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Abstract


Planning with numeric state variables has been a challenge for many years� and was
a part of the �rd International Planning Competition �IPC���� Currently one of the most
popular and successful algorithmic techniques in STRIPS planning is to guide search by a
heuristic function� where the heuristic is based on relaxing the planning task by ignoring
the delete lists of the available actions�


We present a natural extension of �ignoring delete lists� to numeric state variables�
preserving the relevant theoretical properties of the STRIPS relaxation under the condition
that the numeric task at hand is �monotonic�� We then identify a subset of the numeric
IPC�� competition language� �linear tasks�� where monotonicity can be achieved by pre�
processing� Based on that� we extend the algorithms used in the heuristic planning system
FF to linear tasks� The resulting system Metric�FF is� according to the IPC�� results which
we discuss� one of the two currently most e�cient numeric planners�


�� Introduction


The planning community has long been aware of the fact that purely propositional rep�
resentation languages� in particular STRIPS �Fikes � Nilsson� ������ are not well suited
for modeling various phenomena that are essential in real�world problems� In particular�
modeling context dependent e	ects� concurrent execution of actions with di	erent duration�
and continuous resources are all awkward� or impossible� within the STRIPS language� To
overcome the 
rst of these limitations� Pednault ������ de
ned the �nowadays widely ac�
cepted� ADL language� which amongst other things allows for conditional e	ects �e	ects
that only occur when their condition holds true in the state of execution�� To overcome
�one or both of� the latter two limitations� various proposals have been made �e�g�� Ghallab
� Laruelle� ���� Koehler� ���� Smith � Weld� ������ The most recent e	ort in this di�
rection is the PDDL��� language de
ned by Fox and Long ������ as the input language for
the �rd International Planning Competition �IPC���� The IPC series is a biennial challenge
for the planning community� inviting planning systems to participate in a large scale pub�
licly accessible evaluation� IPC�� was hosted at AIPS������ and stressed planning beyond
the STRIPS formalism� featuring tracks for temporal and numeric planners� This article
describes the approach behind one of the planners that participated in IPC��� Metric�FF�
Metric�FF is an extension of the FF system �that can handle ADL� to numeric constructs�


Currently one of the most popular and successful algorithmic techniques in STRIPS
planning is to guide search �forward or backward� state space or plan space� by a heuristic
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function� where the heuristic is based on relaxing the planning task by ignoring the delete
lists �i�e� the negative e	ects� of the available actions� The heuristic value of a search
state in this framework is �an estimate of� the di�culty of extending the state to a solution
using the relaxed actions� This idea was 
rst� independently� proposed by McDermott
������ and Bonet et al ������� and is now widely used in a huge number of variations�
Examples of planners that use the idea are Unpop �McDermott� ����� ������ HSP in its
various con
gurations �Bonet � Ge	ner� ����� ����� ������ GRT �Refanidis � Vlahavas�
����� ������ MIPS �Edelkamp � Helmert� ������ STAN� �Fox � Long� ������ RePOP
�Nguyen � Kambhampati� ������ Sapa �Do � Kambhampati� ������ and FF �Ho	mann�
���� Ho	mann � Nebel� ������ The search paradigms used by these planners include
forward and backward state space search as well as partial�order planning� The forward
state space planner FF was especially successful at IPC�� �Bacchus� ������ In what follows
we extend the heuristic idea for STRIPS� ignoring delete lists� to numeric state variables
in a way that preserves the relevant theoretical properties of the STRIPS relaxation� We
phrase these properties admissibility� basic informedness� and polynomiality� While the
investigation takes place in the setting of forward state space search as used by FF� it
seems likely that the same ideas will also work in other search schemes such as plan�space
search �some more on this in the outlook� Section ��� The Sapa system also deals with
numeric constructs� The heuristic function� however� completely ignores numeric goals and
thus lacks one of the relevant theoretical properties� basic informedness �we will return to
this later�� There are also numeric versions of MIPS and GRT� On the respective MIPS
version there is no publication available at the time of writing but an article �Edelkamp�
������ which the reader is referred to� is to appear in this same JAIR special issue� The
numeric version of GRT� GRT�R �Refanidis � Vlahavas� ������ allows only for a restricted
form of numeric variables and expressions� basically a limited form of resource allocation
and consumption� The heuristic function considers resource consumption as another form
of state cost� This� like Sapa�s heuristic� lacks basic informedness� as we will see later�


In a numeric planning task� there can be numeric constraints �in action preconditions
and the goal� and numeric e	ects �in action e	ects�� Constraints and e	ects can be of
di	erent types� For example� a constraint can require that the value of a variable be either
at least as high as or at most as high as a given constant� The numeric e	ects can� from a
semantic perspective� either increase or decrease the value of the a	ected variable� Now� the
delete e	ects in STRIPS decrease the logical value of the propositional variables� so the idea
we explore is to relax the numeric task by ignoring all decreasing e	ects� The main di�culty
with this idea is that ignoring the decreasing e	ects does not necessarily simplify the task�
For example� when the goal requires that x � � and x is initially equal to �� the decreasing
e	ects are needed to solve the task� so the relaxed task is unsolvable� The relaxation is thus
only adequate �preserves the theoretical properties mentioned above� in tasks where it is
always preferable to have higher variable values� We call such tasks monotonic�� We observe
that tasks that belong to a subset of the numeric IPC�� competition language� linear tasks
�in which the numeric variables are only used in linear functions�� can be brought into a


�� There is a duality here with respect to ignoring the increasing e�ects or the decreasing e�ects� If
lower variable values are always preferable then ignoring the increasing e�ects is an adequate relaxation�
Whether one chooses one or the other does not seem to make much di�erence� We choose monotonicity
in the positive sense only because it is conceptually simpler�
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normal form that is monotonic� Based on that� we extend the heuristic algorithms used in
FF� and thereby the whole system� to linear tasks�


FF �Ho	mann � Nebel� ����� is a close relative of HSP �Bonet � Ge	ner� ������ Search
takes place forward in the state space� i�e�� starting from the initial state new states are
explored until a goal state is found� The search process in FF is guided by a heuristic
function that is based on solving� in each search state s� the relaxed task starting from s�
The heuristic value to s is the number of actions in the respective relaxed plan� i�e�� the
number of actions needed to achieve the goal from s when assuming the delete lists are all
empty� States with lower heuristic value are preferred� The main obstacle in the extension
of FF to numeric state variables is to extend the machinery that solves the relaxed task
in each search state� Once this machinery is de
ned� the rest of the system translates
e	ortlessly� We evaluate the resulting planning system Metric�FF by discussing the results
of the numeric domains used in the �rd International Planning Competition� As it turns out�
Metric�FF and LPG �Gerevini� Saetti� � Serina� ����a� were the best performing numeric
planners in the competition��


The article is structured as follows� Throughout the text we refer to related work where
it is relevant� We 
rst give the necessary background in terms of STRIPS notation� and
the techniques that the STRIPS version of FF uses� Section � introduces our notation for
numeric state variables� i�e�� for the numeric subset of PDDL���� Section � describes how
the heuristic principle for STRIPS� the relaxation� can be extended to the numeric setting�
Section � de
nes our algorithms for solving relaxed numeric tasks� Section � then 
lls in
the details on how the relaxed plans are used to implement the Metric�FF planning system�
and we brie�y describe how ADL constructs can be handled� and how �exible optimization
criteria can be taken into account� The IPC�� results are discussed in Section �� Section �
concludes and outlines future work� An appendix contains most proofs�


�� STRIPS Techniques


In this section� we give background on the techniques that the FF system uses in the STRIPS
language� We start by examining the relaxation that underlies FF�s heuristic function� We
then proceed to the algorithms that are used to solve relaxed tasks� We 
nally describe
how the relaxed plans are used to implement the actual FF system� The discussion is a
little more detailed than would strictly be necessary to understand the FF workings� This
serves to provide a solid background for what is to come� Sections �� �� and � will� in turn
for each of the subtopics dealt with in this section� show how these methodologies can be
extended to the numeric setting�


Before we start� we give the notation for the STRIPS language� When we refer to sets we
mean 
nite sets� We consider the propositional STRIPS language� where all constructs are
based on logical propositions� A world state s is a set of �the true� propositions� An action
a is given as a triple of proposition sets� a � �pre�a�� e��a�� e��a���� a�s precondition� add
list� and delete list� respectively �we use the somewhat unusual notation e��a� and e��a��


as this makes the extension to numeric variables more readable��


�� The C source code of Metric�FF is available for free download from the FF homepage at
http���www�informatik�uni�freiburg�de��hoffmann�ff�html�
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We 
rst specify the semantics of world states and actions� Throughout the article� we
consider sequential planning only� where a single action at a time is applied to a world
state�� Actions induce state transitions as follows� Given a world state s and an action
a� the result of executing �the action sequence consisting solely of� a in s� result�s� hai�� is
result�s� hai� �� s n e��a�� � e��a� if the action is applicable in s� pre�a� � s� Otherwise�
result�s� hai� is unde
ned� The result of executing an action sequence ha�� � � � � ami in a state
is recursively de
ned by result�s� ha�� � � � � ami� �� result�result�s� ha�� � � � � am��i�� am�� and
result�s� hi� � s�


A STRIPS task � we use the word �task� rather than �problem� to avoid confusion
with the complexity theoretic notion of decision problems � is a tuple �P�A� I�G�� the
set P of logical propositions used in the task� the set A of actions� the initial state I �a
world state�� as well as the goal G �a partial world state� see below�� All propositions in
the actions� initial state� and goal are taken from P � Given a task �P�A� I�G�� what one
wants to 
nd is a plan� An action sequence ha�� � � � � ami � A� is a plan for �P�A� I�G� if
G � result�I� ha�� � � � � ami�� Since the � relation �not equality� is used here� there could be
several goal states in which a plan ends� If there exists at least one plan for a task� then the
task is solvable� Sometimes we refer to optimal plans� In our sequential framework� a plan
is optimal for a task if there is no plan for the task that contains fewer actions�


��� Relaxing Strips Tasks


We want to inform the search for a plan by a function that estimates the goal distance of
search states� The idea is to de
ne a relaxation �i�e�� a simpli
cation� of planning tasks�
then solve� in any search state� the relaxed task� and take the length of the relaxed solution
as an estimate of how long the solution from the state at hand really is� The relaxation
that was 
rst proposed by McDermott ������ and Bonet� Loerincs� � Ge	ner ������� is to
relax STRIPS tasks by ignoring the delete lists of all actions�


De�nition � Assume a STRIPS task �P�A� I�G�� The relaxation a of an action a � A�
a � �pre�a�� e	�a�� e	�a���� is de�ned as


a �� �pre�a�� e	�a�� ���


The relaxation of �P�A� I�G� is �P�A� I�G�� where A �� fa j a � Ag� An action
sequence ha�� � � � � ani � A� is a relaxed plan for �P�A� I�G� if ha� � � � � � a



n i is a plan for


�P�A� I�G��


Ignoring the delete lists simpli
es the task because the action preconditions and the goal
are all positive� We identify a number of desirable properties that the relaxation has� We
will later de
ne relaxations for numeric variables that have the same properties�


De�nition � Let RPLANSAT denote the following problem�


Assume a STRIPS task �P�A� I�G�� Is the relaxation of �P�A� I�G� solvable�


�� As opposed to� e�g�� Graphplan�based approaches �Blum 	 Furst� �

��� which nd sets of actions to be
applied in parallel�
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Proposition � The relaxation given in De�nition � is adequate� i�e�� the following holds
true�


�� Admissibility� any plan that solves the original task also solves the relaxed task�
i�e�� assuming a STRIPS task �P�A� I�G�� any plan for �P�A� I�G� is also a relaxed
plan for �P�A� I�G��


�� Basic informedness� the preconditions and goals can trivially be achieved in the
original task if and only if the same holds in the relaxed task� i�e�� assuming a
STRIPS task �P�A� I�G�� hi is a plan for �P�A� I�G� if and only if hi is a re�
laxed plan for �P�A� I�G�� and for a � A� result�I� hi� � pre�a� if and only if
result�I� hi� � pre�a��


�� Polynomiality� the relaxed task can be solved in polynomial time� i�e�� deciding
RPLANSAT is in P�


The proof is trivial � admissibility and basic informedness follow directly from the
de
nitions� and polynomiality was proved earlier by Bylander ������� The proof can be
found in Appendix A�


If we want to use the length of relaxed plans as a heuristic function� the properties
stated by Proposition � are important for the following reasons� Admissibility tells us that
optimal relaxed plan length is an admissible heuristic� since the optimal real plan is also
a relaxed plan�	 Also� we will not mistake a solvable state for a dead end� if there is no
relaxed plan then there is no real plan either �more on this below�� The �only if� directions
in basic informedness tell us that the relaxation does not give us any constraints for free
�for example� the heuristic value will be zero only in goal states�� If the heuristic does not
have these properties then possibly parts of the problem must be solved in regions where
there is no heuristic information at all �like when the heuristic value is already zero but
no goal state is reached yet��� Polynomiality tells us that we can compute the heuristic
function e�ciently�


��� Solving Relaxed Tasks


Ideally� given a search state s� we would like to know how many relaxed actions are at least
needed to reach the goal� i�e�� we would like to know what the length of an optimal relaxed
plan is �this would be an admissible heuristic� c�f� above�� But 
nding optimal relaxed plans
is still intractable �Bylander� ������ So instead we compute arbitrary� i�e�� not necessarily
optimal� relaxed plans� This is done with a Graphplan�style algorithm �Blum � Furst�
���� Ho	mann � Nebel� ������ Given a search state s in a STRIPS task �P�A� I�G�� we

rst build a relaxed planning graph starting from s� i�e�� for the task �P�A� s�G�� Then
we extract a relaxed plan from that graph� The graph building algorithm is depicted in
Figure ��


�� Note that using the term �admissibility� this way slightly abuses notation� as admissibility usually refers
to a property of the heuristic function� not the technique �relaxation� in our case� it is based on�


�� The formulation of basic informedness might seem unnecessarily complicated� We chose the general
formulation at hand so that the denition can easily be transferred to other relaxation techniques� like
the ones we introduce later�
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P� � s


t � �
while G �� Pt do


At � fa � A j pre�a� � Ptg
Pt�� � Pt �


S
a�At


e
�a��


if Pt�� � Pt then fail endif
t � t� �


endwhile


finallayer � t� succeed


Figure �� Building a relaxed planning graph for a task �P�A� s�G��


The planning graph in the relaxed case is simply represented as a sequence P�� A�� � � � �
At��� Pt of proposition sets and action sets� These are built incrementally in the obvious
fashion� starting with P� � s as the initial layer� and iteratively inserting the add e	ects
of all applicable actions� The algorithm fails if at some point before reaching the goals no
new propositions come in� This only happens when the relaxed task is unsolvable�


Proposition � Assume a STRIPS task �P�A� I�G�� and a state s� If the algorithm depicted
in Figure � fails� then there is no relaxed plan for �P�A� s�G��


The proof is in Appendix A� The main argument is that� if two consecutive proposition
layers are identical� then the same will hold true at all later layers so the graph has reached
a 
xpoint�


In case the goals can be reached at layer finallayer� we call the relaxed plan extraction
mechanism depicted in Figure �� The level of each proposition p �action a� here is the 
rst
layer in the relaxed planning graph at which p �a� appears� i�e�� the minimum t such that
p � Pt �a � At��


for t � �� � � � � finallayer do
Gt � fg � G j level�g� � tg


endfor


for t � finallayer� � � � � � do


for all g � Gt do


select a� level�a� � t� �� g � e
�a��


for all p � pre�a� do
Glevel�p�� � fpg


endfor


endfor


endfor


Figure �� Extracting a relaxed plan for a task �P�A� s�G� �levels and finallayer computed
by the algorithm in Figure ���


Relaxed plan extraction is based on a sequence G�� � � � � Gfinallayer of goal and sub�goal
sets� Goals and sub�goals are always inserted into the set at their respective level� i�e�� at the
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position of their 
rst appearance in the relaxed planning graph� The goal sets are initialized
by inserting the respective �top�level� goals� A backwards loop then selects� at each layer�
actions to support the respective goal set� All goals or sub�goals g are supported� and the
preconditions of the respective actions become new sub�goals� This way� upon termination
the selected actions can be used to form a relaxed plan for the state at hand�


Proposition � Assume a STRIPS task �P�A� I�G�� and a state s for which the algorithm
depicted in Figure � reaches the goals� The actions selected by the algorithm depicted in
Figure � form a relaxed plan for �P�A� s�G��


As all goals and sub�goals are supported� arranging the actions selected at each layer in
an arbitrary order yields a relaxed plan� The proof is in Appendix A�


��� FF


Based on the relaxed plan information� a heuristic state space planner is easily implemented�
Choices must be made on how to use the relaxed plans� and how to arrange the search strat�
egy� We describe the speci
c methods used in FF� which are very e�cient in many STRIPS
and ADL benchmarks �Ho	mann � Nebel� ������ The extended system uses straightfor�
ward adaptions of these methods� We de
ne a heuristic function� a search strategy� and a
pruning technique� The heuristic estimates goal distances as relaxed plan length�


De�nition � Assume a STRIPS task �P�A� I�G�� and a state s� The FF heuristic value
h�s� for s is de�ned as follows� If the algorithm depicted in Figure � fails� h�s� �� ��


Otherwise� h�s� ��
Pfinallayer


t�� jAtj where At is the set of actions selected at layer t by the
algorithm depicted in Figure ��


If there is no relaxed plan for a state� then the heuristic value is set to �� This is
justi
ed by the 
rst property proved in Proposition �� when there is no relaxed plan then
there can be no real plan either� i�e�� the state is a dead end in the sense that the goals can
not be reached from it� Such states can be pruned from the search� The search scheme we
use is a kind of hill�climbing procedure using a complete lookahead to 
nd better states�
See Figure ��


Enforced hill�climbing� like �standard� hill�climbing� starts out in the initial state and
performs a number of search iterations trying to improve on the heuristic value� until a
state with zero value is reached� While normally� iterative improvement is done by selecting
one best direct successor of the current search state� enforced hill�climbing uses a complete
breadth 
rst search to 
nd a strictly better� possibly indirect� successor� The search cuts
out states that have been seen earlier during the same iteration� and does not expand states
that the heuristic function recognizes as dead ends� This strategy works well when the
better successors are usually nearby� which is the case in many planning benchmarks when
using the FF heuristic function �Ho	mann� ����� ����b�� When there is no better successor
below the current search node� the algorithm fails �more on this below��


We 
nally de
ne a pruning technique� selecting a set of the most promising successors to
each search state� The unpromising successors can then be ignored� A promising successor
is a state generated by an action that is helpful in the following sense�
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initialize the current plan to the empty plan ��


s � I


while h�s� �� � do


starting from s� perform breadth �rst search for a state s� with h�s�� � h�s��
avoiding repeated states using a hash table�
not expanding states s�� where h�s��� ��


if no such state can be found then fail endif
add the actions on the path to s� at the end of the current plan
s � s�


endwhile


output current plan� succeed


Figure �� The enforced hill�climbing algorithm� for a task with heuristic h�


De�nition � Assume a STRIPS task �P�A� I�G�� and a state s for which the algorithm
depicted in Figure � reaches the goals� The set of helpful actions H�s� to s is de�ned as


H�s� �� fa � A j e	�a� �G� �� �g�


where G� is the set of sub�goals constructed at layer � by the algorithm depicted in Figure ��


In other words� an action is considered helpful if it achieves at least one of the lowest
level goals in the relaxed plan to the state at hand� The helpful actions information is used
as a pruning technique� During a breadth 
rst search iteration in enforced hill�climbing�
when expanding a state s� only the states generated by actions in H�s� are included into
the search space� Note that states s where the relaxed planning graph does not reach the
goals have h�s� �� so do not get expanded anyway�


In general� neither enforced hill�climbing nor helpful actions pruning maintain complete�
ness� The algorithm fails if enforced hill�climbing gets caught in a dead end state� This can
happen because the search does not backtrack over its decisions� and because the heuristic
function can return a value below� for a dead end state� The algorithm also fails if helpful
actions pruning cuts out important states� which can happen because the technique is a
non�admissible approximation of usefulness� We deal with this issue by employing a safety�
net solution� i�e�� if enforced hill�climbing fails then the planner starts from scratch using a
complete heuristic search engine� without any pruning technique� The search engine used is
what Russel and Norvig ������ term greedy best��rst search� This is a weighted A� strategy
where the weight wg of the node cost in the equation f�s� � wg � g�s��wh �h�s� is wg � ��
i�e�� search simply expands all search nodes by increasing order of goal distance estimation�
Repeated states are avoided in the obvious way by keeping a hash table of visited states�


�� Numeric State Variables


We introduce notation for the numeric part of the PDDL��� language �i�e�� PDDL��� level
�� de
ned by Fox and Long ������� used at IPC��� We restrict ourselves to STRIPS for
readability reasons� Extensions to ADL will be summarized in Section ���� All sets are
assumed to be 
nite unless stated otherwise�
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In addition to the propositions P � we now have a set V of numeric variables� Notation�
ally� we say V � fv�� � � � � vng �throughout the article� n will denote the number of numeric
variables�� A state s is a pair s � �p�s�� v�s�� where p�s� � P is a set of propositions and
v�s� � �v��s�� � � � � vn�s�� � Qn is a vector of rational numbers �the obvious semantics being
that p�s� are the true propositions� and vi�s� is the value of vi���


An expression is an arithmetic expression over V and the rational numbers� using the
operators �� 	� �� and �� A numeric constraint is a triple �exp� comp� exp�� where exp and
exp� are expressions� and comp � f��
����� �g is a comparator� A numeric e�ect is a
triple �vi� ass� exp� where vi � V is a variable� ass � f������ ��� ��� ��g is an assign�
ment operator� and exp is an expression �the e	ect right hand side�� A condition is a pair
�p�con�� v�con�� where p�con� � P is a set of propositions and v�con� is a set of numeric
constraints� An e�ect is a triple �p�e��� p�e���� v�e��� where p�e�� � P and p�e��� � P
are sets of propositions �the add� and delete�list�� and v�e�� is a set of numeric e	ects such
that i �� j for all �vi� ass� exp�� �vj � ass�� exp�� � v�e���� An action a is a pair �pre�a�� e��a��
where pre�a� is a condition and e��a� is an e	ect�


The semantics of this language are straightforward� The value exp�v� of an expression
exp in a variable value vector v �in s� if v is the numeric part v�s� of a state s� is the
rational number that the expression simpli
es to when replacing all variables with their
respective values� or unde
ned if a division by � occurs� A constraint �exp� comp� exp�� holds
in a state s� written s j� �exp� comp� exp��� if the values of exp and exp� are de
ned in s�
and stand in relation comp to each other� A condition con � �p�con�� v�con�� holds in a
state s� s j� con� if p�con� � p�s�� and all numeric constraints in v�con� hold in s� The
value �vi� ass� exp��v� of a numeric e	ect �vi� ass� exp� in a variable value vector v �in s� if
v is the numeric part v�s� of a state s� is the outcome of modifying the value of vi in s
with the value of exp in s� using the assignment operator ass� A numeric e	ect is applicable
in s if its value in s is de
ned� An e	ect e� � �p�e��� p�e���� v�e��� is applicable in s
if all numeric e	ects in v�e�� are applicable in s� For such e� and s� e��s� is the state
s� where p�s�� � p�s� n p�e��� � p�e��� and v�s�� is the value vector that results from
v�s� when replacing vi�s� with �vi� ass� exp��s� for all �vi� ass� exp� � v�e��� Putting all of
these de
nitions together� the result of executing an action a in a state s is result�s� hai� �
e��a��s� if s j� pre�a� and e��a� is applicable in s� unde
ned otherwise� In the 
rst case� a
is said to be applicable in s� For an action sequence ha�� � � � � ani� result�s� ha�� � � � � ani� is
as usual de
ned recursively by result�s� ha�� � � � � ani� � result�result�s� ha�� � � � � an��i�� an�
and result�s� hi� � s�


A numeric task is a tuple �V� P�A� I�G� where V and P are the variables and propositions
used� A is a set of actions� I is a state� and G is a condition� A sequence of actions
ha�� � � � � ani � A� is a plan if the result of applying it to I yields a state that models G�
result�I� ha�� � � � � ani� j� G�


In our algorithmic framework� we make distinctions between di	erent degrees of ex�
pressivity that we allow in numeric constraints and e	ects� i�e�� between di	erent numeric


�� We ignore� for readability reasons� the possibility given in Fox and Long�s original language that a
variable can have an undened value until it is assigned one� Our methodology can be easily extended
� and is in fact implemented � to deal with this case�


�� Fox and Long ������ make this assumption implicitly� by requiring that the outcome of an action is
well�dened � note that commutative e�ects on the same variable can be merged�
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languages� A numeric language is a tuple �Cons�E��ass�E��rh� where Cons is a possibly
in
nite set of numeric constraints� E��ass is a set of assignment operators� and E��rh is a
possibly in
nite set of expressions� A task �V� P�A� I�G� belongs to a language if all con�
straints� assignment operators� and e	ect right hand sides are members of the respective
sets�


The next three sections contain the technical part of this article� They are organized as
follows�


�� Section � provides the theory on which Metric�FF�s heuristic function is based� The
relaxation� ignoring delete lists as described in Section ���� is extended to numeric
variables� Section ��� formalizes the key idea in a restricted numeric language� and
states that the extended relaxation ful
lls admissibility� basic informedness� and poly�
nomiality� Section ��� abstracts from the restricted language� identifying generalized
semantic properties that make the relaxation work� Section ��� then introduces the
language of linear tasks� which can be brought into a linear normal form �LNF� that
has these semantic properties� Metric�FF�s core planning algorithms are implemented
for LNF tasks�


�� Section � introduces the algorithms implemented in Metric�FF�s heuristic function�
The algorithms are extensions to the relaxed Graphplan methods described in Sec�
tion ���� Section ��� describes the algorithms for the restricted language� Section ���
extends that to LNF tasks� We state formally that the algorithms are complete and
correct� We also see that the algorithms are� in theory� less e�cient than they could
be� The number of relaxed planning graph layers built can be exponential in the
size of the task encoding� in contrast to polynomiality of the relaxation as proved
in Section �� The reason why the implementation lags behind what is theoretically
possible is that the implementation work was done before the theory was fully devel�
oped� However� from a practical point of view� it is at least debatable how important
the potential exponentiality is �the number of relaxed planning graph layers built is
bounded by the length of a shortest relaxed plan�� Exploring this issue in depth is a
topic for future work� More details are in Sections ��� and ����


�� Section � details how the relaxed plan information is used to implement the Metric�FF
system� Section ��� explains the extension of the basic FF architecture as described
in Section ���� Section ��� explains the extension to ADL� Section ��� describes how
�exible optimization criteria can be dealt with�


�� Relaxing Numeric State Variables


We show how the relaxation technique for STRIPS can naturally be extended to the numeric
context� We proceed in the three steps outlined above�


��� A Restricted Language


The key idea in our relaxation becomes apparent when one considers the context where
constraints only compare variables to constants via � or �� there are only �� and ��
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e	ects� and the e	ect right hand sides are positive constants� More formally� our restricted
language is�


� f�vi� comp� c� j vi variable� comp � f�� �g� c � Qg�
f��� ��g�
fc j c � Q� c � �g �


In STRIPS� delete lists are troublesome because they falsify propositions that we might
need for preconditions or the goal� In the restricted numeric language here� the �� e	ects are
troublesome because they diminish the value of the a	ected variables� The idea is therefore
to ignore these e	ects�


De�nition � Assume a restricted numeric task �V� P�A� I�G�� The relaxation a of an
action a � A� a � �pre�a�� �p�e	�a��� p�e	�a���� v�e	�a����� is de�ned as


a �� �pre�a�� �p�e	�a��� �� f�vi�	
� exp� j �vi�	
� exp� � v�e	�a��g���


The relaxation of �V� P�A� I�G� is �V� P�A� I�G�� where A �� fa j a � Ag� An action
sequence ha�� � � � � ani � A� is a relaxed plan for �V� P�A� I�G� if ha� � � � � � a



n i is a plan for


�V� P�A� I�G��


The above relaxation is adequate in the restricted language� in the precise sense intro�
duced in Section ����


De�nition 	 Let RESTRICTED�RPLANSAT denote the following problem�


Assume a restricted numeric task �V� P�A� I�G�� Is the relaxation of �V� P�A� I�G�
solvable�


Theorem � The relaxation given in De�nition � is adequate� i�e�� the following holds true�


�� Admissibility� assuming a restricted numeric task �V� P�A� I�G�� any plan for
�V� P�A� I�G� is also a relaxed plan for �V� P�A� I�G��


�� Basic informedness� assuming a restricted numeric task �V� P�A� I�G�� hi is a plan
for �V� P�A� I�G� if and only if hi is a relaxed plan for �V� P�A� I�G�� and for a � A�
result�I� hi� j� pre�a� if and only if result�I� hi� j� pre�a��


�� Polynomiality� deciding RESTRICTED�RPLANSAT is in P�


The detailed proof can be found in Appendix A� It is a straightforward extension of the
STRIPS proof� exploiting the correspondence between pre�goal�conditions� add lists� and
delete lists on the one hand� and x � ���c constraints� �� e	ects� and �� e	ects on the
other hand� The only tricky part lies in proving polynomiality� precisely in how to handle
repeated increasing e	ects on the same variable� Such e	ects might have to be applied
an exponential number of times� Consider the tasks� for n � N�� where v


i is initially ��
vi � n is the goal� and we have an action e	ect �vi���� ��� For task n� the shortest relaxed
plan comprises n steps� which is exponentially long in the size of a non�unary encoding
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of n� The trick one can use to decide relaxed solvability in polynomial time is a simple
� handling� The polynomial decision process is a forward 
xpoint procedure similar to
building a relaxed planning graph� As soon as there appears an action a that increases a
variable vi� one can assume that vi�s value is �� re�ecting the fact that vi�s value can be
made arbitrarily high by applying a a su�cient number of times� As indicated earlier� the
current implementation of Metric�FF� which we will describe in Section �� does not make
use of such an� handling technique� and may thus build an exponential number of relaxed
planning graph layers for a search state� More on this in Section ����


A few words on related work are in order here� If one relaxes numeric tasks by ignoring
all the numeric constructs� then one gets admissibility and polynomiality� but not basic
informedness� The heuristic methods used in Sapa �Do � Kambhampati� ����� and GRT�R
�Refanidis � Vlahavas� ����� come quite close to this extreme case� In fact� Sapa�s heuristic
constructs a relaxed plan that completely ignores the numeric part of the task� Then the
�resource consumption� of the resulting relaxed plan �roughly� the sum of all decreasing
e	ects on numeric variables� is used to estimate the number of actions that would be needed
to re�produce these resources� and that number is added to the heuristic value of the state at
hand� In particular� this method ignores all numeric goals and preconditions and thus lacks
basic informedness� Similarly� the heuristic technique used in GRT�R considers resource
consumption as another form of state cost� but does not take any numeric precondition or
goal constraints into account� The heuristic technique does not make explicit use of relaxed
plans so our de
nitions can not be directly applied� However� as numeric constraints are
not considered� the heuristic value of a purely numeric action precondition is zero even if
the precondition is not true in the current state� and the technique thus also lacks basic
informedness�


��� Monotonicity
 and a Dynamic Relaxation


We now have a look behind the scenes of the relaxation technique that we used above for
the restricted language� We abstract from the syntax of the numeric constructs� and focus
on their semantics instead� We de
ne an extension of our relaxation to the general context�
and identify a group of semantic properties that make this relaxation adequate� We will
later focus on a syntactically restricted language� linear tasks� where it is easier to see that
the relaxation is adequate� The main intention of the abstract work in this subsection is to
provide some theoretical background on the general characteristics for which our relaxation
works�


Let us 
rst ignore semantic issues� and simply extend the de
nition of our relaxation�
In general� the de
nition is not as easy as for the restricted case in De
nition �� While our
idea is still to ignore decreasing e	ects� the di�culty is that whether an e	ect is decreasing
or not can depend on the context it is executed in�� As a simple example� say an action a
has a numeric e	ect �vi���� vj�� If vj has a negative value in the state of a�s execution�
this e	ect decreases the value of vi instead of increasing it� So we can not statically relax a


�� It is common practice to refer to �� e�ects as �increasing e�ects�� and to �� e�ects as �decreasing
e�ects�� In contrast to that� we distinguish between syntax and semantics by using �� � �� to denote
syntax� and increasing � decreasing to denote semantics �of arbitrary numeric e�ects��
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by ignoring parts of its speci
cation� Instead� our relaxation now is dynamic� we relax the
state transition function�


De�nition � Assume a state s and an action a � �pre�a�� e	�a��� The relaxed result
of executing a in s is result�s� a� � s� such that p�s�� � p�s� � p�e	�a��� and v�s�� is
the value vector that results from v�s� when replacing vi�s� with �vi� ass� exp��s� for all
�vi� ass� exp� � v�e	� such that �vi� ass� exp��s� � vi�s��


For an action sequence ha�� � � � � ani� result
�s� ha�� � � � � ani� is de
ned recursively as with


the original result function in Section �� Note that� in STRIPS and the restricted numeric
language� De
nition � comes down to exactly the relaxations we have used before�


Having generalized our relaxation� we now want to know in exactly which situations
this relaxation is adequate� Obviously� ignoring the decreasing e	ects is not adequate in
general� As a simple example� if the value of a variable vi is initially �� there is an e	ect
�vi� ��� ��� and the goal requires that vi � �� then the �relaxation� renders the task un�
solvable� Intuitively� the relaxation is adequate if it is always preferable for the numeric
variables to have higher values� Formalizing this intuition turns out to be a bit tricky�
Recall our three conditions for adequacy of a relaxation� admissibility �any real plan is also
a relaxed plan�� basic informedness �the relaxation does not ignore any precondition or goal
constraints�� and polynomiality �solvability of the relaxation can be decided in polynomial
time�� Basic informedness is obviously given for our relaxation here� Not so admissibility
and polynomiality� Say we want to make sure that each real plan is also a relaxed plan�
Not only must the numeric constraints prefer higher variable values� but the e	ects must
also� As an example� say we have vi � vj � � initially� the goal vi � �� an action e	ect
�vi� ��� vj�� and an action e	ect �vj � ��� ��� If we ignore the decreasing e	ect on vj � we can
not solve the task because for the e	ect �vi� ��� vj� it is better when vj takes on lower values�
Considering polynomiality� to ensure that relaxed solvability can be decided in polynomial
time� all kinds of subtleties must be handled� Say we want to shortcut repeated action
application by an � trick� i�e�� by assuming that repeated application of increasing e	ects
makes the a	ected variable diverge �as is the case in the restricted language above�� Then
we will get in trouble if repeated �relaxed� application of an action makes the value of the
a	ected variable converge�� Similar di�culties arise when an expression in a constraint
does not diverge with its variables� Finally� it might be that the constraint looks correct
when inserting �� but can never be ful
lled with 
nite values� An example of this is the
constraint vi � vi � �� which is ful
lled when inserting � for vi�


In the following de
nition� we introduce a number of conditions that are su�cient to
ensure that none of the di�culties described above appear� We will see that in �monotonic�
tasks each real plan is also a relaxed plan� and that in �strictly monotonic� tasks� given their
�� e	ects are acyclic in a certain sense� relaxed plan existence can be decided in polynomial
time�


De�nition � Assume a numeric task �V� P�A� I�G�� The task is monotonic if� for all pairs
of states s and s� with �vi � vi�s� 
 vi�s��� the following holds�



� As an example� if vi is initially � and we have an e�ect �vi���� �� vi


�
� then repeated application of the


e�ect makes the value of vi converge to � �the value of vi after n applications is �� �


�


n
��
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�� For all numeric constraints �exp� comp� exp�� occurring in the task�


s j� �exp� comp� exp�� s� j� �exp� comp� exp���


�� For all numeric e�ects �vi� ass� exp� occurring in the task�


�vi� ass� exp��s� 
 �vi� ass� exp��s���


where the 
 relation holds only if both values are de�ned�


The task is strongly monotonic if the above and the following hold�


�� For all states s and s� as above� for all numeric e�ects �vi� ass� exp� occurring in the
task� with ass � f	
� �
� �
� �
g�


�vi� ass� exp��s�	 vi�s� 
 �vi� ass� exp��s��	 vi�s���


where the 
 relation holds only if both values are de�ned�


�� For all expressions exp occurring in the task�


�vi � v�exp� � lim
vi��


exp ���


where v�exp� denotes the set of all variables contained in exp�


�� For all numeric constraints �exp� comp� exp�� occurring in the task�


�s � s j� �exp� comp� exp���


Some explanation of this lengthy de
nition is in order� Condition ��� ensures that the
numeric constraints prefer higher variable values� Condition ��� does the same for e	ects�
requiring that the value of an e	ect can only increase with the variables� In particular�
the value does not become unde
ned� i�e�� no division by zero occurs when the variables
grow� These two conditions su�ce to make each real plan a relaxed plan� as higher variable
values are always preferable� Conditions ��� to ��� aim at making relaxed solvability easy
to decide� Condition ��� is a stronger version of condition ���� We require that the value
that the e�ect adds to the a�ected variable increases with the variables� This ensures that
repeated application of the e	ect causes the value of the a	ected variable to diverge� To
illustrate this� an e	ect �vi����	vj � c� ful
lls condition ��� but not condition ���� The
outcome of this e	ect is always c� which is monotonic in its �zero� variables but a	ects
vi more as vi�s own value becomes higher� Condition ��� postulates that all expressions
diverge in all variables� and condition ��� postulates that to all constraints there is a 
nite
variable assignment that makes these constraints true� Together with condition ��� these
requirements ensure that the constraints will eventually be ful
lled when increasing the
values of the variables���


��� One could weaken conditions ��� to ��� of Denition � by exploiting the fact that we are only interested
in reachable states� It does not matter if� e�g�� a constraint is not monotonic in a region of variable values
that will never be reached due to the semantics of the task� Metric�FF implements no such analysis
techniques� except throwing away actions � and with them� numeric constraints and e�ects � whose
preconditions can not be reached in the relaxed planning graph for the initial state� when ignoring all
numeric constructs� Exploring the topic in more depth is future work�
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The �� e	ects are separated out from the de
nition of strong monotonicity� i�e�� while
we do postulate condition ��� for them� we do not postulate condition ���� Postulating
condition ��� for �� e	ects would also su�ce� But this condition does not hold for even
the simplest form of �� e	ects� namely �vi� ��� c�� assigning a constant to a variable� Note
that this is in principle the same e	ect as the example given above� �vi����	vj � c��
E	ects of this kind are common even in the limited suits of benchmarks that are currently
available �e�g�� when 
lling up a tank� the fuel level is assigned the maximum level�� So we
identify a di	erent su�cient criterion that makes �� e	ects tractable� and that captures the
common forms of these e	ects� Computing the maximum outcome of a set of assignment
e	ects� in the relaxation and under condition ���� becomes easy if the value changes on each
single variable can not be propagated into their own value� The proof argument is that�
if� transitively� a change on vi can not in�uence vi�s own value then all one needs to do
is to perform value propagation steps� at each step computing the maximum assignment
available for each variable� After at most as many steps as there are variables� the values
will be 
xed� We formalize the possible value propagations with a straightforward graph
de
nition�


De�nition  Assume a numeric task �V� P�A� I�G�� The task has acyclic �� e	ects if the
graph �V�E� is cycle�free� where


E � f�vi� vj� � V � V j �a � A� �vj � �
� exp� � v�e	�a�� � vi � v�exp�g�


with v�exp� denoting the set of all variables contained in exp�


We now state in which ways our de
nitions imply adequacy of ignoring decreasing e	ects
as a relaxation� In the notation for the relaxed plan existence decision problem� we abstract
from syntactic issues� and assume that a well�formed input task to the decision procedure
is strongly monotonic and has acyclic �� e	ects�


De�nition �� Let STRONGLY�MONOTONIC�RPLANSAT denote the following prob�
lem�


Assume a numeric task �V� P�A� I�G�� Is there a relaxed plan for �V� P�A� I�G�� provided
the task is strongly monotonic and has acyclic �� e	ects�


Theorem � The relaxation given in De�nition � is adequate for strongly monotonic tasks
with acyclic �
 e�ects� Precisely the following holds true�


�� Admissibility� assuming a monotonic numeric task �V� P�A� I�G�� any plan for
�V� P�A� I�G� is also a relaxed plan for �V� P�A� I�G��


�� Basic informedness� assuming a numeric task �V� P�A� I�G�� hi is a plan for
�V� P�A� I�G� if and only if hi is a relaxed plan for �V� P�A� I�G�� and for a � A
result�I� hi� j� pre�a� if and only if result�I� hi� j� pre�a��


�� Polynomiality� deciding STRONGLY�MONOTONIC�RPLANSAT is in P�
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The proof� given in Appendix A� is basically a straightforward exploitation of the proper�
ties ensured by the above de
nitions� Note that Theorem � only identi
es su�cient criteria
that make our relaxation work� Interesting questions are� are there other� maybe weaker�
criteria� As a concrete example� there seem to be certain cases of cyclic assignment e	ects
that can be easily handled� What exactly are these cases� Answering these questions is a
topic for future work�


Another thing we have not dealt with is how our semantic constraints translate to the
syntax of the arithmetic expressions that are allowed in PDDL���� We do not consider the
details of this but base the rest of the article on a subset of PDDL��� where the required
semantic properties can easily be achieved � the language for which the Metric�FF system is
actually implemented� Extending the system to richer languages is an open research topic�


��� Linear Tasks
 and LNF


The Metric�FF system is implemented to deal with what we call linear tasks� This is the
language of numeric tasks where there are no �� or �� e	ects� and the numeric variables
are only used in linear expressions� More formally�


� f�exp� comp� exp�� j exp� exp� linear expression� comp arbitraryg�
f������ ��g�
fexp j exp linear expressiong �


Metric�FF�s implementation allows for tasks that are linear after the following pre�
processing step� Assume we are given a planning task �V� P�A� I�G�� A variable vi � V is
a task constant if vi is not a	ected by the e	ect of any action in A� An expression is a task
constant if all variables occurring in it are task constants� The pre�process replaces all task
constants with the respective rational numbers resulting from inserting the initial variable
values���


Linear tasks are� of course� not necessarily monotonic� In fact� all of the illustrative
counter examples we have given above are linear� But linear functions are monotonic� more
precisely strictly monotonic and diverging� in all variables� either in the positive or in the
negative sense� The idea is to introduce� for a variable vi that is used in the negative sense
at some point� an inverted variable 	vi that always takes on the value �	�� � vi� One can
then replace vi with 	vi at the points where vi is used negatively� When this has been done
for all variables� the task is �strictly� monotonic� all variables are only used in the positive
sense �more details below�� Introducing inverted variables can be viewed as a shortcut way
of informing the heuristic function about which places to use the variables in the positive or
in the negative sense��� We will return to this issue when considering Metric�FF�s heuristic
algorithms in Section ����


Given a linear task� Metric�FF transforms the task into what we call its linear normal
form �LNF�� In an LNF task� the expressions are weighted sums of variables� where the
weights are all greater than �� The transformation process works as follows� First� a series
of simple steps transforms the task into the following language�


��� If� in a quotient �exp�exp��� exp� simplies to � then the expression is undened and the respective
constraint can never be fullled � the respective action�s e�ects can never become applicable� In this
case one can replace the constraint with �false�� remove the action�


��� David Smith� personal communication�
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� f�
P


j�X cj � vj � c�� ���� �� j cj� c � Q� cj �� �g�
f�����g�
f
P


j�X cj � vj � c j cj � c � Q� cj �� �g �


To achieve this language format� one replaces all constraints �exp��� exp�� with �exp�

� exp�� and �exp��� exp��� and all e	ects �vi� ��� exp� with �vi����	exp�� The rest is a
matter of normalizing linear functions� The language format di	ers from LNF only in that
the variable weights may be negative� This� of course� makes all the di	erence� Reconsider
the example where a variable vi is initially �� there is an action a with e	ect �vi� ��� ��� and
the goal requires that vi � �� We take this as the running example in the following� In the
above language format� a�s e	ect is �vi����	��� and the goal requires that �	�� � vi � ��
Due to the negative weighting of vi in the goal condition� ignoring decreasing e	ects is not
viable�


The way we introduce inverted variables is an extension to the methodology that elimi�
nates negative preconditions in STRIPS planning �a technique 
rst introduced by Gazen �
Knoblock� ������ The process works as follows� Initialize the set T of translated variables
to T �� �� Iterate until there are no more negative weights� otherwise select an �arbi�
trary� occurrence cj � vj � cj � �� in a weighted sum� Introduce a new variable 	vj� Set
	vj�I� �� �	�� � vj�I�� For all e	ects �vj ��������


P
j�X cj � vj � c�� introduce �into the


e	ect set of the same action� the e	ect �	vj ��������
P


j�X��	�� � c
j� � vj ���	�� � c��� Set


T �� T �fvj �	vjg� For all occurrences of c � v in weighted sums such that c � � and v � T
�where v may be one of the original variables or one of the introduced inverse variables��
replace c�v with ��	���c��	v �where 	v is the respective inverse counterpart to v�� After
at most jV j iterations� all weights are positive and the process terminates� The task is then
in the following linear normal form�


� f�
P


j�X cj � vj � c�� ���� �� j cj� c � Q� cj � �g�
f�����g�
f
P


j�X cj � vj � c j cj � c � Q� cj � �g �


For our running example� the LNF transformation is the following� There are now two
variables� vj and 	vj� both of which are initially �� The action a has two e	ects� namely
�vi����	�� and �	vi���� ��� The goal condition is now expressed in terms of the value of
	vi� and reads 	vi � �� A single application of the action achieves the goal� as it also does
under the relaxed transition function because the e	ect on 	vi is increasing��� In general�
it is easy to see that LNF tasks are strongly monotonic�


Proposition � Assume a linear numeric task �V� P�A� I�G�� If the task is in LNF� then
it is strongly monotonic�


Proof� All conditions in De
nition � are trivially ful
lled in LNF tasks� As examples�
condition ��� is true because we only compare expressions that are �positively� monotonic
in all variables to constants via � or �� Condition ��� is true because we only have ��
e	ects whose right hand sides are �positively� monotonic in all variables� �


��� Note that estimating the maximum value of �vi is the same as estimating the minimum value of vi�
More on this in Section ����
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With Proposition �� if an LNF task �V� P�A� I�G� has acyclic �� e	ects �remember that
these are separated out from De
nition � condition ���� then the task ful
lls the prerequisites
of Theorem �� so ignoring the decreasing e	ects is an adequate relaxation� It is thus feasible
to use solutions to the relaxation as a means of heuristic estimation�


For the �� e	ects� one can easily translate these into� e�g�� �� e	ects � �vi� ��� exp�
translates to �vi���� ��	���vi��exp�� So the reader might wonder why we bother treating
�� e	ects at all� The point is that� while the translated e	ects behave equivalently under the
real transition function� they behave di	erently in the relaxation� In our running example
suppose there is a second action a� with the e	ect �vi� ��� ���� In the LNF transformation�
the translated version of this e	ect is �vi����	vi � ���� Say we execute� under result�

rst a �with e	ects �vi����	�� and �	vi���� ��� then a�� In the original task� the resulting
value of vi is ��� In the translated task� that value is �� �because the decreasing e	ect on vi


is ignored�� So it does make a di	erence whether we treat �� e	ects separately or not� An
open question is whether� or in which situations� that di	erence is important for planner
performance�


We also remark that� while Metric�FF implements the introduction of inverted variables
for LNF tasks only� it seems likely that similar processes will work for richer languages�
when all functions are strictly monotonic and diverging in all variables�


�� Solving Relaxed Tasks


We now concentrate on the algorithms used in FF� more generally algorithms that can be
used to obtain heuristic information in a forward state space search� We explain how to
solve relaxed numeric tasks� We 
rst consider the restricted language� then extend the
methods to LNF tasks� The algorithms form the basis of the Metric�FF implementation�


��� Restricted Tasks


The implementation uses a straightforward extension of the Graphplan�style algorithms
introduced in Section ���� We still use a two�step process that 
rst builds a relaxed planning
graph then extracts a relaxed plan from that �if the graph succeeds in reaching the goals��
In parallel to the structures that keep track of the progress in logical propositions� we now
have structures that keep track of the progress in terms of maximally possible variable
values� The graph building mechanism is outlined in Figure ��


The parts of the algorithm concerned with the propositions work exactly as in the
STRIPS case� c�f� Section ���� As for the numeric variables� the max value vector at a
layer t speci
es the current maximum value that the variables can take on� The vectors are
updated in the obvious fashion� adding at each layer the total sum of the increasing e	ects
at that layer� The termination condition now checks whether the maximum values of all
variables have either not changed� or are already higher than needed� the mneedi value for
each variable vi is de
ned as the highest requirement on that variable� i�e��


mneedi �� max�	�� fc j �vi�� ���� c� � v�G� �
�
a�A


v�pre�a��g��


Note that the algorithm fails only if there is no relaxed plan for �V� P�A� s�G�� if the
algorithm fails at a layer m then the termination condition will hold true at all later layers�
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P� � s� for all vi do maxi� � vi�s� endfor
t � �
while p�G� �� Pt or �v


i�� ���� c� � v�G��maxit �� ����c do


At � fa � A j p�pre�a�� � Pt�


��vi�� ���� c� � v�pre�a��  maxit � ���cg


Pt�� � Pt �
S


a�At
p�e
�a���


for all vi do maxit�� � maxit �
P


a�At��vi����c��v�e
�a�� c endfor


if Pt�� � Pt and


�vi  maxit�� � maxit or maxit � mneedi then
fail


endif


t � t� �
endwhile


finallayer � t


Figure �� Building a relaxed planning graph for a state s in a restricted numeric task
�V� P�A� I�G��


Also� note that there can be only a 
nite number of layers as the numeric variables that do
increase will eventually reach their 
nite mneed values� But� as mentioned in Section ���� the
number of layers can be exponential in the task encoding� Reconsider the example where�
for n � N�� v


i is initially �� vi � n is the goal� and we have an action e	ect �vi���� ��� The
number of graph layers built for this example� n� is exponential in a non�unary encoding
of n� whereas one could easily decide solvability with the � trick outlined in Section ����
On the other hand� it appears unlikely that an implementation of the provably polynomial
decision procedure would be better in practice� The graph building algorithm is polynomial
in the length of its output �the minimal length of a relaxed plan�� Also� the possibly
exponential minimal length of a relaxed plan �exponential in a non�unary encoding of the
variable values� does not seem particularly relevant� at least not in examples that are not
speci
cally constructed to provoke this exponentiality� It remains an open question whether
an implementation of � handling can achieve better performance in realistic examples�


We now focus on relaxed plan extraction� This is invoked if the relaxed planning graph
succeeds in reaching the goals� The information that the graph provides us with are the
levels of all actions� propositions� and numeric goals� For actions and propositions the level
is the 
rst graph layer at which they appear� c�f� Section ���� For numeric goals �vi�� ���� c��
the level is the graph layer t where the goal can 
rst be achieved� i�e�� where maxit � ���c
holds the 
rst time� The plan extraction mechanism is outlined in Figure ��


Again� the logical entities are dealt with exactly as in the STRIPS case� c�f� Section ����
In addition to the propositional �sub��goal set p�Gt� at each layer t we now have a set v�Gt�
of numeric goals� Like in STRIPS� goals and sub�goals are always inserted into the set at
their 
rst appearance in the relaxed planning graph� and the goal sets are initialized by
inserting the respective �top�level� goals� Then there is a backwards loop from the top to
the bottom layer� selecting actions to support the propositions and numeric variables in the
respective goal sets� The propositions are supported as before� the only di	erence being
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for t � �� � � � � finallayer do
p�Gt� � fg � p�G� j level�g� � tg


v�Gt� � f�vi�� ���� c� � v�G� j level�vi�� ���� c� � tg
endfor


for t � finallayer� � � � � � do


for all g � p�Gt� do
select a� level�a� � t� �� g � p�e
�a���


for all p � p�pre�a��� �vi�� ���� c� � v�pre�a�� do


p�Glevel�p��� � fpg


v�Glevel�vi ������c��� � f�vi�� ���� c�g
endfor


endfor


for all �vi�� ���� c� � v�Gt� do


while maxit�� �� ����c do
select a� level�a� � t� �� �vi���� c�� � v�e
�a���


a not previously selected in this while�loop
c � c� c�


�� introduce a�s preconditions as above ��
endwhile


v�Gt���� � f�vi�� ���� c�g
endfor


endfor


Figure �� Extracting a relaxed plan for a state s in a restricted numeric task �V� P�A� I�G�
�levels and finallayer computed by the algorithm in Figure ���


that now also the numeric preconditions of the supporting actions must be inserted into
the goal sets below� When uniting sets of numeric goals that both contain a constraint on
the same variable vi� the stronger one of both constraints is taken� For the numeric goals
�vi�� ���� c� � v�Gt� it is in general not enough to select a single action as several actions
at t	� might have contributed to vi�s maximum value at t� So supporters are selected until
the goal can be achieved one layer earlier� Note that maxit 	


P
a�At����vi����c��v�e��a�� c �


maxit��� so the while loop will always terminate successfully� Note also that one occurrence
of an action can support di	erent logical and numeric goals by di	erent e	ects� but can not
be used to support the same numeric goal twice�


Upon termination of plan extraction� the selected actions can be used to form a re�
laxed plan� with At denoting the actions selected at layer t� an arbitrary linearization of
A�� � � � � Afinallayer�� is a relaxed plan for the task� Note that one can apply various simple
heuristics� like selecting �� e	ects with maximum right hand side 
rst� to make the relaxed
plans as short as possible�


��� LNF Tasks


The algorithms for numeric tasks in linear normal form di	er from those for restricted tasks
in that we need to take care of �� e	ects� and of the more general expressions in numeric
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constraints and in e	ect right hand sides� As it turns out� integrating these extensions is
not overly di�cult� The only issue that becomes slightly involved is the exact termination
criterion for relaxed graph building� In our solution to the issue we assume� as in the
theoretical analysis underlying Theorem �� that the �� e	ects are acyclic� An outline of the
graph building mechanism is shown in Figure ��


P� � s� for all vi do maxi� � vi�s� endfor
t � �
while p�G� �� Pt or �exp�� ���� �� � v�G�� exp�maxt� �� ����� do


At � fa � A j p�pre�a�� � Pt�


��exp�� ���� �� � v�pre�a��  exp�maxt� � ����g


Pt�� � Pt �
S


a�At
p�e
�a���


for all vi do maxit�� � maxit �
P


a�At��vi����exp��v�e
�a���exp�maxt��� exp�maxt� endfor


for all vi do maxit�� � max�maxit���max
a�At��vi���exp��v�e
�a��


exp�maxt�� endfor


if Pt�� � Pt and


�vi  maxit�� � maxit or maxit � mneedi�s� then
fail


endif


t � t� �
endwhile


finallayer � t


Figure �� Building a relaxed planning graph for a state s in an LNF task �V� P�A� I�G��


Compare Figure � with Figure �� We deal with the expressions in constraints and
e	ect right hand sides simply by inserting the respective max values of the variables� and
computing the respective outcome �recall that exp�v� for an expression exp and a variable
value vector v denotes the value of exp when inserting the values v�� The �� e	ects are
taken into account to obtain the maxt� values exactly as before� i�e�� by adding their
combined contributions to maxt �except that the value of the right hand sides must now be
computed using the maxt values�� The �� e	ects are taken into account by determining�
after all �� e	ects have contributed to maxt�� whether there is a �� e	ect in the graph
whose value� when inserting the maxt values� is higher than the hitherto maxt� value�
In this case� maxt� �for the respective variable� is updated to the maximum assignment
possible�


The only part of the algorithm that becomes somewhat complicated� in comparison to
the algorithm for restricted tasks� is the termination criterion� The di�cult part is the
computation of the mneed values� i�e�� the values above which the variables can no longer
contribute anything to a relaxed solution� These values can now depend on the state s we
start from� To derive the values� we start with the static �non state�dependent� notion of
solution�relevant variables� A variable vi is solution�relevant if it either occurs in a numeric
constraint� or in the right hand side exp of an e	ect �vj �������� exp� on a solution�relevant
variable vj � Note that solution�relevance thus transfers transitively over the variables� We
denote the set of solution�relevant variables with rV � For the state�dependent aspects of
the relaxed task� we provide notation for the value that a variable vi must at least take
on in a state s in order to raise �or �support�� the value of a positively weighted sum
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exp �
P


j�X cj � vj � c above a constant c��


supvi�s� exp� c�� �� �c� 	 c	
X


i��j�X


cj � vj�s�� � ci


Of course� the support value supvi�s� exp� c�� is only de
ned if vi � v�exp�� i�e�� if vi is a
part of the weighted sum� As the reader can easily convince him�herself� if we raise the
value of vi in s above supvi�s� exp� c�� then we know that the value of exp is at least c�� We
use this concept to determine the point above which a variable vi contributes su�ciently
to all constraints and e	ect right hand sides that it can contribute to� For constraints
�exp�� ���� �� with vi � v�exp� this point is reached with vi � supvi�s� exp� �� �then the
constraint is ful
lled�� For �� e	ect right hand sides in �vj ���� exp� with vi � v�exp�
and vj � rV �vj may be needed� this point is reached with vi � supvi�s� exp� �� �the e	ect
can then eventually increase vj to arbitrarily high values�� As for �� e	ect right hand
sides� in an e	ect �vj � ��� exp� with vi � v�exp� and vj � rV the value of vi is su�cient if
vi � supvi�s� exp�mneedj�s��� then the e	ect is high enough to assign vj a su�cient value�
The main complication here is that we want to use the supv values to de
ne the mneed
values so our de
nition for �� e	ects is recursive� That does not constitute a problem given
our assumption that the �� e	ects are acyclic� In e	ect� the recursion is guaranteed to
terminate� Altogether� the de
nition is the following�


mneedi�s� � max


�����
����


���


fsupvi�s� exp� �� j �exp�� ���� �� � v�G� �
S


a�A v�pre�a��� vi � v�exp�g�


fsupvi�s� exp� �� j �vj ���� exp� �
S


a�A v�e
�a��� vi � v�exp�� vj � rV g�


fsupvi�s� exp�mneedj�s� j �vj � �� exp� �
S


a�A v�e
�a��� vi � v�exp�� vj � rV g


Note that� with this de
nition� the variables with mneedi�s� � 	� are the variables that
are not solution�relevant�


Theorem � Assume a linear numeric task �V� P�A� I�G� that is in LNF and has acyclic
�
 e�ects� Assume a state s� If the algorithm depicted in Figure � fails� then there is no
relaxed plan for �V� P�A� s�G��


The main proof idea is� as before� this� if the algorithm fails at a layer m then the ter�
mination condition will hold true at all later layers� The argument concerning the mneed�s�
values follows what is outlined above� The full details are a bit lengthy� See Appendix A�


As discussed before for the restricted language� the number of graph layers built before
termination is 
nite � eventually� all variables either do not increase or reach their 
nite
mneed values � but can be exponential in the encoding length of the task� Again� one
could implement a provably polynomial algorithm along the lines of the method used in
the proof to Theorem �� and again it is debatable whether such an implementation would�
for realistic examples� achieve any signi
cant performance improvements over the existing
implementation�


It is interesting to consider the role that the inverted variables � as introduced by
Metric�FF during LNF pre�processing� see Section ��� � play in the relaxed planning graph
process described above� Estimating the maximum value of an inverted variable is the same
as estimating the minimum value of the respective original variable� More precisely� in
Figure �� if vj is the inverted variable to vi then �	�� � maxjt is� for all t� an optimistic
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approximation of the minimum value that vi can take on after t steps� the value that
results when one ignores all increasing e	ects on vi� and is optimistic about the decreasing
e	ects� In this sense� the introduction of the inverted variable 	vi � vj can be viewed as
a way of informing the relaxed planner of where� in the numeric constraints and e	ects�
to use the minimum or the maximum possible value of vi� when computing an optimistic
approximation of these maximum and minimum values��	


We now focus on relaxed plan extraction� As justi
ed by Theorem �� this is invoked only
if the relaxed planning graph succeeds in reaching the goals� Also as before� the information
that the graph provides are the levels of all actions� propositions� and numeric goals� For
actions and propositions the de
nitions stay the same� for numeric goals �exp�� ���� �� the
level is the graph layer t where the goal can 
rst be achieved� i�e�� where exp�maxt� � ����
holds the 
rst time� An outline of the plan extraction mechanism is shown in Figure ��


Compared to the algorithm for restricted tasks� shown in Figure �� the novelties in
Figure � are that complex numeric goals get split up into goals for the individual variables�
that e	ect right hand sides are forced to have a su�ciently high value� and that �� e	ects
are handled� The 
rst issue� given a numeric goal �exp�� ���� ��� is dealt with simply by
constraining all variables vi � v�exp� to take on their respective max value� Similarly�
e	ect right hand sides in �vi� ������� exp� are forced to be su�ciently high by requiring all
vj � v�exp� to take on the respective max value� The �� e	ects are taken into account as
an alternative way of achieving a numeric goal �vi�� ���� c� � v�Gt�� If there is an e	ect
�vi� ��� exp� with su�ciently high value� exp�maxt��� � ���c� then the respective action is
selected� Otherwise a set of actions with �� e	ects is selected in a similar fashion as for
restricted tasks� As in Figure �� when uniting sets of numeric goals that both contain a
constraint on the same variable vi� the stronger one of both constraints is taken� It is easy
to see that� upon termination� the selected actions can be used to form a relaxed plan for
the state at hand�


Theorem � Assume a linear numeric task �V� P�A� I�G� that is in LNF and has acyclic �

e�ects� Assume a state s for which the algorithm depicted in Figure � reaches the goals� The
actions selected by the algorithm depicted in Figure � form a relaxed plan for �V� P�A� s�G��


The �straightforward� proof can be found in Appendix A� We conclude this section with
two additional remarks� One thing that might also have occurred to the reader is that one
does not necessarily need to support a goal �exp�� ���� �� by requiring all vi � v�exp� to
take on the maximum possible value� Weaker requirements might already be su�cient� The
same holds true for e	ect right hand sides� One might be able to 
nd shorter relaxed plans
by using some simple heuristics at these points� It also seems plausible that the algorithms
speci
ed here will work for any strictly monotonic task that uses only �� e	ects and acyclic
�� e	ects� assuming the mneed value computation is modi
ed appropriately� Exploring this
idea for richer language classes is left open as a topic for future work� It is also left open if
and how �� e	ects and �� e	ects could be taken into account�


��� This insight has been pointed out to the author by David Smith in a comment on the submitted version
of this article� Optimistically estimating maximum and minimum variable values� or more generally
multiple variable values� is an alternative viewpoint to the monotonicity paradigm we explore here�
Investigating the alternative viewpoint in more depth is an open topic�
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for t � �� � � � � finallayer do
p�Gt� � fg � p�G� j level�g� � tg


v�Gt� � f�vi�� ����maxit� j �exp�� ����� � v�G�� level�exp�� ���� �� � t� vi � v�exp�g
endfor


for t � finallayer� � � � � � do


for all g � p�Gt� do
select a� level�a� � t� �� g � p�e
�a���


for all p � p�pre�a��� �exp�� ���� �� � v�pre�a�� do


p�Glevel�p��� � fpg


v�Glevel�exp���������� � f�vi�� ����maxi
level�exp��������� j v


i � v�exp�g


endfor


endfor


for all �vi�� ���� c� � v�Gt� do


if �a� level�a� � t� �� �vi� �� exp� � v�e
�a��� exp�maxt��� � ���c then


v�Gt���� � f�vj ���max
j
t��� j v


j � v�exp�g
�� introduce a�s preconditions as above ��


else


while maxit�� �� � ���c do
select a� level�a� � t� �� �vi���� exp� � v�e
�a��� exp�maxt��� � �


a not previously selected in this while�loop
c � c� exp�maxt���
�� introduce max constraints for all vars in exp as above ��
�� introduce a�s preconditions as above ��


endwhile


v�Gt���� � f�vi�� ���� c�g
endif


endfor


endfor


Figure �� Extracting a relaxed plan for a state s in an LNF task �V� P�A� I�G� �levels and
finallayer computed by the algorithm in Figure ���


�� Metric�FF


This section details how the theoretical and algorithmic work described so far is used to
implement the heuristic planning system Metric�FF� Section ��� speci
es how the relaxed
plan information is used to de
ne the basic architecture of a planner that handles STRIPS
plus linear tasks with acyclic �� e	ects� We then describe extensions that are integrated
into the system� Section ��� explains how the extension to ADL is handled� Section ���
explains how �exible optimization criteria can be taken into account�


	�� Basic Architecture


As in the STRIPS case� once we have the techniques for extracting relaxed plans� a state
space planner is easily implemented� The given linear task is transformed into an LNF
task using the algorithms described in Section ���� We de
ne a heuristic function� a search
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strategy� and a pruning technique analogous to that used in the STRIPS version of FF� c�f�
Section ���� All methods are straightforward adaptions of the STRIPS techniques� The
heuristic function still estimates goal distance as the number of actions in the relaxed plan�


De�nition �� Assume a linear numeric task �V� P�A� I�G� that is in LNF and has acyclic
�
 e�ects� and a state s� The Metric�FF heuristic value h�s� for s is de�ned as follows�


If the algorithm depicted in Figure � fails� h�s� �� �� Otherwise� h�s� ��
Pfinallayer


t�� jAtj
where At is the set of actions selected at layer t by the algorithm depicted in Figure ��


The search strategy remains exactly the same� namely enforced hill�climbing as depicted
in Figure �� The only di	erence lies in the the way we avoid repeated states� In the
STRIPS case� this is a simple hash table lookup procedure� The straightforward adaption
would be to store all visited states s� and cut out a new state s� if an identical state s
has been visited before� We can� however� derive a weaker cuto	 criterion that has an
important performance impact in certain situations� It might be that s� di	ers from s only
in that some solution�irrelevant numeric variables have other values� For example� the only
di	erence between s and s� might be that in s� more execution time has been spent� If we
expand s� then iteratively we might end up with an in
nite sequence of succeeding states
that do nothing but increase execution time �this phenomenon can be observed in various
benchmark domains�� We can avoid such phenomena by cutting out new states s� that are
dominated by a stored state s� Given a task �V� P�A� I�G�� a state s� is dominated by a
state s if the propositions in s and s� are the same� and for all vi � V � either vi is not
solution�relevant� vi � V n rV � or vi�s�� 
 vi�s� holds��� If s� is dominated by s� and the
task at hand is monotonic in the sense of De
nition �� then all action sequences that achieve
the goal starting from s� do the same starting from s�


Proposition � Assume a numeric task �V� P�A� I�G� that is monotonic� Assume two
states s and s�� If s� is dominated by s then� for all action sequences P � A�� if result�s�� P � j�
G then result�s� P � j� G�


Proof� Say P � ha�� � � � � ani is an action sequence such that result�s�� P � j� G holds� We
show that� for all solution�relevant variables vi � rV and for all � 
 j 
 n� vi�result�s�� ha��
� � � � aji�� 
 vi�result�s� ha�� � � � � aji�� holds� This proves the proposition� the variables in
the goal constraints are all in rV � the goal constraints are monotonic �De
nition � condition
����� and the goal constraints are ful
lled in result�s�� P �� So with the claim above they
are also ful
lled in result�s� P �� We prove the claim on the solution�relevant variable values
by induction over j� Base case j � �� by prerequisite� vi�s�� 
 vi�s� holds for all vi � rV �
Inductive case j � j��� First� the preconditions of aj� are ful
lled in result�s� ha�� � � � � aji�
due to the same argument as used for the goal constraints above� Second� all variables
that are contained in e	ect right hand sides on solution�relevant variables are themselves
solution�relevant by de
nition so the induction hypothesis holds for them� This proves the
claim with monotonicity of numeric e	ects �De
nition � condition ����� �


��� Recall the denition of the solution�relevant variables rV � given in Section ���� all variables that occur
in a numeric constraint� or in the right hand side exp of an e�ect �vj � ass� exp� on a solution�relevant
variable vj �
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LNF tasks are monotonic� So with Proposition �� if there is a solution plan from s�� then
there is a solution plan from s� Thus cutting s� out of a search space that already contains
s is solution preserving� Consequently� during each search iteration performed by enforced
hill�climbing� our implementation keeps a hash table of states visited in that iteration� and
skips a new state if it is dominated by at least one of the visited states��� As indicated
above� in various benchmark examples this prevents the planner from looping when the new
states do nothing but increase the value of some solution�irrelevant variable like execution
time���


To extend our STRIPS pruning technique� helpful actions now are all those actions
that can support either a propositional or a numeric goal at the lowest layer of the relaxed
planning graph�


De�nition �� Assume a linear numeric task �V� P�A� I�G� that is in LNF and has acyclic
�
 e�ects� and a state s for which the algorithm depicted in Figure � reaches the goals� The
set of helpful actions H�s� for s is de�ned as


H�s� �� f a � A j p�e	�a�� � p�G�� �� � �
��vi�� ���c� � v�G�� � ��v


i� �
� exp� � v�e	�a�� � exp�v�s�� � ���c �
��vi�� ���c� � v�G�� � ��v


i�	
� exp� � v�e	�a�� � exp�v�s�� � � g�


where G� is the set of sub�goals constructed at layer � by the algorithm depicted in Figure ��


Supporting a numeric goal here means� for �� e	ects� that the right hand side of the
e	ect is su�cient to ful
ll the goal for �� e	ects� that the respective right hand side
expression is greater than �� Note that the right hand side value of an e	ect at the lowest
layer of the relaxed planning graph is exactly its value in the state s at hand� During a search
iteration in enforced hill�climbing� when expanding a state s� only the states generated by
the actions in H�s� are included into the search space� Note that states s where the relaxed
planning graph does not reach the goals have h�s� �� so do not get expanded anyway�


As in STRIPS� the algorithm can fail if either enforced hill�climbing gets trapped in
a dead end state or helpful actions pruning cuts out important states� We have observed
that helpful actions pruning is too severe in some numeric domains� So� in case enforced
hill�climbing fails we try again with the pruning technique turned o	� i�e�� we continue the
hill�climbing procedure from the point of failure without pruning� If this fails too� then like
in STRIPS we employ a safety net solution� a complete greedy best�
rst strategy trying
to solve the task from scratch� This strategy expands all search nodes by increasing order
of goal distance estimation� New states are cut out if they are dominated by an already
visited state�


��� More precisely� a new state s� is skipped only if there is a dominant visited state s in the same hash


entry� If the value of all solution�relevant variables is the same in s� and s �like when only execution
time has increased�� then our implementation ensures that this is the case� Otherwise it is a matter of
chance� It is an open question how the visited states could be indexed in order to provide a fast exact
answer to the query whether they contain a dominant state or not�


��� What we have here is a consequence of the undecidability of numeric planning �Helmert� ������ which
can be observed even in seemingly benign benchmarks� In a nite state space we of course would not
run the risk of entering an innite loop�
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	�� ADL


ADL �Pednault� ����� goes beyond STRIPS in that it allows� in action preconditions and
the goal� arbitrary equation�free 
rst�order logical formulae� and actions with conditional
e	ects � e	ects that only occur when their e	ect condition holds true� The e	ect condition
can be an arbitrary �equation�free� 
rst�order logical formula� In the numeric setting� the
e	ects can contain updates on numeric variables� The numeric constraints can now appear
at any point in a logical formula where a logical atom is allowed�


Like the previous FF version �Ho	mann � Nebel� ������ Metric�FF compiles quanti
ers
and disjunctions away in a pre�processing phase� Metric�FF does not compile conditional ef�
fects away� So Metric�FF�s internal language di	ers from STRIPS �with numeric constraints
and e	ects� only in that actions can have conditional e	ects� where the e	ect conditions are
conjunctions of propositions �and numeric constraints�� The reason why ADL is compiled
into this language is that the heuristic algorithms �i�e�� the relaxed planning graph� can be
implemented very e�ciently for this more restricted language format� The compilation can
be exponentially costly in general but is feasible when� as one might expect in the formula�
tion of a realistic planning scenario� the logical formulae are not overly complex� The reason
why conditional e	ects are not also compiled away �which could be done in principle� is
that� as Nebel ������ proved� this would imply another exponential blow up given we want
to preserve solution length� Fortunately the conditional e	ects can easily be dealt with so
there is no need to compile them away� In the following� we give a brief overview of the
compilation process� and of the extended heuristic function implementation� Except for
the heuristic function� the only thing that must be adapted is the state transition function�
which is conceptually trivial�


The compilation process is largely an implementation of ideas that have been proposed
by Gazen and Knoblock ������� as well as Koehler and Ho	mann �����b�� The extensions
to handle numeric constructs are all straightforward� The process starts with the usual
planner inputs� i�e�� with a set of parameterized operator schemata� an initial state� and a
goal formula� The compilation works as follows�


�� Determine predicates and numeric functions that are static in the sense that no oper�
ator has an e	ect on them� Such predicates and functions are a common phenomenon
in benchmark tasks� Examples� in a transportation context� would be the connections
between locations as given by a static �connected �l� �l�� predicate� or the distances
between locations as given by a static �distance �l� �l�� function� Static predicates
and functions are recognized by a simple sweep over all operator schemata�


�� Transform all formulae into quanti
er�free DNF� This is subdivided into three steps�


�a� Pre�normalize all logical formulae� Following Gazen and Knoblock ������� this
process expands all quanti
ers� and translates negations� We end up with for�
mulae that consist of conjunctions� disjunctions� and atoms containing variables
�where the atoms can be numeric constraints��


�b� Instantiate all parameters� This is simply done by instantiating all operator and
e	ect parameters with all type consistent constants one after the other� The
process makes use of knowledge about static predicates� in the sense that the
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instantiated formulae can often be simpli
ed �Koehler � Ho	mann� ����b�� For
example� if an instantiated static predicate �p �a� occurs in a formula� and that
instantiation is not contained in the initial state� then �p �a� can be replaced with
�false�� As another example� if both sides of a numeric constraint are static then
the constraint can be replaced with either �true� or �false��


�c� Transform formulae into DNF� This is postponed until after instantiation� be�
cause it can be costly� so it should be applied to the smallest formulae possible�
In a fully instantiated formula� it is likely that many static predicate occurrences
�constant constraint occurrences� can be replaced by �true� or �false�� resulting
in a much simpler formula structure�


�� Finally� if the DNF of any formula contains more than one disjunct� then the corre�
sponding e	ect� operator� or goal condition gets split up in the manner proposed by
Gazen and Knoblock �������


When all the logical constructs have been normalized� the numeric constructs in the task
are transformed into LNF in a manner analogous to the process described in Section ����
Integrating conditional e	ects into the relaxed planning process is an easy matter� The
relaxed planning graph di	ers from its STRIPS counterpart only in that it now keeps track
of the graph layers at which an action�s e	ects 
rst become applicable� The relaxed plan
extraction process di	ers from its STRIPS counterpart only in that it now selects supporting
e�ects for the propositional and numeric goals�


	�� Optimization Criteria


In PDDL���� the user can specify an optimization criterion for a task� The criterion consists
of an arbitrary numeric expression together with a keyword �maximize� or �minimize�
saying whether higher or lower values of the expression are preferred� The semantics are
that a solution plan is optimal i	 the state it leads to is a maximal � minimal goal state with
respect to the optimization expression� Metric�FF supports� run in �optimization mode�� a
somewhat more restrictive form of optimization� It accepts the optimization criterion only
if the criterion can be transformed� according to a certain schema� into additive action cost
minimization� The heuristic cost of a state is then the summed up cost of the actions in
the respective relaxed plan� and search is a standard weighted A� where the weights can
be set via the command line� Note that this methodology can not give a guarantee on
the quality of the returned solution as the heuristic function is not provably admissible�
The methodology is an obvious option given that the cost of a relaxed plan �in an additive
setting� gives us a remaining cost estimation technique for free� It is an open question how
more general optimization criteria can be dealt with� In the following� we describe our
implemented methodology in a little more detail� We start with the STRIPS setting� then
outline the changes made in the extension to ADL�


Metric�FF rejects the optimization expression if it is not linear� Otherwise� if the opti�
mization keyword is �maximize� then the expression is multiplied by 	� so minimization
is required� The expression is then brought into LNF�


P
j�X cj � vj �the constant part can


obviously be skipped�� With this notation� the optimization criterion is accepted �only�
if all action e	ects on variables vj � X increase the optimization expression value by a
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constant� i�e�� if all e	ects on vj � X are of the form �vj ���� c� where c � Q� c � �� For
each action a� the cost of the action is then de
ned as


cost�a� ��
X


�vj ����c��v�e��a���vj�X


cj � c�


i�e�� as the sum of all increases in cost variables for the action� multiplied by their weight
in the optimization expression� The cost of an action sequence or set is the sum of the
individual costs� It is easy to see that� in this setting� 
nding a goal state that minimizes the
optimization expression value is equivalent to 
nding a plan with minimal cost� The search
algorithm we then use is� as stated above� a standard weighted A� algorithm implementing
a best�
rst search on the function f�s� � wg � g�s� �wh � h�s� where g�s� is the cost of the
search path that leads to s� h�s� is the remaining cost estimate �i�e�� the cost of the relaxed
plan from s�� and the weights wg and wh can be given in the command line� Since the
remaining cost estimate is in general not admissible� the 
rst plan found is not guaranteed
to be optimal� But one would expect that empirically better plans can be found� We will
see below that this is� in fact� the case in some of the IPC�� testing domains�


In ADL� the cost of an action in a state is the sum of the costs of all e	ects that appear�
the cost of an action sequence is the sum of the costs of the actions in the respective states�
and minimizing the optimization expression is as before equivalent to minimizing plan cost�
Estimating the remaining cost by means of a relaxed plan becomes somewhat less obvious�
since a choice has to be made on which e	ect costs are counted for the result� There
are e	ects that have been selected to support logical or numeric goals during relaxed plan
extraction� and there are e	ects that will get triggered when actually executing the relaxed
plan� We have chosen to only count the costs of the former e	ects� The heuristic search
algorithm remains exactly the same as in the STRIPS case�


�� Competition Results


We brie�y examine the IPC�� competition data relevant to Metric�FF� The competition
featured domains spanning the whole range from STRIPS to PDDL��� level �� which permits
a combination of logical� numeric� and temporal constructs� FF participated in the STRIPS
domains and in the numeric domains� demonstrating very competitive performance� We
only discuss the data for the numeric domains� A discussion of the STRIPS results can be
found in the competition overview article by Long and Fox �������


There were six numeric domains used in the competition� For each of these domains� we
include a 
gure showing runtime curves� and discuss relative �runtime and solution quality�
performance in the text� Like FF� the MIPS and LPG systems could be con
gured to either
favor speed or quality� i�e�� to either 
nd some plan as fast as possible or to search for a
good plan in the sense of the optimization criterion� To make the graphs readable� we only
show the runtime curves of those planners that favor speed� We discuss the solution quality
behavior of these planners in terms of plan length� i�e�� number of steps� Note that these
planners do not take account of the optimization criterion anyway� For the planners that
favor quality� we discuss their runtime and solution quality behavior in the text� Given
that the optimization mode in Metric�FF is only a preliminary implementation� we keep
the discussions short� We also give only brief descriptions of the domain semantics� More
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details on these can be found in the overview article �Long � Fox� ������ We focus on the
six domains in turn� then give a short summary of Metric�FF�s performance�


��� Depots


The Depots domain is a combination of the well�known Logistics and Blocksworld domains�
Objects must be transported with trucks as in Logistics� and must then be arranged in
stacks as in Blocksworld� The numeric constructs de
ne fuel consumption for trucks and
the hoists that lift the objects �in order to stack them somewhere�� Objects have weights
and the sum of the weights of the objects loaded onto a truck at any time must be lower
than or equal to that truck�s capacity� Figure � shows the runtime data on the �� Depots


instances used in the competition�
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Figure �� Runtime curves on Depots instances for the planners favoring speed� Time is
shown on a logarithmic scale� instance size scales from left to right�


The four planners participating in the numeric version of Depots were Metric�FF� LPG�
MIPS� and SemSyn� At the time of writing� no paper on the numeric version of any of
these planners is published� for LPG and MIPS� the reader is referred to the respective
articles to appear in this same JAIR special issue �Gerevini et al�� ����a Edelkamp� ������
As Figure � shows� SemSyn can only solve the single smallest instance� and MIPS solves ��
instances scattered across the whole set� Metric�FF and LPG solve most of the instances
and exhibit similar behavior� Metric�FF is the only planner that can solve the two largest
instances� As stated above� we only show the curves for those con
gurations favoring speed�
In the competition data� this version of Metric�FF is called �FF�speed�� this version of LPG
is called �LPG�speed�� and this version of MIPS is called �MIPS�plain��
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To assess relative plan quality behavior �i�e�� plan length or minimization expression
value�� we computed quotients as follows� Given planners A and B� measure� for all in�
stances solved by both planners� A�s plan quality divided by B�s plan quality� Compute
the average quotient� At points where we need an absolute measure of comparison between
the participating planners in a domain� we set the planner B to a hypothetical �Best�of�
planner whose data is obtained by selecting the best �i�e�� lowest� results of all planners�
The individual planners in the domain are then all ranked by comparing them to Best�of�


The data obtained concerning plan length in Depots� for the planners shown in Figure ��
is this� FF�speed�s plans are on average ���� times as long as Best�of�s plans� LPG�speed�s
plans are on average ���� times as long as Best�of�s plans� and MIPS�plain�s plans are on
average ���� times as long as Best�of�s plans� Thus plan lengths are roughly similar here�
For the single instance that SemSyn solves� its plan has � steps while FF�speed�s has ��
steps� and those of LPG�speed and MIPS�plain have �� steps�


We next comment on the algorithms used in the planner versions favoring quality� In
MIPS� similar to Metric�FF� in optimization mode the heuristic function becomes a kind
of relaxed plan cost in an A� algorithm� In contrast� the LPG optimization method starts
from the 
rst plan� and then continues search for plans that are better� Metric�FF performs
best�
rst search on the function f�s� � wg �g�s��wh�h�s�� In the competition� the weights
were set to wg � � and wh � �� The quality version of MIPS is simply called �MIPS� in
the competition data� To improve readability we call it �MIPS�quality� here� similar to the
quality�favoring versions of Metric�FF and LPG� called �FF�quality� and �LPG�quality��


The optimization criterion in Depots is to minimize overall fuel consumption� For run�
time� the quality versions of MIPS and LPG behave only slightly worse than the speed
versions� In contrast� Metric�FF�s quality version solves only the smallest � instances� For
solution quality� the fuel consumption of FF�speed on the 
rst � instances is ��� ��� and ���
while that of FF�quality is ��� ��� and ��� Thus no optimization e	ect is observable� On the
same instances� MIPS�quality 
nds more costly plans ���� ��� and ���� and LPG�quality�s
plans are slightly better ���� ��� and ���� Across all instances� LPG�quality�s plans con�
sume� on average� ���� times the fuel that Best�of�s plans consume� while that average value
is ���� for MIPS�quality�


��� Driverlog


The Driverlog domain is a variation of Logistics where the trucks need drivers� and the
underlying map is an arbitrary undirected graph �as opposed to the fully connected graphs
in the standard version of the domain�� Drivers can move on di	erent paths than trucks�
The numeric constructs specify the total time driven and walked� Figure � shows the
runtime data for the �� Driverlog instances used in the competition�


As in Depots� the participating planners were Metric�FF� LPG� MIPS� and SemSyn�
Again� SemSyn solved only the smallest instance� LPG�speed is the only planner that
solves all instances� FF�speed solves one more task than MIPS�plain �the respective data
point is almost hidden behind �SemSyn� in the top right corner�� and is roughly as fast
as LPG�speed on the tasks that it solves� As for plan length� again none of the planners
is clearly superior� The average quotients versus Best�of are� ���� for FF�speed� ���� for
LPG�speed� and ���� for MIPS�plain� FF�speed�s and LPG�speed�s plan lengths are thus


�	�







Hoffmann


0.01


0.1


1


10


100


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20


"FF.speed"
"LPG.speed"
"MIPS.plain"


"SemSyn"


Figure �� Runtime curves on Driverlog instances for the planners favoring speed� Time is
shown on a logarithmic scale� instance size scales from left to right�


on average somewhat longer than those of MIPS�plain� The di	erence has no tendency to
grow with instance size� though� On the single instance solved by SemSyn� SemSyn�s plan
has � steps while those of the other planners have ��


The optimization criterion in Driverlog is to minimize some �instance�speci
c� linear
combination of total time� driven distance� and walked distance� FF�quality�s runtime
behavior is� as in Depots� a lot worse than that of FF�speed� solving only � of the smaller
instances� The quality of the plans is slightly better� though� ���� times FF�speed�s values
on average� MIPS�quality and LPG�quality solve the same instances as their speed�favoring
counterparts� The average comparison of LPG�quality to Best�of is ���� �precisely ����������
that of MIPS�quality is ���� � on a single instance� MIPS�quality�s plan consumes less fuel
���� units� than LPG�quality�s plan ���� units��


The competition also featured a version of Driverlog ��Hard�Numeric�� where driving a
truck consumes fuel proportional to the square of its load� and the criterion is to minimize an
instance�speci
c linear combination of total time and fuel consumption� Interestingly� with
this optimization criterion FF�quality is only slightly less e�cient than FF�speed� solving
the same instances as the speed�favoring version� We will come back to this phenomenon in
the outlook� when we discuss the e	ect of optimization expressions on runtime performance�
The overall runtime performance of all other planners is similar to that in the domain version
described above� For the optimization expression� FF�quality�s values are on average ����
times those of FF�speed �so an optimization e	ect can be observed�� The comparison to
Best�of is ���� for FF�quality� ����� for LPG�quality� and ���� for MIPS�quality�
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��� Zenotravel


The Zenotravel domain� as used in the competition� is a rather classical transportation
domain� where objects must be transported via airplanes� The planes use fuel� and can
�y either slow or fast� Fast movement consumes more fuel� In the numeric version of
the domain� the fuel level of a plane and the overall fuel usage are numeric variables� In
addition� a numeric variable counts the passengers on board a plane� and fast movement is
only allowed if the number of passengers is below a certain threshold� A refuel operator can
be used to set the fuel level of a plane back to its maximum capacity� Without durations� the
only di	erence between the e	ects of slow and fast �ying lie in the higher fuel consumption�
thus �fast� �ying is a useless action� Figure �� shows the runtime data on the �� Zenotravel
instances used in the competition�
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Figure ��� Runtime curves on Zenotravel instances for the planners favoring speed� Time
is shown on a logarithmic scale� instance size scales from left to right�


Again� the participating planners were Metric�FF� LPG� MIPS� and SemSyn� Sem�
Syn solves only the smallest three instances� the other planners solve the whole test set�
FF�speed is an order of magnitude faster than LPG�speed and MIPS�plain� For plan length�
FF�speed and MIPS�plain behave similarly� while LPG�speed 
nds somewhat longer plans�
The quotient values versus Best�of are ���� for FF�speed� ���� for LPG�speed� and ���� for
MIPS� When visualizing the data� one 
nds that the di	erence between LPG�speed�s and
FF�speed�s plans grows with instance size� SemSyn� again� 
nds the best �shortest� plans
for those instances that it solves� The quotients FF�speed versus SemSyn are ����� �����
and ���� on the three instances solved by SemSyn�
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The optimization criterion in Zenotravel is to minimize some �instance�speci
c� linear
combination of total time and fuel consumption� FF�quality�s runtime behavior is worse
than that of FF�speed� solving only the smaller half of the test set� MIPS�quality solves
only the 
rst �� instances� LPG�quality solves all but the largest instance� The optimization
criterion values of FF�quality are on average ���� times those of FF�speed� so an optimization
e	ect can be observed� The quotient values versus Best�of are ���� for FF�quality� ���� for
LPG�quality� and ���� for MIPS�quality�


��� Satellite


In Satellite� a number of Satellites must make a number of observations using their installed
instruments� This involves turning the Satellites the right direction� switching the instru�
ments on or o	� calibrating the instruments� and taking images� In the numeric version
of the domain� turning the Satellites consumes �non�replenishable� fuel� the images occupy
data memory� and the Satellites have only limited data memory capacity� Figure �� shows
the runtime data on the �� problem instances used in the competition�
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Figure ��� Runtime curves on Satellite instances for the planners favoring speed� Time is
shown on a logarithmic scale� instance size scales from left to right�


In this domain� the participating planners were Metric�FF� LPG� MIPS� and TP�
�Haslum � Ge	ner� ������ TP� �which 
nds plans with optimal makespan� solves � of
the smallest instances� MIPS�plain solves � of the smaller instances� LPG�speed solves ��
instances� and FF�speed solves ��� Note� though� that the instances that LPG�speed fails
to solve but FF�speed solves are mainly the smaller ones� As for plan length� the quotients
versus Best�of are ���� for FF�speed� ���� for LPG�speed and MIPS�plain� and ���� for TP��
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So plan lengths are roughly similar� but LPG�speed and MIPS�plain seem to have a slight
advantage over FF�speed�


The optimization criterion in Satellite is to minimize overall fuel consumption�
FF�quality�s �MIPS�quality�s� runtime behavior is a lot worse than that of FF�speed
�MIPS�plain�� solving only � ��� of the smallest instances� LPG�quality solves the same in�
stances as LPG�speed� The fuel consumption of FF�speed on the � instances that FF�quality
solves is ��� and ��� That of FF�quality is ��� and ��� so there is a slight optimization
e	ect on one of the two instances� LPG�quality 
nds the best plans for all instances that it
solves �thus the quotient versus Best�of is constantly ������ the comparison of MIPS�quality
to Best�of is �����


The competition also featured a version of Satellite ��Hard�Numeric�� where there were
no logical or numeric goals at all� and the optimization criterion was to maximize the amount
of stored data �i�e�� the memory occupied by the taken images�� This is an example of an
optimization criterion that can not be transformed into action costs in the sense explained
in Section ���� The actions that take images have negative costs� Metric�FF thus rejects
the optimization criterion and reports� for all instances� that they are trivially solved by the
empty plan� Similarly� the plans returned by MIPS�plain are all empty� The MIPS�quality
version 
nds non�trivial plans for the smaller half of the instances� For LPG there is no
data in the competition results for this domain version�


��� Rovers


In Rovers� a number of planetary rovers must analyze a number of rock or soil samples� and
take a number of images� This involves navigating the rovers� taking or dropping samples
�rovers can only hold one sample at a time�� calibrating the camera and taking images� and
communicating the data to a lander� In the numeric version of the domain� all the activities
decrease the energy available for the rover by a certain amount� and an energy recharge
operator can be applied when the rover is located in a sunny spot� Figure �� shows the
runtime data on the �� Rovers instances used in the competition�


The participating planners in this domain were Metric�FF� LPG� and MIPS� None of
the planners can solve the whole test set� in fact LPG� which scales best� is the only planner
that can solve most of the larger instances��� The smaller instances are solved quickly by
all three participants� FF�speed might have a slight plan length advantage� The quotients
versus Best�of are ���� for FF�speed� ���� for LPG�speed� and ���� for MIPS�plain�


The optimization criterion in Rovers is to minimize the number of recharge actions
applied in the plan �i�e�� the cost of recharging is �� the cost of all other actions is ���
With this optimization criterion� FF�quality does not solve a single instance �we will return
to this in the outlook�� MIPS�quality and LPG�quality solve the same instances as their
speed�favoring counterparts� LPG�quality�s plan quality is � in all the � instances that
MIPS�quality solves� MIPS�quality�s plans contain � recharge actions in three cases� �
recharge action in four cases� and � recharge actions in one case�


��� In the actual competition data� LPG failed to solve � of the instances due to an implementation bug�
We show the corrected data provided by Alfonso Gerevini�
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Figure ��� Runtime curves on Rovers instances for the planners favoring speed� Time is
shown on a logarithmic scale� instance size scales from left to right�


��	 Settlers


The Settlers domain is about building up an infrastructure in an unsettled area� The things
to be built include housing� railway tracks� sawmills� etc� There are a lot of operator
schemata encoding a complex building process� The raw materials� timber� stone� and ore�
must 
rst be felled� broken� or mined� One can then process timber into wood or coal� and
process ore into iron� Carts� trains� or ships can be built to transport materials� One can
combine materials to build docks� wharfs� rails� housing� etc� The encoding makes a more
intensive use of numeric variables than the other domains� While in the other domains
the numeric constructs mainly encode resource constraints and action costs� in Settlers the
numeric variables play an active part in achieving the goal� Indeed� many of the operator
schemata have no logical e	ects at all� For example� felling timber increases the amount
of timber available at the respective location by one unit� Loading �unloading� a material
unit onto �from� a vehicle is encoded by increasing �decreasing� the respective material
availability in the vehicle while decreasing �increasing� the material�s availability at the
respective location� For building a housing unit at least one wood and stone unit must be
available� resulting in increased housing units and decreased wood and stone units� With
the numeric variables playing such an active role in the domain encoding� Settlers is a very
interesting benchmark for numeric planners� Figure �� shows the runtime data on the ��
Settlers instances used in the competition�


Only Metric�FF and MIPS �in the versions that favor speed� were able to solve some of
the Settlers instances� LPG could not participate in this domain because some operators
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Figure ��� Runtime curves on Settlers instances for the planners favoring speed� Time is
shown on a logarithmic scale� instance size scales from left to right�


make use of universally quanti
ed e	ects� which LPG does not support� MIPS�plain solves
only a single instance while FF�speed solves the � smallest instances� It should be noted
here that the instances in this example suite appear to be rather large� FF�speed�s plans
on the � smallest instances contain ��� ��� ���� ��� ��� and �� actions respectively� For
comparison� in all of the other domains except Depots FF�speed�s longest plan in the 
rst �
instances contains �� steps� In Depots the numbers are ��� ��� ��� ��� ��� the �th instance
isn�t solved by any planner� The plan that MIPS�plain 
nds for the second smallest instance
contains �� steps �as stated above FF�speed�s plan for this instance contains �� steps�� No
planner favoring quality solved any of the Settlers instances�


��� Performance Summary


In their speed�favoring con
gurations� Metric�FF and LPG perform the best� both in terms
of runtime and solution length� For runtime� in Driverlog and Rovers� LPG scales better
�solves more instances�� In Zenotravel� Metric�FF scales better �an order of magnitude
advantage in runtime�� In Settlers� LPG could not be run� but Metric�FF can solve some
rather large instances� In Depots and Satellite� there is a slight advantage for Metric�FF�
which solves a few more instances� MIPS lags behind both Metric�FF and LPG in all the
domains except Zenotravel where it scales roughly similar to LPG� As for solution length�
this is roughly similar for LPG and Metric�FF in all of the domains except Zenotravel�
where LPG�s plans are longer� In Satellite there might be a slight advantage for LPG� and
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in Rovers there might be a slight advantage for Metric�FF� The plan lengths of MIPS are
roughly similar to those of Metric�FF across all the domains�


The results for Metric�FF in optimization mode� FF�quality� are less satisfying� at least
as far as runtime behavior is concerned� FF�quality does not solve a single instance in Rovers
and Settlers� and it solves only very few instances in Depots� Driverlog �with the normal�
i�e� not �hard� optimization expression�� and Satellite� FF�quality�s runtime behavior is
reasonably good only in Zenotravel andDriverlog �with the �hard� optimization expression��
The solution quality behavior is mixed� In most cases it can be observed that FF�quality�s
plans are better in the sense of the optimization criterion than FF�speed�s plans are� Better
plan quality is clearly observable in Driverlog �with the �hard� optimization expression� and
Zenotravel� It is also observable in Driverlog �with the normal optimization expression�
and Satellite� although only a small number of instances were solved in these domains�
Compared to LPG�quality and MIPS�quality� FF�quality is the only quality�favoring planner
here that shows dramatically worse runtime behavior than its speed�favoring counterpart�
The reasons for that must lie in the algorithmic di	erences between the systems� concerning
the way they treat optimization expressions� In the outlook we speculate on the reasons for
FF�quality�s poor runtime behavior� and what might be done about it�


	� Conclusion and Outlook


We have presented a natural extension of a popular heuristic technique for STRIPS �
ignoring delete lists � to numeric planning� The straightforward implementation of Metric�
FF based on the technique was one of the two best performing numeric planning systems
at IPC���


Let us summarize the contributions of this work in a little more detail� The most
important contribution is the �monotonicity� idea� i�e�� a numeric framework in which
the main STRIPS concepts �pre�goal�conditions� add lists� and delete lists� translate very
naturally to the numeric concepts �monotonic constraints� increasing e	ects� and decreasing
e	ects�� The monotonicity idea might be useful in many other contexts beside the speci
c
heuristic planner implementation we focus on in this article �some ideas on that are given
in the outlook below�� In the heuristic context considered here� we have�


� Abstracted the desirable properties �admissibility� basic informedness� and polynomi�
ality� that ignoring delete lists has as a relaxation in STRIPS�


� De
ned a natural extension of this relaxation to the numeric case and provided suf�

cient criteria to identify numeric tasks where the relaxation preserves the desirable
properties�


� De
ned a subset of PDDL��� level �� linear tasks� where the su�cient criteria can be
achieved by a pre�processing technique�


� De
ned algorithms that solve relaxed tasks in this language and thus provide a heuris�
tic function�


� Implemented a straightforward extension of FF� and a 
rst technique that takes user�
speci
ed optimization criteria into account� The FF extension �FF�speed� shows rea�
sonable performance across a number of benchmark domains� Speci
cally it performed
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best� together with LPG� in the numeric track of the �rd International Planning Com�
petition� both in terms of runtime and solution length��� The runtime behavior of the
optimization technique �FF�quality� is unsatisfying� but plan quality improvements
can be observed�


Various research topics have been left open�


� The background theory given in Section ��� provides only su�cient criteria for the
numeric relaxation to be adequate� The question is� are there weaker su�cient cri�
teria� and can one come up with a complete analysis �i�e�� 
nd the exact borders
beyond which ignoring decreasing e	ects is no longer adequate�� Also� how do the
identi
ed borderlines translate� syntactically� to the mathematical constructs allowed
in PDDL��� level ��


� The pre�processing algorithm given in Section ��� �transforming linear tasks into LNF
tasks� is de
ned for linear tasks only� Can it be extended to richer language classes�
Similarly� the algorithms given in Section ��� only work for LNF� Is there an easy
extension to richer language classes�


� As mentioned in Section ���� various kinds of numeric e	ects can easily be translated
into each other �e�g�� �� e	ects into �� e	ects or vice versa�� but the respective
translations behave di	erently in the relaxation� Can one identify problem classes
where one or the other formulation yields better heuristic performance�


� The current optimization technique� FF�quality� is restricted to optimization criteria
that can be transformed into action cost minimization according to a certain simple
translation schema� How can more general optimization criteria be handled�


� We have seen that the runtime performance of FF�quality is unsatisfying� There
appears to be some interaction �as exempli
ed by the two di	erent quality metrics in
Driverlog� between the form of the optimization �i�e�� the action cost minimization�
expression and runtime behavior� An explanation for this might be the degree of �goal�
directedness� of the minimization expression� Intuitively� a minimization expression is
goal�directed if it is closely correlated with goal distance� i�e�� the lower the expression
value the nearer the goal and vice versa� The maximally goal�directed minimization
expression is the goal distance itself �i�e�� �total�time� in our sequential framework��
In contrast� the minimization expression in Rovers� number of recharge operations� is
only very loosely connected with goal distance� It would be worthwhile to come up
with a good formal notion of goal�directedness� and to investigate its connection with
runtime performance �in Driverlog the connection is less obvious than in Rovers�� On
the more practical side� algorithms remain to be found that show better performance
no matter what the form of the optimization expression is� One option is to always
integrate� to some extent� the current goal distance estimate �i�e�� the length of the


�
� Note that one can easily imagine domains where relaxed plans in the way Metric�FF uses them would
likely yield no good heuristic information� As an example� consider the ���puzzle� with numeric variables
encoding the positions of the tiles� In this situation� there is a large degree of interaction between the
numeric variables� and relaxed plans will presumably not be able to capture this interaction�
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relaxed plan in our case� into the remaining cost estimation� Another option is to use
di	erent search schemes� A branch�and�bound like approach appears possible �
rst

nd some plan quickly then use the cost of this plan as an upper bound during further
exploration of the search space��


It would be exciting to explore the impact of the monotonicity idea� i�e�� the corre�
spondence that it brings between pre�goal�conditions and monotonic constraints� add lists
and increasing e	ects� as well as delete lists and decreasing e	ects� in di	erent contexts of
planning research� Examples that spring to mind are other heuristic approaches� Graphplan�
based numeric planning� or goal ordering techniques� To stimulate the imagination of the
reader�


� It seems likely that similar methods can be used in other heuristic approaches that
relax the task by ignoring the delete lists� For example� our techniques can presum�
ably be adapted to heuristic estimators in the partial order framework used in RePOP
�Nguyen � Kambhampati� ������ yielding a heuristic numeric partial�order planner�
Also� it appears feasible to integrate our techniques into Sapa�s �Do � Kambham�
pati� ����� heuristic function� possibly making that function more accurate in various
numeric situations� As another possible avenue� one might be able to adapt the tech�
niques presented here for use in LPG�s heuristic precondition cost estimation process
�Gerevini� Serina� Saetti� � Spinoni� ����b�� making it more sensitive to the numeric
constructs� and thereby � potentially � further improving LPG�s performance�


� Koehler�s extension of IPP to a numeric context �Koehler� ����� su	ers from compli�
cations in the backward search procedure� which signi
cantly degrade runtime perfor�
mance� Do the same di�culties arise in the monotonic context�


� Koehler and Ho	mann �����a� argue that there is a reasonable ordering B 
 A
between two goals A and B if� from all states where A is achieved 
rst� one must
delete A in order to achieve B� Under monotonicity� the straightforward translation
of this is that two numeric goals A and B are ordered B 
 A if� once the values
of the variables that participate in A are su�cient to achieve A� their values must
be decreased below the necessary value again in order to achieve B� It seems that
Koehler and Ho	mann�s techniques to approximate STRIPS goal orderings transfer
easily to this situation� Similarly� it seems that under monotonicity the de
nitions
and approximation techniques given for landmarks �subgoals that will necessarily
arise during planning� by Porteous� Sebastia� and Ho	mann ������ can directly be
transferred to numeric goals�
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Appendix A� Proofs


This appendix presents the proofs to all theorems in detail� There are three di	erent classes
of results� which we focus on in turn� relaxation adequacy� relaxed Graphplan completeness�
and relaxed Graphplan correctness� Within each of these classes� the results are given for
languages of increasing expressivity�


A�� Relaxation Adequacy


For STRIPS� the restricted numeric language� and numeric tasks in general� we prove that
the respective relaxations are adequate �in the general case� we identify situations where
the relaxation is adequate�� The proof for the STRIPS case is trivial�


Proposition � The relaxation given in De�nition � is adequate� i�e�� the following holds
true�


�� Admissibility� any plan that solves the original task also solves the relaxed task�
i�e�� assuming a STRIPS task �P�A� I�G�� any plan for �P�A� I�G� is also a relaxed
plan for �P�A� I�G��


�� Basic informedness� the preconditions and goals can trivially be achieved in the
original task if and only if the same holds in the relaxed task� i�e�� assuming a
STRIPS task �P�A� I�G�� hi is a plan for �P�A� I�G� if and only if hi is a re�
laxed plan for �P�A� I�G�� and for a � A� result�I� hi� � pre�a� if and only if
result�I� hi� � pre�a��


�� Polynomiality� the relaxed task can be solved in polynomial time� i�e�� deciding
RPLANSAT is in P�


Proof� �� After application of each action in the relaxed action sequence� at least the
propositions are true that are true in the real sequence� So each action precondition� and
the goal� is ful
lled�


�� Holds because we are not dropping any precondition or goal constraints� The empty
plan hi is a plan for �P�A� I�G� if and only ifG � I holds� The same is true for �P�A� I�G��
Similarly for action preconditions�


�� This was proved by Bylander ������� �


The proof for the case of the restricted numeric language is a straightforward extension
to the STRIPS proof� exploiting the correspondence between pre�goal�conditions� add lists�
and delete lists on the one hand� and x � ���c constraints� �� e	ects� and �� e	ects on
the other hand�


Theorem � The relaxation given in De�nition � is adequate� i�e�� the following holds true�
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�� Admissibility� assuming a restricted numeric task �V� P�A� I�G�� any plan for
�V� P�A� I�G� is also a relaxed plan for �V� P�A� I�G��


�� Basic informedness� assuming a restricted numeric task �V� P�A� I�G�� hi is a plan
for �V� P�A� I�G� if and only if hi is a relaxed plan for �V� P�A� I�G�� and for a � A�
result�I� hi� j� pre�a� if and only if result�I� hi� j� pre�a��


�� Polynomiality� deciding RESTRICTED�RPLANSAT is in P�


Proof� �� After application of each step in the relaxed plan� at least the propositions are
true that are true in the real plan� and the values of all numeric variables are at least as high
as in the real plan� As all action preconditions and the goal only require variable values to
be greater than or equal to a constant� all these constraints remain ful
lled�


�� Holds because we are not dropping any precondition or goal constraints� The empty
plan hi is a plan for �V� P�A� I�G� if and only if I j� G holds� The same is true for
�V� P�A� I�G�� Similarly for action preconditions�


�� The following is a polynomial time algorithm that decides RESTRICTED�RPLANSAT�


M �� I� m �� v�I�
remove� from action preconditions and the goal� all propositions in M and
all numeric constraints that are ful
lled by the mi values �i�e�� mi � ���c�
while G �� � do
A �� fa � A j pre�a� � �g
M � �� M �


S
a�A p�e��a��





m� �� m
for i � f�� � � � � ng�mi ��� do


if �a � A � �vi���� c� � v�e��a�� then �m��i ��� endif


endfor


if M � �M and m� � m then fail endif
M �� M �� m �� m�


remove� from action preconditions and the goal� all propositions in M and
all numeric constraints that are ful
lled by the mi values


endwhile


succeed


Remember that n denotes the number of numeric variables� Denote by At the action set
in iteration t of this algorithm� We prove that the algorithm succeeds if there is a relaxed
plan� that there is a relaxed plan if the algorithm succeeds� and that the algorithm takes
polynomial time in the size of the task�


If there is a relaxed plan ha�� � � � � aki for �V� P�A� I�G�� then at � At holds true for
� 
 t 
 k� the set M �the values m� always include �are always at least as high as� the true
facts in the relaxed plan �the variable values in the relaxed plan�� The algorithm succeeds
after at most k iterations� It does not fail earlier as this implies a 
xpoint in contradiction
to reachability of the goals�


In the other direction� if the algorithm succeeds in an iteration k then one can construct
a relaxed plan� Simply linearize the �relaxations of the� actions in the sets A�� � � � � Ak in an
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arbitrary order� If an action at a layer t has a �� e	ect on a variable xi� then repeatedly
execute the action until all constraints on xi that have been removed in iteration t are
ful
lled �as all the constraints are of the form xi � ���c� this will eventually happen�� The
actions applied this way all have their preconditions ful
lled as these were empty at the
respective iteration� and the execution sequence makes the same constraints true as the
algorithm�


As for runtime� each single iteration is polynomial� An upper bound on the number of
iterations is jV j� jP j� In each iteration� to avoid failure� at least one new proposition must
enter M or one new variable value must be set to �� �


Generalizing from the restricted language� ignoring the decreasing e	ects is adequate if
all numeric constraints are monotonic� and all numeric e	ects are strongly monotonic �plus
changes due to �� e	ects can not propagate into a numeric variable�s own value�� The proof
generalizes� in this way� from the proof above�


Theorem � The relaxation given in De�nition � is adequate for strongly monotonic tasks
with acyclic �
 e�ects� i�e�� the following holds true�


�� Admissibility� assuming a monotonic numeric task �V� P�A� I�G�� any plan for
�V� P�A� I�G� is also a relaxed plan for �V� P�A� I�G��


�� Basic informedness� assuming a numeric task �V� P�A� I�G�� hi is a plan for
�V� P�A� I�G� if and only if hi is a relaxed plan for �V� P�A� I�G�� and for a � A
result�I� hi� j� pre�a� if and only if result�I� hi� j� pre�a��


�� Polynomiality� deciding STRONGLY�MONOTONIC�RPLANSAT is in P�


Proof� �� Say ha�� � � � � ani is a plan for �V� P�A� I�G�� Executing the sequence under result�
all precondition and goal constraints are ful
lled� Denote by vi�t� the value of variable i
after execution of action at� and denote by vi�t� the value of variable i after execution of
action at under result


� We show that vi�t� 
 vi�t� for all i and t� With monotonicity
of numeric constraints� De
nition � condition ���� this su�ces� The claim is easily shown
by induction over t� With t � �� vi��� 
 vi��� holds for all i simply because result is
identical to result except that all e	ects that decrease the value of a variable are ignored�
From t to t � �� if vi�t� 
 vi�t� for all i then vi�t � �� 
 vi�t� �� holds for all i due to
the same argument� plus the monotonicity of the numeric e	ects in the sense of De
nition �
condition ���� the higher the input numeric variables are� the higher the resulting value of
the a	ected variable becomes�


�� The empty plan hi is a plan for �V� P�A� I�G� if and only if I j� G holds� The same
is true for hi as a relaxed plan� as we are not dropping any goal constraints� Similarly for
action preconditions�


�� The following is a polynomial time algorithm that decides relaxed solvability of a
strongly monotonic task with acyclic �� e	ects�


�� M �� I� m �� v�I�
�� remove� from action preconditions and the goal� all propositions in M and
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all numeric constraints that are ful
lled by the mi values
�� while G �� � do
�� A �� fa � A j pre�a� � �g
�� M � �� M �


S
a�A p�e��a��





�� m� �� m
�� for i � f�� � � � � ng�mi ��� do


�� if �a � A� �vi� ass� exp� � v�e��a�� �
�� ass � f��� ��� ��� ��g� �vi� ass� exp��m� � mi then �m��i ��� endif


��� endfor


��� for i � f�� � � � � ng�mi ��� do


��� if �a � A� �vi� ��� exp� � v�e��a�� � �vi� ��� exp��m� � mi then


��� �m��i �� max
a�A��vi����exp��v�e��a����vi����exp��m��mi �vi� ��� exp��m�


��� endif


��� endfor


��� if M � �M and m� � m then fail endif
��� M �� M �� m �� m�


��� remove� from action preconditions and the goal� all propositions in M and
all numeric constraints that are ful
lled by the mi values


��� endwhile
��� succeed


Here� as above� v�exp� for an expression exp denotes the set of all variables contained
in exp� The value of an expression that contains variables set to in
nity is given as the
limit of the expression in these variables� Note that by assumption the limits are all �
�De
nition � condition ���� so they can� in particular� be computed e�ciently� We prove
that the algorithm succeeds if there is a relaxed plan� that there is a relaxed plan if the
algorithm succeeds� and that the algorithm takes polynomial time in the size of the task�


Denote by At the action set in iteration t of the algorithm� If there is a relaxed plan
ha�� � � � � aki for �V� P�A� I�G�� then at � At holds true for � 
 t 
 k� the variable updates
on m performed in the algorithm are always at least as high as those performed by the
result function� Note here that line �� takes the maximum over the available �� e	ects�
Note also that all e	ects obey De
nition � condition ���� so one needs consider only the
maximum input values in order to obtain the maximum output value� In consequence� with
monotonicity of numeric constraints in the sense of De
nition � condition ���� the algorithm
reaches the goals and succeeds after at most k iterations� It does not fail earlier as this
implies a 
xpoint in contradiction to reachability of the goals�


If the algorithm succeeds after an iteration k then one can construct a relaxed plan as
follows� Perform an upwards loop from � to k� At each iteration t� repeatedly apply all
actions in At until all the constraints that have been removed in line ��� in iteration t�
are ful
lled� We show below that this point will eventually be reached� Once the point
is reached� one can continue with the next higher t value until the step at the succeeding
iteration k has been completed� All the actions applied this way have their preconditions
ful
lled as these were all empty at the iteration t where the actions are applied� as the con�
structed relaxed plan always ful
lls the same constraints that were removed in an iteration�
and as by De
nition � condition ��� constraints can not become false again once they are
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true in a relaxed plan� For the same reason the goals are ful
lled at the end of iteration
k� It remains to show that� at an iteration t� repeatedly applying the actions in At will
eventually ful
ll all the constraints removed in that iteration� Denote by It the set of all
variables that got set� in iteration t� to � in line �� denote by I �t the set of all variables that
got set to � in line ��� and denote by Ft the set of all variables that got set to a new value
below � in line ��� We show that�


�� After one application of the actions in At the variables in Ft have at least the values
that they had at constraint removal in line ���


�� With repeated application of the actions in At the variables in It� I
�
t reach arbitrarily


high values�


This su�ces for the constraints eventually being ful
lled� Assume the two claims hold
true� Then� with monotonicity of the constraints �De
nition � condition ���� the variables in
Ft contribute at least as much to the full
llment of these constraints as they did in iteration
t of the decision algorithm� As for the variables in It�I


�
t� there is a 
nite assignment to these


variables� higher than their previous values� that makes the respective constraints true at
this point� This is a simple consequence of De
nition � condition ��� �the constraints prefer
higher variable values�� condition ��� �the expressions diverge in the variables�� condition
��� �existence of a 
nite ful
lling assignment�� and the fact that the constraints were not
true in the previous iteration but became true when setting the variables in It � I �t to ��


The 
rst claim follows from the simple fact that the actions responsible for increasing
the values of the variables in Ft � the actions that ful
ll the condition in line �� � are�
in particular� contained in At� Their outcome might be higher if other variables in the
respective e	ect right hand side have been increased 
rst there are no negative interactions
with other variables as we are considering the relaxed transition function� The argument
for the second claim is as follows� As for the variables in It� At contains the respective
responsible action ful
lling the condition in lines � and �� Each application of this action
increases� by De
nition � condition ���� the variable�s value by at least as much as the
previous application� so repeated application diverges� Note that� again� under relaxed
state transition� applying an action can not worsen the situation for other variables� As
for the variables in I �t� At contains the action a ful
lling the condition in line ��� with
�vi� ��� exp� � v�e��a��� exp containing at least one variable v� � v�exp� set to � at this
point �as �vi� ��� exp��m� � ��� Recursively� a responsible action a� setting v� to � must
have been included in the previous iteration� If the e	ect of a� on v� is a �� e	ect� a
responsible action must have been included earlier� and so on� At one point� the responsible
action a�� for the respective ancestor variable v�� must have been included in line �� Repeated
application of a�� causes the value of v�� to diverge �with the same argument as above�� and
in e	ect transitively causes the value of vi to diverge�


It 
nally remains to show that the algorithm terminates in polynomial time� Obviously
each single iteration is polynomial� The number of iterations is bounded by the number of
times that M � or m� can be di	erent from M respectively m� Changes to these values occur
in lines �� �� and ��� The overall number of changes in line � is bound by the number of
logical propositions� jP j� The overall number of changes in line � is bound by the number of
numeric variables� jV j� So if there was an exponential number of iterations until termination
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then there would be an exponential number of consecutive iterations where changes occur
only in line ��� The number of such consecutive iterations is� however� bound by jV j � jAj�
This can be seen as follows� Throughout the entire sequence of iterations� only �� e	ects
contribute to the changes� The �� e	ects are acyclic by our assumption so their value
change can not propagate into their own value� and the only possible further change can
occur when a new action comes in� It takes at most jV j iterations to propagate the changes
through all variables �this is the length of the longest possible propagation path�� so� if
at least one new action comes in at an iteration t� then another new action comes in at
iteration t� jV j at the latest� The obvious bound on the number of iterations where new
actions come in is jAj� which concludes the argument� �


A�� Relaxed Graphplan Completeness


For STRIPS and LNF tasks we prove that the respective relaxed Graphplan mechanisms
are complete� i�e�� that they 
nd a relaxed plan if there is one� The proof for the STRIPS
case is trivial�


Proposition � Assume a STRIPS task �P�A� I�G�� and a state s� If the algorithm depicted
in Figure � fails� then there is no relaxed plan for �P�A� s�G��


Proof� We show the contrapositive� i�e�� if there is a relaxed plan for �P�A� s�G�� then
the algorithm succeeds� Say there is a relaxed plan P � ha�� � � � � ami for �P�A� s�G�� The
algorithm applies� at the 
rst layer� all possible actions� In particular� this includes a�� so
at layer P� at least the facts are true that are true after executing the 
rst step in P � The
same argument can inductively be applied for all actions in P � implying that at each layer t
we have at � At� and Pt contains all facts that are true upon execution of the 
rst t actions
in P � This implies that the goals are true at some layer m� 
 m� G � Pm� � Moreover� the
algorithm does not fail at any layer m�� � m�� if so then it follows that a 
xpoint is reached�
Pi � Pm�� for all i � m��� so G �� Pm� � which contradicts our assumptions� �


The proof for LNF tasks proceeds along the same line� but requires some care with the
details concerning the values beyond which numeric variables can no longer contribute to a
solution�


Theorem � Assume a linear numeric task �V� P�A� I�G� that is in LNF and has acyclic
�
 e�ects� Assume a state s� If the algorithm depicted in Figure � fails� then there is no
relaxed plan for �V� P�A� s�G��


Proof� We show the contrapositive� i�e�� if there is a relaxed plan for �V� P�A� s�G�� then
the algorithm succeeds� Say there is a relaxed plan P � ha�� � � � � ami for �V� P�A� s�G��
The algorithm applies� at the 
rst layer� all possible actions� In particular� this includes a��
so at layer P� at least the facts are true that are true after executing the 
rst step in P �
and the maxi� values are at least as high as the respective variable values� Together with
the fact that the e	ect right hand sides are positively monotonic �so inserting the maxt
values can only increase the outcome�� the same argument can inductively be applied for
all actions in P � implying that at each layer t we have at � At� Pt contains all facts that
are true upon execution of the 
rst t actions in P � and the maxit values are at least as high
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as the respective variable values� This� with the monotonicity of the numeric constraints�
implies that the goals will be reached at some layer m� 
 m� p�G� � Pm� and for all
�exp�� ���� �� � v�G� � exp�maxm�� � ����� Moreover� the algorithm does not fail at any
layer m�� � m�� Assume it does� Then at m�� no new propositions have come in� and the
maxi values all either have not changed� or are already above their maximum needed value�
Denote by L the set of variables vi whose value is still too low� maxim�� 
 mneedi�s�� Note
that L � rV holds since outside rV the mneed values are 	�� We have Pm��� � Pm��


and� for all vi � L� maxim��� � maxim�� � We show that Pm��� � Pm��� and� for all v
i � L�


maxim��� � maxim���� This proves the claim� by iterating the argument� the same holds
true at all layers t � m�� � �� and we get a contradiction to the goals being reached at m�


�note that all constraints in which a variable out of V n L participates are already ful
lled�
so increasing these variables can not reach new goal constraints�� The set of propositions
could increase at layer m���� if a new action came in� i�e�� if there was a � Am���� a �� Am�� �
The value of a variable vi � L could increase at layer m�� � � if� a new action came in a
�� e	ect right hand side expression �vi���� exp� became positive in Am��� as a result of
increasing the V n L variable values from m�� to m�� � � a �� right hand side expression
�vi� ��� exp� in Am��� became higher than maxim��� as a result of increasing the V n L
variable values from m�� to m�� � �� None of these three cases can occur by de
nition of
the mneed values �that the variables in V n L have reached�� As for the 
rst case� Am���


can not contain a new action because no new precondition constraints became true from
m�� to m�� �� � only the V nL variable values have increased� and the constraints in which
these participate are already ful
lled at m��� As for the second case� all �vi���� exp� e	ect
right hand sides in which V nL variables participate are already above � with the values at
m�� �vi � L � rV � so the mneed de
nition for �� e	ects applies�� As for the third case� if
this occurred then there was at least one variable vj � V n L contained in the right hand
side of the responsible e	ect �vi� ��� exp�� This variable would ful
ll maxjm�� � mneedj�s��
thus exp�maxm��� � mneedi�s� would hold �vi � L � rV � so the mneed de
nition for ��
e	ects applies�� thus maxim��� � mneedi�s� would hold �through application of �vi� ��� exp�
in Am��� in contradiction to our assumptions� This concludes the argument� �


A�� Relaxed Graphplan Correctness


For STRIPS and LNF tasks we prove that the respective relaxed Graphplan mechanisms
are correct� i�e�� that the actions they select form a relaxed plan� The proof for the STRIPS
case is trivial�


Proposition � Assume a STRIPS task �P�A� I�G�� and a state s for which the algorithm
depicted in Figure � reaches the goals� The actions selected by the algorithm depicted in
Figure � form a relaxed plan for �P�A� s�G��


Proof� First� note that at each layer t and for each goal g � Gt� there is at least one action
a such that level�a� � t	 �� g � e��a�� due to the way the levels are computed� Also� an
action�s preconditions always have a lower level than the action itself�


The algorithm selects a set At at each layer t� We can arrange the actions in each of
these sets in an arbitrary order to obtain a relaxed plan for �P�A� s�G�� All goals and
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sub�goals at a layer t are achieved by the actions in At��� So with delete e	ects being
ignored� at least the propositions are true which are needed� �


The proof for LNF tasks is a straightforward extension of the STRIPS proof�


Theorem � Assume a linear numeric task �V� P�A� I�G� that is in LNF and has acyclic �

e�ects� Assume a state s for which the algorithm depicted in Figure � reaches the goals� The
actions selected by the algorithm depicted in Figure � form a relaxed plan for �V� P�A� s�G��


Proof� First� note that at each layer t and for each goal g � Gt� there is at least one action
a such that level�a� � t	 �� g � e��a�� due to the way the levels are computed� For the
numeric goals �exp�� ���� �� � v�Gt�� there is always a �� e	ect with su�ciently high right
hand side value� or


maxit 	
X


a�At��vi����exp��v�e��a���exp�maxt�����


exp�maxt��� � maxit��


holds� In the 
rst case the while loop is not entered� in the second case it terminates
successfully� Note that one occurrence of an action can support di	erent logical and numeric
goals by di	erent e	ects� but can not be used to support the same numeric goal twice�


Denote� for a layer t� by At the set of actions selected by the algorithm at that layer� We
can arrange the actions in each of these sets in an arbitrary order to obtain a relaxed plan
for �A� s�G�� All goals and sub�goals at a layer t� both logical and numeric� are achieved
by the actions in At��� The expressions in numeric goals and the e	ect right hand sides are
always at least as high as required as we constrain all contained variables to take on their
respective maximum values� With delete e	ects being ignored� at least the propositions are
true which are needed� With decreasing e	ects being ignored and monotonicity of e	ect
right hand sides� the expression values in constraints are at least as high as required� �
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