Large-Scale Optimization

L24. DUALITY 2
Today

Duality gap
KKT conditions + strong duality
Equivalence of Constrained vs Lagrange formulations
Dual \rightarrow Primal
Since the last time, we’ve using the following definition of Lagrange dual function,

\[g(\lambda) := \min_{x \in \mathbb{R}^n} \mathcal{L}(x; \lambda) \]

In fact, the duality theory works with general definition with inf & sup

\[g(\lambda) := \inf_{x \in \mathbb{R}^n} \mathcal{L}(x; \lambda) \]

What is the difference, min vs. inf?
Lagrange Dual

\[f^* = \min_{x \in \mathbb{R}^n} f(x) \]

Primal:

\[
\begin{align*}
\text{s.t.} \quad & h_i(x) \geq 0, \quad i = 1, \ldots, m \\
& \ell_j(x) = 0, \quad j = 1, \ldots, r
\end{align*}
\]

\(C \) : feasible set

Lagrange function:

\[\mathcal{L}(x; u, v) = f(x) - \sum_{i=1}^{m} u_i h_i(x) - \sum_{j=1}^{r} v_j \ell_j(x) \]

For any \(u \geq 0 \) and \(v \),

\[f^* \geq \min_{x \in C} \mathcal{L}(x; u, v) \geq \min_{x \in \mathbb{R}^n} \mathcal{L}(x; u, v) =: g(u, v) \]

Lagrange dual function

Lagrange dual problem:

\[g^* = \max_{u \in \mathbb{R}^m, v \in \mathbb{R}^r} g(u, v) \]

Weak duality: \(f^* \geq g^* \)

Strong duality: \(f^* = g^* \)
Duality Gap

For primal feasible x and dual feasible (u, v),

$$(\text{duality gap}) := f(x) - g(u, v) \geq 0$$

For any $u \geq 0$ and v, and a primal feasible x

$$f(x) \geq f^* \geq \min_{x' \in C} \mathcal{L}(x'; u, v) \geq \min_{x' \in \mathbb{R}^n} \mathcal{L}(x'; u, v) =: g(u, v)$$

$$\Rightarrow 0 \leq f(x) - f^* \leq f(x) - g(u, v)$$

Provides a practical stopping criterion:

- **zero duality gap** \Rightarrow x is primal optimal & (u,v) is dual optimal
- check “duality gap < epsilon” for some epsilon > 0
- due to limited precision, duality gap < 0 can happen in code
Constrained Optimization

\[
\min_{x \in \mathbb{R}^n} f(x) \\
\text{s.t. } h_i(x) \geq 0, \quad i = 1, \ldots, m \\
\ell_j(x) = 0, \quad j = 1, \ldots, r
\]

C : feasible set

Basic requirements to find a solution:

- C is nonempty
- C is a closed set
KKT Conditions

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $$h_i(x) \geq 0, \ i = 1, \ldots, m$$

$$\ell_j(x) = 0, \ j = 1, \ldots, r$$

$$0 \in \partial_x \mathcal{L}(x; u, v) = \partial f(x) - \sum_{i=1}^{m} u_i \partial h_i(x) - \sum_{j=1}^{r} v_j \partial \ell_j(x)$$

Primal feasibility

$$u_i \geq 0, \ \forall i$$

Dual feasibility

$$u_i h_i(x) = 0, \ \forall i$$

Complementary slackness

Lagrange optimality / stationary

$$h_i(x) \leq 0, \ \ell_j(x) = 0 \ \forall i, j$$
First-Order Necessary Optimality Condition (FONC)

Let x^* be a (local) minimizer, at which CQ holds. Then there exists Lagrange multipliers (u^*, v^*) satisfying the KKT conditions at (x^*, u^*, v^*).
Constraint Qualification

Required so that Lagrange multipliers exist satisfying the KKT conditions

- **LICQ (Linear independence CQ):** the gradients of active constraints are linearly independent at x^*
 - \rightarrow Lagrange multipliers exist and are unique

- **MFCQ (Mangasarian-Fromovitz CQ):**

 there exists $w \in \mathbb{R}^n$ s.t.

 $\nabla h_i(x^*)^T w > 0$, for all active inequality constraints
 $\nabla\ell_j(x^*)^T w = 0$, for all equality constraints,

 and the set of equality constraint gradients is linearly independent.
Constraint Qualification

- LICQ implies MFCQ
- LICQ is one of the most restrictive CQs
- ... other CQs with less restrictive conditions

- Slater’s condition:

 there exists \(x \in \text{relint } C \) s.t.

 \[
 \nabla h_i(x) > 0, \text{ for all non-affine inequality constraints}
 \]
 \[
 \nabla \ell_j(x) = 0, \text{ for all equality constraints.}
 \]

 \(\Rightarrow \) then strong duality holds for convex optimization problem

- This works as a CQ in convex optimization
FONC (Under Strong Duality)

Let x^* and (u^*, v^*) be primal and dual solutions satisfying strong duality. Then (x^*, u^*, v^*) satisfies the KKT conditions.

First, x^* and (u^*, v^*) are primal and dual feasible.

$$f(x^*) = g(u^*, v^*)$$

$$= \min_{x \in \mathbb{R}^n} \mathcal{L}(x; u^*, v^*)$$

$$\leq \mathcal{L}(x^*; u^*, v^*)$$

$$\leq f(x^*)$$

Therefore, all inequalities should hold as equalities.
FONC (Under Strong Duality)

\[f(x^*) = g(u^*, v^*) \]
\[= \min_{x \in \mathbb{R}^n} \mathcal{L}(x; u^*, v^*) \]
\[= \mathcal{L}(x^*; u^*, v^*) \]
\[= f(x^*) \]

\[\mathcal{L}(x^*; u^*, v^*) = f(x^*) - \sum_{i=1}^{m} u_i^* h_i(x^*) - \sum_{j=1}^{n} v_j^* \ell_j(x^*) \]

\[\Rightarrow u_i^* h_i(x^*) = 0 \text{ should hold for all } i. \]

No assumption on the convexity of the problem!
Sufficient Optimality Condition (Under Convexity)

Let \(x^* \) and \((u^*, v^*)\) satisfy the KKT conditions.
Then, the duality gap is zero: \(x^* \) and \((u^*, v^*)\) are primal and dual solutions.

\[
g(u^*, v^*) = \min_{x \in \mathbb{R}^n} \mathcal{L}(x; u^*, v^*)
\]

\[
= f(x^*) - \sum_{i=1}^{m} u_i^* h_i(x^*) - \sum_{j=1}^{r} v_j^* \ell_j(x^*)
\]

\[
= f(x^*)
\]

The primal needs to be a convex opt problem: \(f(x) \) convex, \(h_i(x) \) concave, \(\ell_j(x) \) affine

\[
\mathcal{L}(x; u^*, v^*) \text{ is convex in } x
\]
\[
0 \in \partial_x \mathcal{L}(x^*; u^*, v^*) \text{ is sufficient } x^* \text{ to be a minimizer of } \mathcal{L}(x; u^*, v^*)
\]
First-Order Optimality Conditions

Necessary, under

- CQ (constraint qualification, e.g. LICQ), or strong duality
- No convex opt assumption

Sufficient, under

- Convex optimization

When the problem is a convex opt,

Necessary, under

- CQ (constraint qualification, e.g. LICQ), or strong duality (e.g. convex opt + Slater)

Always sufficient
Why Both Conditions Matter?

For checking optimality:

• (Sufficiency) KKT satisfied \Rightarrow a solution

• KKT not satisfied \Rightarrow not a solution?
 • This is given by the contrapositive of “(Necessity) a solution \Rightarrow KKT satisfied”

• This means that we do need CQ or strong duality, to reject non-optimal points even in convex opt
Constrained vs. Lagrange Forms

\[\begin{align*}
(C) \quad & \min_{x \in \mathbb{R}^n} \quad f(x) \text{ s.t. } h(x) \leq t \\
(L) \quad & \min_{x \in \mathbb{R}^n} \quad f(x) + \sum_{i=1}^{m} \lambda_i h_i(x)
\end{align*} \]

The two formulations are often treated as interchangeable, for some appropriate choices of the parameters t and \(\lambda \).

Q: Are they really equivalent (under the convexity opt assumption)?
(C) → (L): suppose that x^* is a solution of (C) at which CQ or strong duality holds. By FONC, there exist Lagrange multipliers $\mu_i^* \geq 0$ satisfying the KKT conditions of (C),

$$\partial_x \mathcal{L}(x^*; \mu^*) = \nabla f(x^*) + \sum_i \mu_i^* \nabla h_i(x^*) = 0, \quad (1)$$

$$h_i(x^*) \leq t_i \quad (2)$$

$$\mu_i^*(h_i(x^*) - t_i) = 0 \quad \forall i. \quad (3)$$

where (1) becomes the optimality condition of x^* in (L) if we set $\lambda_i = \mu_i^*$.

(L) → (C): suppose that x^* is a solution of (L). Obviously, (1) holds when $\mu_i^* = \lambda_i$. (2) and (3) holds when $t_i = h_i(x^*)$ for all i. Under the convexity of (C), the KKT conditions (1–3) are sufficient for x^* to be a solution of (C).
Equivalence?

\[\bigcup_{\lambda \geq 0} \{ \text{solutions of (L)} \} \subseteq \bigcup_t \{ \text{solutions of (C)} \} \]

\[\bigcup_{\lambda \geq 0} \{ \text{solutions of (L)} \} \supseteq \bigcup_t \{ \text{solutions of (C)} \} \]

\(t \): (C) is strictly feasible

or, any CQ

Typical examples: \(h(x) = \| x \|_1 \) and \(h(x) = \| x \|_2^2 \)

- For these, t=0 is the only value without strict feasibility
Strong Duality: Dual \(\rightarrow\) Primal

Strong duality allows us to characterize primal solutions from dual solutions

A result in the proof of “FONC + strong duality”: given a dual solution \((u^*, v^*)\), any primal solution \(x^*\) is a solution of \(\min_{x \in \mathbb{R}^n} \mathcal{L}(x; u^*, v^*)\).

When \(\mathcal{L}(x; u^*, v^*)\) is convex in \(x\), its minimizer \((x^*)\) is characterized by

\[
0 \in \partial_x \mathcal{L}(x^*; u^*, v^*)
\]

That is, this can be solved characterizes a primal solution.

If \(\min_{x \in \mathbb{R}^n} \mathcal{L}(x; u^*, v^*)\) has a unique minimizer, then it must be the unique primal solution.
Example (B & V: Ex 5.4)

$$\min_{x \in \mathbb{R}^n} f_0(x) = \sum_{i=1}^{n} f_i(x_i) \quad \text{s.t.} \quad a^T x = b$$

(Feasible set) $\cap \text{ dom } f_0$ is nonempty

each $f_i : \mathbb{R} \to \mathbb{R}$ is strictly convex and differentiable

\Rightarrow there exists a unique minimizer x^*

Also, Slater’s condition hold \Rightarrow strong duality
\[\min_{x \in \mathbb{R}^n} f_0(x) = \sum_{i=1}^{n} f_i(x_i) \quad \text{s.t.} \quad a^T x = b \]

Dual function: \[g(\lambda) = \inf_{x \in \mathbb{R}^n} \mathcal{L}(x; \lambda) \]

\[
= \inf_{x \in \mathbb{R}^n} \left\{ \sum_{i=1}^{n} f_i(x_i) + \lambda(b - a^T x) \right\}
\]

\[
= b\lambda + \sum_{i=1}^{n} \inf_{x_i \in \mathbb{R}} \{ f_i(x_i) - a_i \lambda x_i \}
\]

\[
= b\lambda - \sum_{i=1}^{n} f_i^*(a_i \lambda)
\]

convex in \(v \)

\[f_i^*(v) := \sup_{x_i \in \mathbb{R}} \{ vx_i - f_i(x_i) \} \]

conjugate of \(f_i \)
Dual problem:

\[f_i^*(v) := \sup_{x_i \in \mathbb{R}} \{ vx_i - f_i(x_i) \} \]

\[
\max_{\lambda \in \mathbb{R}} g(\lambda) = \max_{\lambda} \left\{ b\lambda - \sum_{i=1}^{n} f_i^*(a_i \lambda) \right\}
\]

- This is a convex optimization (i.e., maximization of a concave obj. function)
- Simple algorithm can solve a convex problem over one scalar variable
- Suppose that we have a dual solution \(\lambda^* \):
 \[\mathcal{L}(x; \lambda^*) \text{ is strictly convex and thus has a unique minimizer } \tilde{x} \]
 Strong duality \(\Rightarrow x^* \text{ minimizes } \mathcal{L}(x; \lambda^*) \Rightarrow \tilde{x} = x^* \)
- Therefore, we can recover \(x^* \) from \(\nabla_x \mathcal{L}(x; \lambda^*) = 0 \),
 i.e. by solving equations \(f_i'(x_i^*) = -\lambda^* a_i \)