DeepLearning on FPGAs

Introduction to Data Mining

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

October 11, 2017
Structure of this course

Goals
→ Learning the basics of Data Mining
→ Learning the basics of Deep Learning
→ Learning the basics of FPGA programming

Structure of this course

Goals
→ Learning the basics of Data Mining
→ Learning the basics of Deep Learning
→ Learning the basics of FPGA programming

Small lecture-phase in the beginning

- Week 1 - 3: Data Mining and Deep Learning
- Week 4 - 5: FPGAs and Software

Structure of this course

Goals
→ Learning the basics of Data Mining
→ Learning the basics of Deep Learning
→ Learning the basics of FPGA programming

Small lecture-phase in the beginning
- **Week 1 - 3**: Data Mining and Deep Learning
- **Week 4 - 5**: FPGAs and Software

Goal Dogs vs. Cats Kaggle competition\(^1\)
- Image classification on FPGA with Deep Learning
- Train classifier on FPGA with Deep Learning

\(^1\)https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/
The Goal: Predict dogs and cats
Overall Computer Science Approach

- **Technical Problem**
- **Mathematical Method**
- **Algorithm**
- **Implementation**

- Mathematical problem formulation
- Theoretical method to solve problem
- Theoretical algorithm implementing method
- Actual implementation
Overall Computer Science Approach: Example

- Technical Problem
- Mathematical Method
- Algorithm
- Implementation

Best route from v_s to n_e in graph

Theoretical method to solve problem

Theoretical algorithm implementing method

Actual implementation
Overall Computer Science Approach: Example

Technical Problem

Mathematical Method

Algorithm

Implementation

Best route from v_s to n_e in graph

Single source shortest path problem

Theoretical algorithm implementing method

Actual implementation
Overall Computer Science Approach: Example

Technical Problem

Mathematical Method

Algorithm

Implementation

Best route from v_s to n_e in graph

Single source shortest path problem

Dijkstra, A*, Floyd-Warhsall, ...

Actual implementation
Overall Computer Science Approach: Example

Technical Problem

Best route from v_s to n_e in graph

Mathematical Method

Single source shortest path problem

Algorithm

Dijkstra, A*, Floyd-Warhsall, ...

Implementation

C, Java, Python, ...
Data Mining Basics

What is Data Mining?
Data Mining Basics

“The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.”
Data Mining Basics

“The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.”

Fact: Data Mining follows the same general approach

But: Some problems are hard to be exactly formalised and thus need some special treatment
Data Mining Basics

“The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.”

Fact: Data Mining follows the same general approach
But: Some problems are hard to be exactly formalised and thus need some special treatment

Example: Find all cats on the given pictures
→ What is a mathematical representation of a cat?
Data Mining Basics

“The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use.”

Fact: Data Mining follows the same general approach
But: Some problems are hard to be exactly formalised and thus need some special treatment

Example: Find all cats on the given pictures
→ What is a mathematical representation of a cat?

Idea: Formalise given problem by positive and negative examples
→ That is our data
Data Mining Basics

Problem 1: Data needs to be gathered and pre-processed
→ crawling the web for images with tag “cat”
Data Mining Basics

Problem 1: Data needs to be gathered and pre-processed
→ crawling the web for images with tag “cat”

Problem 2: Totally unclear what knowledge our data might contain
→ cats and dogs can be on the same picture
⇒ We have to “mine” data and knowledge from it
Data Mining Basics

Problem 1: Data needs to be gathered and pre-processed
→ crawling the web for images with tag “cat”

Problem 2: Totally unclear what knowledge our data might contain
→ cats and dogs can be on the same picture
⇒ We have to “mine” data and knowledge from it

Data Mining is an interdisciplinary field of:

- computer science: algorithm, theory, data structure, algorithm implementation, data warehousing, . . .
- domain specifics: theoretical and practical insights, special knowledge, . . .

Our focus: Mostly implementation and algorithms
Overall Computer Science Approach

- **Technical Problem**
- **Mathematical Method**
- **Algorithm**
- **Implementation**

Data Mining problems
- Theoretical method to solve problem
- Theoretical algorithm implementing method
- Actual implementation
Data Mining: Problems

Our focus: Classification

Given:

- Set of possible classes \mathcal{Y}, e.g. $\mathcal{Y} = \{-1, +1\}$
- Set of labelled training examples / data $\mathcal{D} = \{(\vec{x}_1, y_1), \ldots, (\vec{x}_N, y_N) \mid (\vec{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}$
- A model $f_\theta : \mathcal{X} \rightarrow \mathcal{Y}$ with parameter $\theta \in \Theta$

Find: $\hat{\theta}$, so that $f_\hat{\theta}(\vec{x}) = \hat{f}(\vec{x})$ that predicts class y for given \vec{x}
Data Mining: Problems

Our focus: Classification

Given:
- Set of possible classes \mathcal{Y}, e.g. $\mathcal{Y} = \{-1, +1\}$
- Set of labelled training examples / data $\mathcal{D} = \{(\vec{x}_1, y_1), \ldots, (\vec{x}_N, y_N) \mid (\vec{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}$
- A model $f_\theta : \mathcal{X} \to \mathcal{Y}$ with parameter $\theta \in \Theta$

Find: $\hat{\theta}$, so that $f_\hat{\theta}(\vec{x}) = \hat{f}(\vec{x})$ that predicts class y for given \vec{x}

Note 1: If $|\mathcal{Y}| = 2$ its called binary classification
Note 2: If $\mathcal{Y} = \mathbb{R}$ its called regression

Our focus: Binary classification: $\mathcal{Y} = \{0, +1\}$ or $\mathcal{Y} = \{-1, +1\}$
Data Mining: Notation

Note: The input space can be (nearly) everything

Our focus: d–dimensional vectors: $\vec{x} \in \mathcal{X} \subseteq \mathbb{R}^{n}$

<table>
<thead>
<tr>
<th>\mathcal{D}</th>
<th>Feature 1</th>
<th>Feature 2</th>
<th>...</th>
<th>Feature d</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>x_{11}</td>
<td>x_{12}</td>
<td>...</td>
<td>x_{1d}</td>
<td>y_{1}</td>
</tr>
<tr>
<td>Example 2</td>
<td>x_{21}</td>
<td>x_{22}</td>
<td>...</td>
<td>x_{2d}</td>
<td>y_{2}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Example N</td>
<td>x_{N1}</td>
<td>x_{N1}</td>
<td>...</td>
<td>x_{Nd}</td>
<td>y_{N}</td>
</tr>
</tbody>
</table>
Data Mining: Notation

Note: The input space can be (nearly) everything
Our focus: d–dimensional vectors: $\vec{x} \in X \subseteq \mathbb{R}^n$

<table>
<thead>
<tr>
<th>\mathcal{D}</th>
<th>Feature 1</th>
<th>Feature 2</th>
<th>\ldots</th>
<th>Feature d</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>x_{11}</td>
<td>x_{12}</td>
<td>\ldots</td>
<td>x_{1d}</td>
<td>y_1</td>
</tr>
<tr>
<td>Example 2</td>
<td>x_{21}</td>
<td>x_{22}</td>
<td>\ldots</td>
<td>x_{2d}</td>
<td>y_2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ddots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>Example N</td>
<td>x_{N1}</td>
<td>x_{N1}</td>
<td>\ldots</td>
<td>x_{Nd}</td>
<td>y_N</td>
</tr>
</tbody>
</table>

Matrix $X \in \mathbb{R}^{d \times N}$
Vector $\vec{y} \in \mathbb{Y}^N$

then: in short $\mathcal{D} = (X, \vec{y})$
Overall Computer Science Approach

- Technical Problem
- Mathematical Method
- Algorithm
- Implementation

Classification ✓

Theoretical method to solve problem

Theoretical algorithm implementing method

Actual implementation
What is a good model function?

Observation
We need model function f_θ
What is a good model function?

Observation
We need model function \(f_\theta \)

Maybe simplest model

\[
f(\vec{x}) = \begin{cases}
+1 & \text{if } x_i > c \\
-1 & \text{else}
\end{cases}
\]
What is a good model function?

Observation
We need model function f_θ

Maybe simplest model

$$f(\vec{x}) = \begin{cases} +1 & \text{if } x_i > c \\ -1 & \text{else} \end{cases}$$

Thus $\theta = (i, c)$
But Which feature is important?
Again simple Just use all
Artificial Neural Networks: Single Neuron

Simple case: Let $\vec{x} \in \mathbb{B}^d$

Biology’s view:

![Neuron diagram](image)

- Input
- Processing
- Output

Geometrical view:

Predict class depending on side of line (count):

$$f(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} x_i \geq b_0 \\ -1 & \text{otherwise} \end{cases}$$
Artificial Neural Networks: Single Neuron

Simple case: Let $\vec{x} \in \mathbb{B}^d$

Biology’s view:

“Fire” if input signals reach threshold:

$$f(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} x_i \geq b \\ 0 & \text{else} \end{cases}$$

Geometrical view:

Predict class depending on side of line (count):

$$f(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} x_i \geq b \\ 0 & \text{else} \end{cases}$$
Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs

1943: McCulloch-Pitts Neuron:

- Simple linear model with binary input and output
- Can model boolean OR with $b = 1$
- Can model boolean AND with $b = d$
- Simple extension also allows boolean NOT
Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs

1943: McCulloch-Pitts Neuron:
- Simple linear model with binary input and output
- Can model boolean OR with $b = 1$
- Can model boolean AND with $b = d$
- Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every boolean function (functional complete)
Artificial Neural Networks: Single Neuron

Note: We basically count the number of positive inputs

1943: McCulloch-Pitts Neuron:

- Simple linear model with binary input and output
- Can model boolean OR with $b = 1$
- Can model boolean AND with $b = d$
- Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every boolean function (functional complete)

Remark: That does not help with classification, thus

- **Rosenblatt 1958:** Use weights $w_i \in \mathbb{R}$ for every input $x_i \in \mathbb{B}$
- **Minksy-Papert 1959:** Allow real valued inputs $x_i \in \mathbb{R}$
Artificial Neural Networks: Perceptron

A perceptron is a linear classifier $f: \mathbb{R}^d \rightarrow \{0, 1\}$ with

$$
\hat{f}(\vec{x}) = \begin{cases}
+1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i \geq b \\
0 & \text{else}
\end{cases}
$$
Artificial Neural Networks: Perceptron

A perceptron is a linear classifier $f: \mathbb{R}^d \rightarrow \{0, 1\}$ with

$$
\hat{f}(\vec{x}) = \begin{cases}
+1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i \geq b \\
0 & \text{else}
\end{cases}
$$

Linear function in $d = 2$: $y = mx + \tilde{b}$

Perceptron: $w_1 \cdot x_1 + w_2 \cdot x_2 \geq b \iff x_2 = \frac{b}{w_2} - \frac{w_1}{w_2} x_1$

Obviously: A perceptron is a hyperplane in d dimensions
Artificial Neural Networks: Perceptron

A perceptron is a linear classifier \(f: \mathbb{R}^d \rightarrow \{0, 1\} \) with

\[
\hat{f}(\vec{x}) = \begin{cases}
+1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i \geq b \\
0 & \text{else}
\end{cases}
\]

Linear function in \(d = 2 \): \(y = mx + \tilde{b} \)

Perceptron: \(w_1 \cdot x_1 + w_2 \cdot x_2 \geq b \iff x_2 = \frac{b}{w_2} - \frac{w_1}{w_2} x_1 \)

Obviously: A perceptron is a hyperplane in \(d \) dimensions

Note: \(\vec{w} = (w_1, \ldots, w_d, b)^T \) are the parameters of a perceptron

Notation: Given \(\vec{x} \) we add a 1 to the end of it \(\vec{x} = (x_1, \ldots, x_d, 1)^T \)

Then: \(\hat{f}(\vec{x}) = \begin{cases}
+1 & \text{if } \vec{x} \cdot \vec{w}^T \geq 0 \\
0 & \text{else}
\end{cases} \)
ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable
ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable

Big Note: This is an assumption and not necessarily true!
ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable

Big Note: This is an assumption and not necessarily true!

But: In case of linear separability, there are many “good” \vec{w}
ANN: Perceptron Learning

Note: A perceptron assumes that the data is linear separable

Big Note: This is an assumption and not necessarily true!

But: In case of linear separability, there are many “good” \vec{w}

Note: We are happy with one separative vector \vec{w}
Overall Computer Science Approach

- Technical Problem
- Mathematical Method
- Algorithm
- Implementation

- Classification ✓
- Perceptron ✓
- Theoretical algorithm implementing method
- Actual implementation
ANN: Perceptron Learning

Question: How do we get the weights \vec{w}?

Observation:
- If the output was 0 but should have been 1, increment the weights.
- If the output was 1 but should have been 0, decrement the weights.
- If the output was correct, don't change the weights.

1. $\vec{w} = \text{rand}(1, \ldots, d+1)$
2. while ERROR do
 3. for $(\vec{x}_i, y_i) \in D$ do
 4. $\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$
 5. end for
 6. end while

Note: $\alpha \in \mathbb{R} > 0$ is a stepsize / learning rate.
ANN: Perceptron Learning

Question: How do we get the weights \vec{w}?

Observation: We look at $\vec{x} \cdot \vec{w}^T \geq 0$

- if output was 0 but should have been 1 increment weights
- if output was 1 but should have been 0 decrement weights
- if output was correct, don’t change weights

```
1: $\vec{w} = \text{rand}(1, \ldots, d + 1)$
2: while $\text{ERROR}$ do
3: for $(\vec{x}_i, y_i) \in D$ do
4:   $\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$
5: end for
6: end while
```

Note: $\alpha \in \mathbb{R} > 0$ is a stepsize / learning rate
ANN: Perceptron Learning

Question: How do we get the weights \vec{w}?

Observation: We look at $\vec{x} \cdot \vec{w}^T \geq 0$

- if output was 0 but should have been 1 increment weights
- if output was 1 but should have been 0 decrement weights
- if output was correct, don’t change weights

1: $\vec{w} = rand(1, \ldots, d + 1)$
2: **while** ERROR **do**
3: **for** $(\vec{x}_i, y_i) \in D$ **do**
4: $\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$
5: **end for**
6: **end while**
ANN: Perceptron Learning

Question: How do we get the weights \vec{w}?

Observation: We look at $\vec{x} \cdot \vec{w}^T \geq 0$

- if output was 0 but should have been 1 increment weights
- if output was 1 but should have been 0 decrement weights
- if output was correct, don’t change weights

1: $\vec{w} = \text{rand}(1, \ldots, d + 1)$
2: while ERROR do
3: for $(\vec{x}_i, y_i) \in \mathcal{D}$ do
4: $\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$
5: end for
6: end while

Note: $\alpha \in \mathbb{R}_{>0}$ is a stepsize / learning rate
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)
ANN: Perceptron Learning

Update rule: \[\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \]

Wrong classification:

- Case 1: \[y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0 \]
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)

Wrong classification:

- **Case 1:** \(y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0 \)

 \[
 \hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T
 \]
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)

Wrong classification:

- **Case 1:** \(y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0 \)

\[
\hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \|\vec{x}_i\|^2
\]
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)

Wrong classification:

- **Case 1:** \(y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0 \)

 \[
 \hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T \\
 = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2
 \]

 \(\rightarrow \vec{w} \) is incremented and classification is moved towards 1 \(\checkmark \)
ANN: Perceptron Learning

Update rule: \(\mathbf{w}_{new} = \mathbf{w}_{old} + \alpha \cdot \mathbf{x}_i \cdot (y_i - \hat{f}_{old}(\mathbf{x}_i)) \)

Wrong classification:

- **Case 1:** \(y_i - \hat{f}_{old}(\mathbf{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\mathbf{x}_i) = 0 \)

\[
\hat{f}_{new}(\mathbf{x}_i) = \mathbf{x}_i \cdot (\mathbf{w}_{new})^T = \mathbf{x}_i \cdot (\mathbf{w}_{old} + \alpha \cdot 1 \cdot \mathbf{x}_i)^T
\]

\[
= \mathbf{x}_i \cdot \mathbf{w}_{old}^T + \alpha \cdot \mathbf{x}_i \cdot \mathbf{x}_i^T = \mathbf{x}_i \cdot \mathbf{w}_{old}^T + \alpha \cdot ||\mathbf{x}_i||^2
\]

\(\rightarrow \mathbf{w} \) is incremented and classification is moved towards 1 \(\checkmark \)

- **Case 2:** \(y_i - \hat{f}_{old}(\mathbf{x}_i) = -1 \Rightarrow y_i = 0, \hat{f}_{old}(\mathbf{x}_i) = 1 \)
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)

Wrong classification:

- **Case 1:** \(y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0 \)

 \[
 \hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T
 = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old} + \alpha \cdot ||\vec{x}_i||^2
 \]

 \(\rightarrow \vec{w} \) is incremented and classification is moved towards 1 \(\checkmark \)

- **Case 2:** \(y_i - \hat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \hat{f}_{old}(\vec{x}_i) = 1 \)

 \[
 \hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} - \alpha \cdot 1 \cdot \vec{x}_i)^T
 \]
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)

Wrong classification:

- **Case 1:** \(y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0 \)

 \[
 \hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T \\
 = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2
 \]

 \(\rightarrow \vec{w} \) is incremented and classification is moved towards 1 \(\checkmark \)

- **Case 2:** \(y_i - \hat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \hat{f}_{old}(\vec{x}_i) = 1 \)

 \[
 \hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} - \alpha \cdot 1 \cdot \vec{x}_i)^T \\
 = \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot ||\vec{x}_i||^2
 \]
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)

Wrong classification:

- **Case 1:** \(y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0 \)

 \[\hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T \]

 \[= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2 \]

 \(\rightarrow \vec{w} \) is incremented and classification is moved towards 1 √

- **Case 2:** \(y_i - \hat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \hat{f}_{old}(\vec{x}_i) = 1 \)

 \[\hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} - \alpha \cdot 1 \cdot \vec{x}_i)^T \]

 \[= \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot ||\vec{x}_i||^2 \]

 \(\rightarrow \vec{w} \) is decremented and classification is moved towards 0 √
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)

Correct classification: \(y_i - \hat{f}(\vec{x}_i) = 0 \)

- \(\vec{w}_{new} = \vec{w}_{old} \), thus \(\vec{w} \) is unchanged \(\checkmark \)
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)

Correct classification: \(y_i - \hat{f}(\vec{x}_i) = 0 \)

- \(\vec{w}_{new} = \vec{w}_{old} \), thus \(\vec{w} \) is unchanged ✓

Rosenblatt 1958 showed:

- Algorithms converges if \(\mathcal{D} \) is linear separable
- Algorithm may have exponential runtime
ANN: Perceptron Learning

Update rule: \(\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i)) \)

Correct classification: \(y_i - \hat{f}(\vec{x}_i) = 0 \)

- \(\vec{w}_{new} = \vec{w}_{old} \), thus \(\vec{w} \) is unchanged ✓

Rosenblatt 1958 showed:

- Algorithms converges if \(\mathcal{D} \) is linear separable
- Algorithm may have exponential runtime

Variation: Batch processing - Update \(\vec{w} \) after testing all examples

\[
\vec{w}_{new} = \vec{w}_{old} + \alpha \sum_{(\vec{x}_i, y_i) \in \mathcal{D}_{\text{wrong}}} \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))
\]

Usually: Faster convergence, but more memory needed
Overall Computer Science Approach

- **Technical Problem**
 - Classification ✓

- **Mathematical Method**
 - Linear classifier ✓

- **Algorithm**
 - Perceptron learning ✓

- **Implementation**
 - Actual implementation
Data Mining: Implementation of Perceptron Learning

Obviously: Implementation also influences the runtime!
Data Mining: Implementation of Perceptron Learning

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account
- **System:** CPU, GPU, FPGA, ...
- **Hardware:** Word length, cache sizes, vectorization, ...
- **Software:** Paging in OS, (Multi-) Threading, Swapping, ...
- **Language:** C vs. Java vs. Haskell ...
Data Mining: Implementation of Perceptron Learning

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account
- **System:** CPU, GPU, FPGA, ...
- **Hardware:** Word length, cache sizes, vectorization, ...
- **Software:** Paging in OS, (Multi-) Threading, Swapping, ...
- **Language:** C vs. Java vs. Haskell ...

Usually: Use language and system we know
But: Some systems / hardware is better at certain tasks
→ e.g. graphics cards are built to do matrix-vector multiplication
Data Mining: Implementation of Perceptron Learning

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

- **System:** CPU, GPU, FPGA,
- **Hardware:** Word length, cache sizes, vectorization,
- **Software:** Paging in OS, (Multi-) Threading, Swapping,
- **Language:** C vs. Java vs. Haskell

Usually: Use language and system we know

But: Some systems / hardware is better at certain tasks
→ e.g. graphics cards are built to do matrix-vector multiplication

Thus: Choose method and algorithm depending on system

Our focus: Mostly methods and algorithms, later implementation
Overall Computer Science Approach

- Technical Problem
 - Classification ✓
 - Perceptron ✓
 - Simple learning rule ✓
 - System and language ✓

- Mathematical Method

- Algorithm
Data Mining: Measure Model quality

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data

→ Integer operations are fast, but less accurate than floating point
Data Mining: Measure Model quality

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data
→ Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms and even more implementations
→ Learning Rule, Gradient Descent, Evolutionary Optimization . . .
Data Mining: Measure Model quality

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data
→ Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms and even more implementations
→ Learning Rule, Gradient Descent, Evolutionary Optimization . . .

Bottom line: Comparing specific methods is difficult
Thus: Compare performance of computed model
Data Mining: Measure Model quality

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data
→ Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms and even more implementations
→ Learning Rule, Gradient Descent, Evolutionary Optimization . . .

Bottom line: Comparing specific methods is difficult
Thus: Compare performance of *computed* model

Important: There is no free lunch (*Wolpert, 1996*)
→ Some methods work better on some problems, but no method works well on all problems
Data Mining: Measure Model quality (2)

Question: So, what is model quality?
Data Mining: Measure Model quality (2)

Question: So, what is model quality?

1. how well explains the model training data?
2. can we give any guarantees for new predictions?
3. how well generalises the model to new and unseen data?

So far Linear model assumption
No guarantees at all, especially if linear assumption does not hold
Data Mining: Measure Model quality (3)

Fact: In binary classification we have two choices: predict 0 or 1 → 2 possible wrong predictions and 2 possible correct predictions
Data Mining: Measure Model quality (3)

Fact: In binary classification we have two choices: predict 0 or 1 → 2 possible wrong predictions and 2 possible correct predictions

Visualization: Confusion matrix

<table>
<thead>
<tr>
<th>True value</th>
<th>Predicted value</th>
</tr>
</thead>
<tbody>
<tr>
<td>True positive (TP)</td>
<td>False negative (FN)</td>
</tr>
<tr>
<td>False positive (FP)</td>
<td>True negative (TN)</td>
</tr>
</tbody>
</table>
Data Mining: Measure Model quality (3)

Fact: In binary classification we have two choices: predict 0 or 1 → 2 possible wrong predictions and 2 possible correct predictions

Visualization: Confusion matrix

<table>
<thead>
<tr>
<th>True value</th>
<th>Predicted value</th>
</tr>
</thead>
<tbody>
<tr>
<td>True positive (TP)</td>
<td>False negative (FN)</td>
</tr>
<tr>
<td>False positive (FP)</td>
<td>True negative (TN)</td>
</tr>
</tbody>
</table>

Accuracy: \(Acc = \frac{TP+TN}{N} \)

Big Remark: The accuracy only tells us something about the data \(D \) we know! There are no guarantees for new data
Data Mining: Measure Model quality (4)

Obviously: The best model has $Acc = 1$, the worst has $Acc = 0$

Observation: If we store all the data for look-up, then $Acc = 1$
Data Mining: Measure Model quality (4)

Obviously: The best model has $Acc = 1$, the worst has $Acc = 0$

Observation: If we store all the data for look-up, then $Acc = 1$

Question: Is that what we want?

Clear: This is just memorizing the training data, no real learning!

Question: How well deals our model with new, yet unseen data?
Data Mining: Measure Model quality (4)

Obviously: The best model has $Acc = 1$, the worst has $Acc = 0$

Observation: If we store all the data for look-up, then $Acc = 1$

Question: Is that what we want?

Clear: This is just memorizing the training data, no real learning!

Question: How well deals our model with new, yet unseen data?

Idea: Split data into training \mathcal{D}_{Train} and test data \mathcal{D}_{Test}

Then: \mathcal{D}_{Test} is new to the model $f_{\hat{\theta}}$

Question: How to split \mathcal{D}?
Data Mining: Measure Model quality (5)

1) **Test/Train**: Split \mathcal{D} by size, e.g. 80% training and 20% test data
 \rightarrow Fast and easy to compute, but sensitive for “bad” splits.
 \rightarrow Model quality might be over- or under-estimated
Data Mining: Measure Model quality (5)

1) **Test/Train:** Split D by size, e.g. 80% training and 20% test data
 → Fast and easy to compute, but sensitive for “bad” splits.
 → Model quality might be over- or under-estimated

2) **Leave-One-Out:** Use every example once for testing and train model on the remaining data. Average results.
 → N models are computed, but insensitive for “bad” splits.
 → Usually impractical
Data Mining: Measure Model quality (5)

1) **Test/Train:** Split D by size, e.g. 80% training and 20% test data → Fast and easy to compute, but sensitive for “bad” splits. → Model quality might be over- or under-estimated

2) **Leave-One-Out:** Use every example once for testing and train model on the remaining data. Average results. → N models are computed, but insensitive for “bad” splits. → Usually impractical

3) **K-fold cross validation:** Split data into k buckets. Use every bucket once for testing / train model on the rest. Average results. → Insensitive for “bad” splits and practical. Usually $k = 10$.
Summary

Important concepts:

- **Classification** is one data mining task
- **Training data** is used to define and solve the task
- **A Method** is a general approach / idea to solve a task
- **A algorithm** is a way to realise a method
- **A model** forms the extracted knowledge from data
- **Accuracy** measures the model quality given the data
Summary

Important concepts:
- **Classification** is one data mining task
- **Training data** is used to define and solve the task
- **A Method** is a general approach / idea to solve a task
- **A Algorithm** is a way to realise a method
- **A model** forms the extracted knowledge from data
- **Accuracy** measures the model quality given the data

Note: Runtime and model quality depend on method, algorithm and implementation
Some administration stuff

Requirements to pass this course

- Plan an approach to solve kaggle competition including
 - Data pre-processing
 - Implementation of Neural Network learning
 - Incorporate FPGA design
- Give a small presentation / review about your approach
Some administration stuff

Requirements to pass this course

- Plan an approach to solve kaggle competition including
 - Data pre-processing
 - Implementation of Neural Network learning
 - Incorporate FPGA design

- Give a small presentation / review about your approach

Thus: After the lecture phase you are free to do what you want until the end of the semester → you work in self-organizing groups

Question: When will we meet again for lectures?
Homework Data

For development Use smaller data set

- 32×32 pixel grayscale images of numbers $0 – 9$ (10 labels)
- already pre-processed in CSV format
- test/train split plus a smaller sample for development
Homework

I give simple homeworks to get you started more easily. But I will not check the homework, your choice to do it.

Homework 1: Implement a simple CSV-Reader.
The first column contains the label (0−9), and the remaining 784 columns contain grayscale values (0−255).

Homework 2: Implement perceptron learning algorithm for two numbers.

Note 1: We will later use C, so please use C or a C-like language.

Note 2: Use the smaller split for development and the complete data set for testing.
→ What's your accuracy?
Homework

Homework I give simple homeworks to get you started more easily
But I will not check the homework, your choice to do it.

Homework until next meeting

- Implement a simple CSV-Reader
 - First column contains the label (0 – 9)
 - Remaining 784 columns contain grayscale value (0 – 255)
- Implement perceptron learning algorithm for two numbers
- Implement accuracy computation for Test/Train split

Note 1: We will later use C, so please use C or a C-like language
Note 2: Use the smaller split for development and the complete data set for testing → What’s your accuracy?