O1[o↔ o′] of minimal index that is applicable in S0.
Since PC = 〈S,O, C,G〉 = PC [o ↔ o′] = 〈S,O, C[o ↔ o′] = C,G[o ↔ o′] = G〉 , we have

a sequential plan O1[o ↔ o′], . . . , Ok[o ↔ o′] with state sequence (S0[o ↔ o′] = S0, S1[o ↔
o′], . . . , Sk[o ↔ o′] = Sk) that reaches the goal G. This contradicts the assumption that
reducing the operator set Γ(C) to Γ′(C) does not preserve completeness for all C.

Since the plan objective refers to instantiated predicates and objects, similar to the
initial and goal state, it can be symmetry breaking. In order to preserve optimality, one
has to additionally check, to see if the object exchange will influence the plan objective.
In practice, objective functions are often based on non-parameterized predicates, in which
case an optimal planning algorithm will not be affected by symmetry cuts.

7. Generally completeness means that a planner can find any legal plan. This is not what is intended here.
We use completeness here in terms of discarding legal plans in favor to equally good symmetric plans.

226

Taming Numbers and Durations in MIPS

5.4 Symmetry Reduction in MIPS

The main purpose of the restricted implementation in MIPS is to further reduce the run
time for object symmetry detection by losing some but not all of its effectiveness. Especially
the impact of quantity O(|SYMM′| · |Cp|) for the running time can be considerable.

The key observation is that symmetries are also present in fact groups according to their
group representatives. As shown in Figure 5, the fact group of dan consists of the facts
(at dan city-a), (at dan city-b), (at dan city-c), (at dan city-d), and (in dan
plane). Similarily, ernie’s group has facts (at ernie city-a), (at ernie city-b), (at
ernie city-c), (at ernie city-d), and (in ernie plane). The ordering of the facts in
the groups can be chosen in a way that, except for the change in the group representative,
corresponding facts match. Together with the facts in the groups, the operators that change
facts of the groups, are stored in an efficient dictionary.

Therefore, we restrict object transpositions to group representatives. This reduces the
set of objects OBJ that MIPS considers to a considerably smaller subset OBJ ′. In the
example problem we have |OBJ | = 7, and |OBJ ′| = 4. Many objects, e.g. the objects of
type city in ZenoTravel, were not selected as representatives for a single attribute invariance
to build a group.

The idea is to obtain a possible transposition of fact group representatives, followed by
looking at the respective fact positions of the current and goal state. It may happen, that
more than one group has fixed representative o ∈ OBJ ′. In this case, we link groups that
have representative o in common. For symmetry detection we test the group chains of both
objects for a matching current and goal position.

As above, symmetries based on non-matching goal predicates can be excluded before-
hand. Let RSYMM be the number of remaining symmetries of object representatives.
Assume that one representative per group yields a running time for propositional object
symmetry detection in state C of O(RSYMM+ |Cp|). The remaining comparisons of vari-
ables v ∈ V are implemented as described in the previous section, but are to be performed
only for those object pairs that pass the propositional check.

For pruning operators, MIPS marks all groups that correspond to an object symmetry
and that have larger index as visited. This guarantees that an operator of at least one
group is executed. For each expanded state S and each matching operator O ∈ Γ(S) the
algorithm checks, whether an applied operator is present in a visited group, in which case
it is pruned. The time complexity is O(|Γ(S)|), since operator group containment can be
preprocessed and checked in constant time.

Figure 14 shows the effectiveness of symmetry reduction of the planner MIPS in the De-
sertRats domain, which scales with respect to the total distance d, d ∈ {300, 400, 500, 600},
that has to be passed (x-axis). In the y direction, the number of expanded states in an A*
search of MIPS with object symmetry reduction (right bars) and without symmetry reduc-
tion (left bars) is shown on a logarithmic scale. As expected, for larger problems symmetry
reduction yields performance gains of more than one order magnitude (d = 500). It also
yields solutions to problems where all algorithms without symmetry reduction fail due to
memory restrictions (d = 600)8.

8. The memory bound we used for this example was set to 1/2 GByte.

227

Edelkamp

Figure 14: Results in symmetry pruning in Desert Rats. Bars show the number of states
expanded without/with symmetry detection.

6. Related Work

STRIPS problems have been tackled with different planning techniques, most notably
by SAT-planning (Kautz & Selman, 1996), IP-planning (Kautz & Walser, 1999), CSP-
planning (Rintanen & Jungholt, 1999), graph relaxation (Blum & Furst, 1995), and heuristic
search planning (Bonet & Geffner, 2001).

Solving planning problems with numerical preconditions and effects as allowed in Level 2
and Level 3 problems is undecidable in general (Helmert, 2002). However, the structures
of the provided benchmark problems are simpler than the general problem class, so these
problems are in fact solvable.

6.1 Temporal Planning Approaches

The system Metric-FF (Hoffmann, 2002a) extends FF (Hoffmann & Nebel, 2001) as a
forward chaining heuristic state space planner for Level 2 problems. Although, MIPS’ plan
generator shares several ideas with Metric-FF, Hoffmann’s system has not yet been extended
to deal with temporal domains.

Planner TP4 (Haslum & Geffner, 2001) is in fact a scheduling system based on grounded
problem instances. For these cases all formula trees in numerical conditions and assignments
reduce to constants. Utilizing admissible heuristics, TP4 minimizes the plan objective of
optimal parallel plan length. Our planner has some distinctive advantages: it handles
numerical preconditions, instantiates numerical conditions on the fly and can cope with
complex objective functions. Besides its input restriction, in the competition, TP4 was
somewhat limited by its focus on producing only optimal solutions.

The SAPA system (Do & Kambhampati, 2001) is a domain-independent time and re-
source planner that can cope with metrics and concurrent actions. SAPA’s general expres-
sivity can be judged to be close to that of MIPS. It adapts the forward chaining algorithm
of (Bacchus & Ady, 2001). Both planning approaches instantiate actions on the fly and

228

Taming Numbers and Durations in MIPS

can therefore, in principle, be adapted to handle flexible mixed propositional and numer-
ical planning problems. The search algorithm in SAPA extends partial concurrent plans
instead of parallelizing sequential plans. It uses a relaxed temporal planning graph for the
yet unplanned events for different heuristic evaluation functions. As an additional feature,
SAPA provides the option of specifying deadlines.

The planner LPG (Gerevini & Serina, 2002) is based on local search in planning graphs.
It uses a variant of the FF planner for grounding and initial plans are generated through ran-
dom walk. The subsequent search space of LPG consists of so-called action graphs (Gerevini
& Serina, 1999). The temporal module performs action graph modifications transforming
an action graph into another one. The fast plan generation algorithm in LPG seems to be
the best explanation for the speed advantage that LPG has with respect to MIPS, and the
higher number of problems LPG solved in some domains. Optimization in LPG is governed
by Lagrange multipliers. In temporal domains, actions are ordered using a precedence graph
that is maintained during search, which uses a more refined dependency relation than ours.
This may partly explain why plan quality was in fact consistently better than in MIPS.

IxTeT (Laborie & Ghallab, 1995) is a general constraint-based planning system with its
own input format. The planner searches in the space of partial plans and allows general
resource and temporal constraints to be posed. The internal representation consists of
chronicles, with time as a linearly ordered discrete set of instants, and multi-valued state
variables that are either rigid or flexible (contingent, controllable, resources), predicates as
temporally qualified expressions (events, assertions, resources), and temporal and atemporal
constraints. It is not clear how to compare the expressivity of chronicles with PDDL2.1
constructs. This makes it difficult to link the different temporal models and to determine if
the technique of critical path scheduling will be applicable to IxTeT or not. In our opinion
this is unlikely, since IxTeT is partial-order. Note that IxTeT further allows conjunction
of predicates, subtasks, constraints and conditional expressions, which are not available in
PDDL2.1. The analysis of partial plans that drives the planning process is divided into
three different modules: feasibility, satisfiability and resource conflict resolution. In the
competition domains IxTeT was not able to compete with local search and heuristic search
planners.

HSTS (Muscettola, 1994) is a constraint-based planning system based on temporal ac-
tivity networks, written in LISP and CRL. At NASA it has been used in many projects
like Deep-Space One. It can already represent and reason about metric resources, parallel
activities, and general constraints. As in IxTeT the input format is significantly different
from PDDL2.1. HSTS has not yet been adapted to represent or reason with conditional
branches. However experiences with the HSTS planner showed partial-order planning to be
attractive for metric/temporal problems, but with a need for better search control.

Although the PDDL2.1 guidelines in fact do allow infinite branching, the 2002 com-
petition consisted only of finite branching problems. As we indicated earlier, this paper
also concentrates on finite branching problems. With finite branching, execution time of an
action is fixed, while with infinite branching, a continous range of actions is available.

These problems have been confronted by (real-time) model checking for a long time.
Some subclasses of infinite branching problems like timed automata exhibit a finite parti-
tioning through a symbolic representation of states (Pettersson, 1999). By the technique
of shortest-path reduction a unique and reduced normal form can be obtained. We have

229

Edelkamp

implemented this temporal network structure, since this is the main data structure when
exploring timed automata as done by the model checker Uppaal (Pettersson, 1999). For
this to work, all constraints must have the form xi − xj ≤ c or xi ≤ c. For example, the
set of constraints x4 − x0 ≤ −1, x3 − x1 ≤ 2, x0 − x1 ≤ 1, x5 − x2 ≤ −8, x1 − x2 ≤ 2,
x4−x3 ≤ 3, x0−x3 ≤ −4, x1−x4 ≤ 7, x2−x5 ≤ 10, and x1−x5 ≤ 5 has the shortest-path
reduction x4−x0 ≤ −1, x3−x1 ≤ 2, x5−x2 ≤ −8, x0−x3 ≤ −4, x1−x4 ≤ 7, x2−x5 ≤ 10,
and x1 − x5 ≤ 5. If the constraint set is over-constrained, the algorithm will determine
unsolvability, otherwise a feasible solution is returned.

Critical path analysis for timed precedence networks is one of the simpler cases for
scheduling. We have achieved a simplification by solving the sequential path problem first.
Note that many other scheduling techniques apply the presented critical path analysis as a
subcomponent (Syslo, Deo, & Kowalik, 1983).

6.2 Symmetry Detection in Planning and Model Checkers

Most previous results in symmetry reduction in planning, e.g. (Guéré & Alami, 2001),
neglect the combinatorial explosion of possible symmetries or at least assume that the
information on existing symmetries in the domain is supplied by the user.

In contrast, our work shares similarities with the approach of Fox & Long (1999,2002) in
inferring object symmetry information fully automatically. Fox and Long’s work is based on
similarities established by the TIM inference module (Fox & Long, 1998). During the search
additional information on the current symmetry level in the form of an object transposition
matrix is stored and updated together with each state. Our approach is different in the sense
that it efficiently computes object symmetries for each state from scratch and it consumes
no extra space per node expansion.

Model checking research has a long tradition in symmetry reduction (Clarke et al., 1999).
In recent work, Rintanen (2003) connects symmetry detection in planning to model checking
approaches for transition systems and SAT solving. Experiments are provided for SAT
encodings of the Gripper domain; a prototypical example for symmetry detection. In (Lluch-
Lafuente, 2003), our model checker HSF-Spin is extended to effectively combine heuristic
search with symmetry detection. It also reflects the fact that (HSF-)Spin’s exploration can
be modelled using (labelled) transition systems. Positive empirical results are given for
non-trivial examples like Peterson’s mutual exclusion algorithm and the Database Manager
protocol.

We briefly review the fundamental difference between object symmetries (as considered
here) and state space symmetries (as considered in model checking).

The latter approach constructs a quotient state space problem (P/∼) based on a con-
gruence relation, where an equivalence relation ∼ of S is called a congruence if for all
s1, s2, s1 ∈ S with s1 ∼ s2 and operator O ∈ O with O(s1) = s′1 there is an s′2 ∈ S with
s′1 ∼ s′2 and an operator O′ ∈ O with O′(s2) = s′2. We have [O][s] = [s′] if and only if there
is an operator O ∈ O mapping s to s′ so that s ∈ [s] and s′ ∈ [s′].

A bijection φ : S → S is said to be a symmetry if φ(I) = I, φ(G) ∈ G for all G ∈ G
and for any s, s′ ∈ S with transition from s to s′ there exist a transition from φ(s) to
φ(s′). Any set A of symmetries generates a subgroup g(A) called a symmetry group. The
subgroup g(A) induces an equivalence relation ∼A on states, defined as s ∼A s′ if and only

230

Taming Numbers and Durations in MIPS

if φ(s) = s′ and φ ∈ g(A). Such an equivalence relation is called a symmetry relation on
P induced by A. The equivalence class of s is called the orbit of s, denoted as [s]A. Any
symmetry relation on P is a congruence on P. Moreover, s is reachable if and only if [s]A
is reachable from [I]A. This reduces the search for goal G ∈ G to finding state [G].

To explore a state space with respect to a state (space) symmetry, a function Canonical-
ize is needed. Each time a new successor node is generated, it determines a representative
element for each equivalence class. Fixing the canonical element is not trivial, so that many
systems approximate this normal form. Automatically finding symmetries in this setting
is also difficult and can be cast as a computationally hard graph isomorphism problem.
Therefore all approaches expect information on the kind of symmetry that is present in
the state space graph. One example is a rotational symmetry, defined by a right shift of
variables in the state vector.

6.3 Model Checking Planners

In the 2000 competition, two other symbolic planners took part: PropPlan (Fourman,
2000), and BDDPlan (Hölldobler & Stör, 2000). Although they did not receive any awards
for performance, they show interesting properties. PropPlan performs symbolic forward
breadth first search to explore propositional planning problems with propositions for gen-
eralized action preconditions and generalized action effects. It performed well in the full
ADL Miconic-10 elevator domain (Koehler, 2000). ProbPlan is written in the Poly/ML
implementation of SML. BDD-Plan is based on solving the entailment problem in the flu-
ent calculus with BDDs. At that time the authors acknowledged that the concise domain
encoding and symbolic heuristic search used in MIPS were improvements.

In the Model-Based Planner MBP the paradigm of planning as symbolic model check-
ing (Giunchiglia & Traverso, 1999) has been implemented for non-deterministic planning
domains (Cimatti et al., 1998), which can be classified into weak, strong, and strong-cyclic
planning, with plans that are represented as state-action tables. For partially observable
planning, a system is faced with exploring the space of belief states; the power set of the
original planning space. Therefore, in contrast to the successor set generation based on ac-
tion application, observations introduce “And” nodes into the search tree (Bertoli, Cimatti,
Roveri, & Traverso, 2001b). Since the approach is a hybrid of symbolic representation of
belief states and explicit search within the “And”-“Or” search tree, simple heuristics have
been applied to guide the search. The need for heuristics that trade information gain for
exploration effort is also apparent in conformant planning (Bertoli et al., 2001a). Recent
work (Bertoli & Cimatti, 2002) proposes improved heuristics for belief space planning.

The UMOP system parses a non-deterministic agent domain language that explicitly
defines a controllable system in an uncontrollable environment (Jensen & Veloso, 2000).
The planner also applies BDD refinement techniques such as automated transition function
partitioning. New results for the UMOP system extend weak, strong and strong cyclic
planning to adversarial planning, in which the environment actively influences the outcome
of actions. In fact, the proposed algorithm combines aspects of both symbolic search and
game playing. UMOP has not yet participated in a planning competition.

More recent developments in symbolic exploration are expected to influence automated
planning in the near future. With SetA*, (Jensen et al., 2002) provide an improved imple-

231

Edelkamp

mentation of the symbolic heuristic search algorithm BDDA* (Edelkamp & Reffel, 1998)
and Weighted BDDA* (Edelkamp, 2001a). One improvement is that SetA* maintains finer
grained sets of states in the search horizon. These are kept in a matrix according to match-
ing g- and h- values. This contrasts with the plain bucket representation of the priority
queue based on f -values. The heuristic function is implicitly encoded with value differences
of grounded actions. Since sets of states are to be evaluated and some heuristics are state
rather than operator dependent it remains to be shown how general this approach is. As
above, the planning benchmarks considered are seemingly simple for single-state heuris-
tic search exploration (Hoffmann, 2002b; Helmert, 2001). (Hansen, Zhou, & Feng, 2002)
also re-implemented BDDA* and suggest that symbolic search heuristics and exploration
algorithms are probably better implemented with algebraic decision diagrams (ADDs). Al-
though the authors achieved no improvement to (Edelkamp & Reffel, 1998) in solving the
(n2− 1)-Puzzle, the established generalization to guide a symbolic version of the LAO* ex-
ploration algorithm (Hansen & Zilberstein, 2001) for probabilistic (MDP) planning results
in a remarkable improvement in the state-of-the-art (Feng & Hansen, 2002).

7. Conclusions

With the competition planning system MIPS, we have contributed a flexible system for a
heuristic forward chaining, explicit and symbolic search planner that finds plans in finite-
branching numerical problems. The planner parses, pre-compiles, solves, and schedules
problem instances, including complex ones with duration, resource variables and different
objective functions. The main contributions of the planner are

• The object-oriented workbench architecture to choose and combine different heuris-
tics with different search algorithms and storage structures. The design includes the
static analyzer that applies efficient fact-space exploration to distinguish constant
from fluent quantities, that clusters facts into groups, and that infers static object
symmetries. The static analyzer produces the intermediate format of grounded and
simplified planning domain instances.

• Optimal temporal planning enumeration algorithms, based on a precedence relation
and PERT scheduling of sequentially generated plans together with a concise analysis
of correctness and optimality, as well as the integration of PERT scheduling in MIPS
for computing a refined heuristic estimate. This guides the search phase, favoring
states with smaller parallel plan length. MIPS instantiates numerical pre- and post-
conditions on-the-fly and produces optimized parallel plans.

• The detection of dynamic object symmetries, the integration of different pruning
methods such as hash and transposition cuts, as well as different strategies for opti-
mizing objective functions and further implementation tricks that made the system
efficient.

The paper analyzes theoretical properties of the contributions, sometimes by slightly
abstracting from the actual implementation.

Essentially planning with numerical quantities and durative actions is planning with
resources and time. The given framework of mixed propositional and numerical planning

232

Taming Numbers and Durations in MIPS

problems and the presented intermediate format can be seen as a normal form for temporal
and metric planning. The paper presents a novel temporal planning scheme that generates
sequential (totally ordered) plans and efficiently schedules them with respect to the set of
actions and the imposed causal structure, without falling into known NP-hardness traps for
optimized partial-ordering of sequentially generated plans. For smaller problems the com-
plete enumeration approach guarantees optimal solutions. To improve solution quality in
approximate enumeration, the (numerical) estimate for the number of operators is replaced
by scheduling the relaxed plan in each state. We addressed completeness and optimality of
different forms of exploration. A novel study of the time and space complexity of dynamic
object symmetry detection is given.

Model checking has always influenced the development of MIPS, e.g in the static analy-
sis to minimize the state description length, in symbolic exploration and plan extraction, in
the dependence relation for PERT schedules according to a given partial order, in bit-state
hashing for IDA*, in the importance of symmetry detection, an so forth. Moreover, the
successes of planning with MIPS can be exported back to model checking, as the develop-
ment of heuristic search state model checkers and parsing of Promela protocol specifications
indicate.

Acknowledgments

The author would like to thank Derek Long and Maria Fox for helpful discussions concerning
this paper and Malte Helmert for his cooperation in the second planning competition. The
list of editor’s and anonymous reviewers’ comments helped a lot to improve the text.

The work is supported by Deutsche Forschungsgemeinschaft (DFG) in the projects
Heuristic Search (Ed 74/3) and Directed Model Checking (Ed 74/2).

References

Bacchus, F., & Ady, M. (2001). Planning with resources and concurrency: A forward chaning
approach. In Proceedings of IJCAI-01, pp. 417–424.

Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control knowl-
edge for planning. Artificial Intelligence, 116, 123–191.

Bäckström, C. (1998). Computational aspects of reordering plans. Journal of Artificial
Intelligence Research, 9, 99–137.

Bertoli, P., & Cimatti, A. (2002). Improving heuristics for planning as search in belief space.
In Proceedings of AIPS-02, pp. 143–152.

Bertoli, P., Cimatti, A., & Roveri, M. (2001a). Heuristic search symbolic model checking =
efficient conformant planning. In Proceedings of IJCAI-01, pp. 467–472.

Bertoli, P., Cimatti, A., Roveri, M., & Traverso, P. (2001b). Planning in nondeterministic
domains under partial observability via symbolic model checking. In Proceedings of
IJCAI-01, pp. 473–478.

Biere, A. (1997). µcke - efficient µ-calculus model checking. In Proceedings of CAV-97, pp.
468–471.

233

Edelkamp

Bloem, R., Ravi, K., & Somenzi, F. (2000). Symbolic guided search for CTL model checking.
In Proceedings of DAC-00, pp. 29–34.

Blum, A., & Furst, M. L. (1995). Fast planning through planning graph analysis. In
Proceedings of IJCAI-95, pp. 1636–1642.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1-
2), 5–33.

Bryant, R. E. (1992). Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24 (3), 142–170.

Cimatti, A., Giunchiglia, E., Giunchiglia, F., & Traverso, P. (1997). Planning via model
checking: A decision procedure for AR. In Proceedings of ECP-97, pp. 130–142.

Cimatti, A., Roveri, M., & Traverso, P. (1998). Automatic OBDD-based generation of
universal plans in non-deterministic domains. In Proceedings of AAAI-98, pp. 875–
881.

Clarke, E. M., Grumberg, O., & Peled, D. A. (1999). Model Checking. MIT Press.

Clarke, E. M., McMillan, K. L., Dill, D. L., & Hwang, L. J. (1992). Symbolic model checking:
1020 states and beyond. Information and Computation, 98 (2), 142–170.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to Algorithms. The
MIT Press.

Dial, R. B. (1969). Shortest-path forest with topological ordering. Communication of the
ACM, 12 (11), 632–633.

Do, M. B., & Kambhampati, S. (2001). Sapa: a domain-independent heuristic metric tem-
poral planner. In Proceedings of ECP-01, pp. 109–120.

Edelkamp, S. (1999). Datenstrukturen und Lernverfahren in der Zustandsraumsuche. Ph.D.
thesis, University of Freiburg. DISKI, Infix.

Edelkamp, S. (2001a). Directed symbolic exploration and its application to AI-planning. In
Proceedings of AAAI-01 Spring Symposium on Model-based Validation of Intelligence,
pp. 84–92.

Edelkamp, S. (2001b). First solutions to PDDL+ planning problems. In Proceedings of
PlanSIG-01, pp. 75–88.

Edelkamp, S. (2001c). Planning with pattern databases. In Proceedings of ECP-01, pp.
13–24.

Edelkamp, S. (2002a). Mixed propositional and numerical planning in the model check-
ing integrated planning system. In Proceeding of AIPS-02 Workshop on Temporal
Planning, pp. 47–55.

Edelkamp, S. (2002b). Symbolic pattern databases in heuristic search planning. In Pro-
ceedings of AIPS-02, pp. 274–283.

Edelkamp, S. (2003). Promela planning. In Proceedings of SPIN-03, pp. 197–212.

Edelkamp, S., & Helmert, M. (1999). Exhibiting knowledge in planning problems to mini-
mize state encoding length. In Proceeding of ECP-99, pp. 135–147.

234

Taming Numbers and Durations in MIPS

Edelkamp, S., & Helmert, M. (2000). On the implementation of MIPS. In Proceedings of
AIPS-00 Workshop on Model Theoretic Approaches to Planning, pp. 18–25.

Edelkamp, S., & Helmert, M. (2001). The model checking integrated planning system MIPS.
AI-Magazine, 67–71.

Edelkamp, S., Leue, S., & Lluch-Lafuente, A. (2003). Directed explicit-state model checking
in the validation of communication protocols. International Journal on Software Tools
for Technology (STTT), to appear.

Edelkamp, S., & Meyer, U. (2001). Theory and practice of time-space trade-offs in memory
limited search. In Proceedings of KI-01, Lecture Notes in Computer Science, pp.
169–184. Springer.

Edelkamp, S., & Reffel, F. (1998). OBDDs in heuristic search. In Proceedings of KI-98, pp.
81–92.

Edelkamp, S., & Reffel, F. (1999a). Deterministic state space planning with BDDs. In
Proceedings of ECP-99, Preprint, pp. 381–382.

Edelkamp, S., & Reffel, F. (1999b). Deterministic state space planning with BDDs. Tech.
rep. 121, University of Freiburg.

Edelkamp, S., & Stiegeler, P. (2002). Implementing HEAPSORT with n log n − 0.9n and
QUICKSORT with n log n + 0.2n comparisons. ACM Journal of Experimental Algo-
rithms, 7 (5).

Feng, Z., & Hansen, E. (2002). Symbolic heuristic search for factored markov decision
processes. In Proceedings of AAAI-02.

Fikes, R., & Nilsson, N. (1971). Strips: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189–208.

Fourman, M. P. (2000). Propositional planning. In Proceedings of AIPS-00 Workshop on
Model-Theoretic Approaches to Planning, pp. 10–17.

Fox, M., & Long, D. (1998). The automatic inference of state invariants in TIM. Journal
of Artificial Intelligence Research, 9, 367–421.

Fox, M., & Long, D. (1999). The detection and exploration of symmetry in planning
problems. In Proceedings of IJCAI-99, pp. 956–961.

Fox, M., & Long, D. (2002). Extending the exploitation of symmetries in planning. In
Proceedings of AIPS-02.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, this issue.

Gerevini, A., & Serina, I. (1999). Fast planning through greedy action graphs. In Proceedings
of AAAI-00.

Gerevini, A., & Serina, I. (2002). LPG: a planner based on local search for planning graphs
with action costs. In Proceedings of AIPS-02.

Giunchiglia, F., & Traverso, P. (1999). Planning as model checking. In Proceedings of
ECP-99, pp. 1–19.

235

Edelkamp

Groce, A., & Visser, W. (2002). Model checking Java programs using structural heuristics.
In Proceedings of ISSTA-02.

Guéré, E., & Alami, R. (2001). One action is enough to plan. In Proceedings of IJCAI-01.

Hansen, E., & Zilberstein, S. (2001). LAO*: A heuristic search algorithm that finds solutions
with loops. Artificial Intelligence, 129, 35–62.

Hansen, E. A., Zhou, R., & Feng, Z. (2002). Symbolic heuristic search using decision
diagrams. In Proceedings of SARA-02.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for heuristic determination
of minimum path cost. IEEE Transactions on on Systems Science and Cybernetics,
4, 100–107.

Haslum, P., & Geffner, H. (2001). Heuristic planning with time and resources. In Proceedings
of ECP-01, pp. 121–132.

Helmert, M. (2001). On the complexity of planning in transportation domains. In Proceed-
ings of ECP-01, pp. 349–360.

Helmert, M. (2002). Decidability and undecidability results for planning with numerical
state variables. In Proceedings of AIPS-02, pp. 44–53.

Hipke, C. A. (2000). Verteilte Visualisierung von Geometrischen Algorithmen. Ph.D. thesis,
University of Freiburg.

Hoffmann, J. (2000). A heuristic for domain independent planning and its use in an enforced
hill climbing algorithm. In Proceedings of ISMIS-00, pp. 216–227.

Hoffmann, J. (2002a). Extending FF to numerical state variables. In Proceedings of ECAI-
02.

Hoffmann, J. (2002b). Local search topology in planning benchmarks: A theoretical analysis.
In Proceedings of AIPS-02, pp. 92–100.

Hoffmann, J., & Nebel, B. (2001). Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14, 253–302.

Hölldobler, S., & Stör, H.-P. (2000). Solving the entailment problem in the fluent calcu-
lus using binary decision diagrams. In Proceedings of AIPS-00 Workshop on Model-
Theoretic Approaches to Planning, pp. 32–39.

Jensen, R. M., Bryant, R. E., & Veloso, M. M. (2002). SetA*: An efficient BDD-based
heuristic search algorithm. In Proceedings of AAAI-02.

Jensen, R., & Veloso, M. M. (2000). OBDD-based universal planning for synchronized
agents in non-deterministic domains. Journal of Artificial Intelligence Research, 13,
189–226.

Kabanza, F., Barbeau, M., & St-Denis, R. (1997). Planning control rules for reactive agents.
Artificial Intelligence, 95 (1), 67–113.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic, and
stochastic search. In Proceedings of AAAI-96, pp. 1194–1201.

Kautz, H., & Walser, J. (1999). State-space planning by integer optimization. In Proceedings
of AAAI-99.

236

Taming Numbers and Durations in MIPS

Knoblock, C. (1994). Generating parallel execution plans with a partial order planner. In
Proceedings of AIPS-94, pp. 98–103.

Koehler, J. (2000). Elevator control as a planning problem. In Proceedings of AIPS-00, pp.
331–338.

Koehler, J., & Hoffmann, J. (2000). On reasonable and forced goal orderings and their use
in an agenda-driven planning algorithm. Journal of Artificial Intelligence Research,
12, 338–386.

Koehler, J., Nebel, B., & Dimopoulos, Y. (1997). Extending planning graphs to an ADL
subset. In Proceedings of ECP-97, pp. 273–285.

Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search.
Artificial Intelligence, 27 (1), 97–109.

Korf, R. E., & Zhang, W. (2000). Divide-and-conquer frontier search applied to optimal
sequence alignment. In Proceedings of AAAI-00, pp. 910–916.

Laborie, P., & Ghallab, M. (1995). Planning with sharable resources constraints. In Pro-
ceedings of IJCAI-95, pp. 1643–1649.

Lago, U. D., Pistore, M., & Traverso, P. (2002). Planning with a language for extended
goals. In Proceedings of AAAI-02.

Lind-Nielsen, J. (1999). Buddy: Binary decision diagram package, release 1.7. Technical
Univeristy of Denmark. Available from jln@itu.dk.

Lluch-Lafuente, A. (2003). Symmetry reduction and heuristic search for error detection in
model checking. In Proceedings of the Workshop on Model Checking and Artificial
Intelligence (MoChart).

Long, D., & Fox, M. (1998). Efficient implementation of the plan graph in STAN. Journal
of Artificial Intelligence Research, 10, 87–115.

Long, D., & Fox, M. (2001). Encoding temporal planning domains and validating tempo-
ral plans. In Workshop of the UK Planning and Scheduling Special Interest Group
(PlanSIG).

McDermott, D. (2000). The 1998 AI Planning Competition. AI Magazine, 21 (2).

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer Academic Press.

Muscettola, N. (1994). HSTS: integrating planning and scheduling. In Zweben, M., & Fox,
M. S. (Eds.), Intelligent Scheduling, pp. 168–212. Morgan Kaufmann.

Pearl, J. (1985). Heuristics. Addison-Wesley.

Pednault, E. (1986). Formulating multiagend, dynamic-world problems in the classical
framework. In Reasoning about Action and Plans, pp. 47–82. Morgan Kaufmann.

Pednault, E. (1989). ADL: Exploring the middleground between Strips and situation cal-
culus. In Proceedings of KR-89, pp. 324–332. Morgan Kaufman.

Pettersson, P. (1999). Modelling and Verification of Real-Time Systems Using Timed Au-
tomata: Theory and Practice. Ph.D. thesis, Department of Computer Systems, Upp-
sala University.

237

Edelkamp

Pistore, M., & Traverso, P. (2001). Planning as model checking for extended goals in non-
deterministic domains. In Proceedings of IJCAI-01.

Pohl, I. (1977). Practical and theoretical considerations in heuristic search algorithms.
Machine Intelligence, 8, 55–72.

Refanidis, I., & Vlahavas, I. (2000). Heuristic planning with ressources. In Proceedings of
ECAI-00, pp. 521–525.

Reffel, F., & Edelkamp, S. (1999). Error detection with directed symbolic model checking.
In Proceedings of FM-99, pp. 195–211.

Regnier, P., & Fade, B. (1991). Détermination du parallélisme maximal et optimisation
temporelle dans les plans d’actions linéaires. Revue d’Intelligence Artificielle, 5 (2),
67–88.

Reinefeld, A., & Marsland, T. (1994). Enhanced iterative-deepening search. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 16 (7), 701–710.

Rintanen, J. (2003). Symmetry reduction for SAT representations of transition systems. In
Proceedings of ICAPS-03.

Rintanen, J., & Jungholt, H. (1999). Numeric state variables in constraint-based planning.
In Proceedings of ECP-99, pp. 109–121.

Ruys, T. C. (2003). Optimal scheduling using branch and bound with SPIN 4.0. In Pro-
ceedings of SPIN-03, pp. 1–17.

Syslo, M. M., Deo, N., & Kowalik, J. S. (1983). Discrete Optimization Algorithms with
Pascal Programs. Prentice-Hall.

Veloso, M. M., Pérez, M. A., & Carbonell, J. G. (1990). Nonlinear planning with parallel
resource allocation. In Innovative Approaches to Planning, Scheduling and Control,
pp. 207–212.

Weismüller, M. (1998). Planen mit einem Modellprüfer im µ-Kalkül . Master’s thesis,
Universität Ulm.

Yang, C. H., & Dill, D. L. (1998). Validation with guided search of the state space. In
Proceedings of DAC-98, pp. 599–604.

Yoshizumi, T., Miura, T., & Ishida, T. (2000). A* with partial expansion for large branching
factor problems. In Proceedings of AAAI-00, pp. 923–929.

Zhou, R., & Hansen, E. (2003). Sparse-memory graph search. In Proceedings of IJCAI-03.

238

