Numerical Optimization
Lecture 13: Conjugate Gradient Method

Sangkyun Lee

The content is from Nocedal and Wright (2006). Topics marked with ** are optional.

1 Generation of Conjugate Directions

We discuss how to generate a set of a direction \(p_k \) conjugate to \(\{p_0, p_1, \ldots, p_{k-1}\} \), but using the information of \(p_{k-1} \) and not the other ones.

In the CG method, we choose

\[
p_k = -r_k + \beta_k p_{k-1},
\]

where the scalar \(\beta_k \) is chosen so that \(p_k \) and \(p_{k-1} \) must be conjugate w.r.t. \(A \), i.e., \(p_k^T A p_{k-1} = 0 \). From this we have

\[
p_{k-1}^T A (-r_k + \beta_k p_{k-1}) = 0,
\]

\[
\Rightarrow \beta_k = \frac{r_k^T A p_{k-1}}{p_{k-1}^T A p_{k-1}}.
\]

For the first direction \(p_0 \), we choose \(p_0 = -\nabla \phi(x_0) = -r_0 \). A preliminary version of the CG algorithm is shown in Algorithm 1. Approximate numbers of FLOPs are shown in the parentheses, assuming that \(A p_k \) and \(p_k^T A p_k \) are cached and multiply-accumulation operation \(\text{MAC}(a, b, c) : a \leftarrow a + (b \ast c) \) is a single operation. The total no. of FLOPs of this algorithm will be approximately \(2n^2 + 5n \).

2 Conjugacy and the Krylov Subspace

We still need to show that the directions \(p_0, p_1, \ldots, p_{n-1} \) generated by Algorithms 1 and (2) are conjugate wrt \(A \). If so, then by Theorem 11.3, this algorithm will terminate in \(n \) steps. The next theorem shows this property, along with two other important properties: (i) the residuals \(r_i \) are mutually orthogonal, and (ii) each \(p_k \) and \(r_k \) is contained in the Krylov subspace of degree \(k \) for \(r_0 \), defined by

\[
K(r_0; k) = \text{span}\{r_0, Ar_0, \ldots, A^k r_0\}.
\]

To understand its relation to CG, we can see from the fact that \(r_0 = Ax_0 - b \) and \(A^{-1} \) can be written due to the Cayley-Hamilton theorem,

\[
A^{-1} \approx \frac{(-1)^{k-1}}{\det(A)} (A^{k-1} + d_{k-2}A^{k-2} + \cdots + d_0I).
\]
Algorithm 1: CG: Preliminary Version

1 Input: \(x_0, A, b \);
2 \(r_0 = Ax_0 - b, p_0 = -r_0, k = 0; \)
3 while \(r_k \neq 0 \) do
4 \(\alpha_k = -\frac{r_k^T p_k}{p_k^T A p_k} \) (\(n^2 + 2n \) FLOPs);
5 \(x_{k+1} = x_k + \alpha_k p_k \) (\(n \) FLOPs);
6 \(r_{k+1} = Ar_{k+1} - b \) (\(n^2 \) FLOPs);
7 \(\beta_{k+1} = \frac{r_{k+1}^T A p_k}{p_k^T A p_k} \) (\(n \) FLOPs);
8 \(p_{k+1} = -r_{k+1} + \beta_{k+1} p_k \) (\(n \) FLOPs);
9 \(k = k + 1; \)
10 end
11 Output: \(x^* = x_k. \)

Therefore,
\[
A^{-1}r_0 \approx \delta(A^{k-1} + d_{k-2}A^{k-2} + \cdots + d_0 I)r_0
\]
where
\[
A^{-1}r_0 = A^{-1}(Ax_0 - b) = x_0 - A^{-1}b \approx x_0 - x_k = c_0p_0 + \cdots + c_{k-1}p_{k-1}.
\]
This gives a rough idea of the definition of the Krylov subspace and why (13.3) below would hold.

Theorem 13.1. Suppose that \(x_k \) from the CG algorithm is not the solution \(x^* \). Then the following properties hold:

\[
\begin{align*}
& r_k^T r_i = 0, \quad i = 0, 1, \ldots, k - 1, \quad (13.1) \\
& \text{span}\{r_0, r_1, \ldots, r_k\} = \mathcal{K}(r_0; k), \quad (13.2) \\
& \text{span}\{p_0, p_1, \ldots, p_k\} = \mathcal{K}(r_0; k), \quad (13.3) \\
& p_k^T A p_i = 0, \quad i = 0, 1, \ldots, k - 1. \quad (13.4)
\end{align*}
\]

Therefore, \(\{x_k\} \) converges to \(x^* \) in at most \(n \) steps.

Proof. The last three statements: proof by induction. At \(k = 1 \), all three statements are true. Suppose that they are true for some \(k \) (induction hypothesis). We show these three statements hold for \(k + 1 \).

From the induction hypothesis, we have
\[
r_k \in \text{span}\{r_0, Ar_0, \ldots, A^k r_0\}, \quad p_k \in \text{span}\{r_0, Ar_0, \ldots, A^k r_0\}.
\]
Then
\[
A p_k \in \text{span}\{Ar_0, A^2 r_0, \ldots, A^{k+1} r_0\}.
\]
Using \(r_{k+1} = r_k + \alpha_k A p_k \), we see that
\[
r_{k+1} \in \text{span}\{r_0, Ar_0, \ldots, A^{k+1} r_0\}.
\]
Combining this with the induction hypothesis, we conclude that
\[
\text{span}\{r_0, r_1, \ldots, r_k, r_{k+1}\} \subseteq \text{span}\{r_0, Ar_0, \ldots, A^{k+1} r_0\}.
\]
To show the reverse inclusion, we start from the induction hypothesis which gives
\[
A^k r_0 \in \text{span}\{p_0, p_1, \ldots, p_k\}
\]
and therefore
\[A^{k+1}r_0 \in \text{span}\{Ap_0, Ap_1, \ldots, Ap_k\}. \]
From \(r_{i+1} = r_i + \alpha_i Ap_i \), we have \(Ap_i = (r_{i+1} - r_i)/\alpha_i \) for \(i = 0, 1, \ldots, k \), and thus
\[A^{k+1}r_0 \in \text{span}\{r_0, r_1, \ldots, r_{k+1}\}. \]
Combining this with the induction hypothesis, we conclude that
\[\text{span}\{r_0, Ar_0, \ldots, A^k r_0, A^{k+1}r_0\} \subseteq \text{span}\{r_0, r_1, \ldots, r_{k+1}\}. \]
The above two results proves (13.2).
(13.3) can be shown for \(k + 1 \) as follows,
\[\text{span}\{p_0, p_1, \ldots, p_k, p_{k+1}\} = \text{span}\{p_0, p_1, \ldots, p_k, r_{k+1}\} = \text{span}\{p_0, p_1, \ldots, p_k, A^k r_0, A^{k+1} r_0\} \]
Next, we show the conjugacy (13.4). From \(p_{k+1} = -r_{k+1} + \beta_k p_k \), multiplying by \(Ap_i \), \(i = 0, 1, \ldots, k \) gives
\[p_{k+1}^T Ap_i = -r_{k+1}^T Ap_i + \beta_k p_k^T Ap_i. \] (13.5)
When \(i = k \), then \(p_{k+1}^T Ap_i = 0 \) from the definition of \(\beta_{k+1} \). For \(i < k \), we first note that from the induction hypothesis, \(p_0, p_1, \ldots, p_k \) are conjugate, and by Theorem 12.1 (expanding subspace minimization),
\[r_{k+1}^T p_i = 0, \quad i = 0, 1, \ldots, k. \]
Also, from (13.3), for \(i = 0, 1, \ldots, k - 1 \) we have,
\[Ap_i \in A \text{span}\{r_0, Ar_0, \ldots, A^i r_0\} = \text{span}\{Ar_0, A^2 r_0, \ldots, A^{i+1} r_0\} \subseteq \text{span}\{p_0, p_1, \ldots, p_{i+1}\}. \]
From the above two results, we deduce that
\[r_{k+1}^T Ap_i = 0, \quad i = 0, 1, \ldots, k - 1. \]
Therefore, the first term in (13.5) becomes zero, and the second term is also zero due to the induction hypothesis. Therefore (13.4) holds for all \(k \).
Finally (without induction), for (13.1), we first note from
\[p_i = -r_i + \beta_i p_{i-1} \]
that \(r_i \in \text{span}\{p_i, p_{i-1}\} \) for all \(i = 1, \ldots, k - 1 \), and \(r_0 \in \text{span}\{p_0\} \) by our initialization. Since \(r_{k+1}^T p_i = 0 \) for all \(i = 0, 1, \ldots, k - 1 \) for any \(k = 1, 2, \ldots, n - 1 \) from Theorem 12.1, we conclude that \(r_k^T r_i = 0 \) for \(i = 0, 1, \ldots, k - 1 \).
Note that the proof does require that \(p_0 = -r_0 \), the steepest descent direction.
3 The Conjugate Gradient Algorithm

Now we can make Algorithm 1 more economical. First, from Theorem 13.1 we know
that $p_0, p_1, \ldots, p_{n-1}$ are conjugate wrt A, and therefore from Theorem 12.1 we have
$$r_k^T p_i = 0, \ i = 0, 1, \ldots, k - 1.$$
Then, from $p_k = -r_k + \beta_k p_{k-1}$, we have
$$\alpha_k = \frac{-r_k^T p_k}{p_k^T A p_k} = \frac{r_k^T r_k}{p_k^T A p_k}.$$
Next, using Theorem 12.1 with $r_{k+1} = r_k + \alpha_k A p_k$, and (13.1) we have
$$\beta_{k+1} = \frac{r_{k+1}^T A p_k}{p_k^T A p_k} = \frac{r_{k+1}^T (r_{k+1} - r_k) / \alpha_k}{p_k^T A p_k} = \frac{r_{k+1}^T r_{k+1}}{r_k r_k}.$$
We also use $r_{k+1} = r_k + \alpha_k A p_k$ for computing r_{k+1} instead. The resulting algorithm
is shown in Algorithm 2. The total no. of FLOPs of this algorithm is now $n^2 + 5n$, removing n^2
operations comparing to the previous algorithm.

Algorithm 2: CG

1. **Input:** x_0, A, b
2. $r_0 = Ax_0 - b$, $p_0 = -r_0$, $k = 0$
3. while $r_k \neq 0$ do
 4. $\alpha_k = \frac{r_k^T r_k}{p_k^T A p_k}$ (n² + n FLOPs);
 5. $x_{k+1} = x_k + \alpha_k p_k$ (n FLOPs);
 6. $r_{k+1} = r_k + \alpha_k A p_k$ (n FLOPs);
 7. $\beta_{k+1} = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$ (n FLOPs);
 8. $p_{k+1} = -r_{k+1} + \beta_{k+1} p_k$ (n FLOPs);
 9. $k = k + 1$
10. end
11. **Output:** $x^* = x_k$.

4 Rate of Convergence

In Theorem 11.3, we showed that the CG algorithm find the solution in at most n steps. In fact, when the eigenvalues of A are clustered, then it converges much faster than n.

To see this property, we first note from Theorem 13.1 that
$$x_{k+1} = x_0 + c_0 p_0 + \cdots + c_k p_k = x_0 + \gamma_0 r_0 + \gamma_1 A r_0 + \cdots + \gamma_k A^k r_0,$$
with some proper constants c_i and γ_i. We define $P_k^*(A)$ to be a polynomial of degree k with coefficients $\gamma_0, \text{dots}, \gamma_k$, so that
$$P_k^*(A) = \gamma_0 I + \gamma_1 A + \cdots + \gamma_k A^k, \ x_{k+1} = x_0 + P_k^*(A) r_0.$$
We aim to show that among all possible methods whose first k steps are restricted to the Krylov space $K(r_0; k)$, Algorithm 2 performs the best for minimizing
Due to Theorem 12.1, x^* is the minimizer of ϕ, we have that
\[
\frac{1}{2} \|x - x^*\|^2_A = \frac{1}{2} (x - x^*)^T A (x - x^*) = \frac{1}{2} x^T A x - b^T x + x^T (b - A x^*) + \frac{1}{2} (x^*)^T A x^* \\
= \phi(x) - \phi(x^*) + ((x^*)^T A - b^T) x^* = \phi(x) - \phi(x^*).
\]

Due to Theorem 12.1, x_{k+1} minimizes ϕ, and hence $\|x - x^*\|^2_A$, over the set $x_0 + \text{span}\{p_0, \ldots, p_k\} = x_0 + \text{span}\{r_0, A r_0, \ldots, A^k r_0\}$. Therefore the polynomial $P_k^*(A)$ solves the following problem over all possible polynomials of degree k,
\[
\min_{P_k} \|x_0 + P_k(A) r_0 - x^*\|_A.
\]

From $r_0 = A x_0 - b = A (x_0 - x^*)$, we have
\[
x_{k+1} - x^* = x_0 + P_k^*(A) r_0 - x^* = [I + P_k^*(A) A] (x_0 - x^*).
\]

On the other hand, we can write
\[
A = \sum_{i=1}^n \lambda_i v_i v_i^T
\]
for its eigenvalues $0 < \lambda_1 \leq \cdots \leq \lambda_n$ and the associated orthonormal eigenvectors v_1, v_2, \ldots, v_n. Since the eigenvectors span \mathbb{R}^n,
\[
x_0 - x^* = \sum_{i=1}^n \xi_i v_i
\]
for some coefficients ξ_i. Any eigenvector of A is also an eigenvector of $P_k(A)$, so that
\[
P_k(A) v_i = P_k(\lambda_i) v_i \quad i = 1, 2, \ldots, n.
\]

Plugging-in (13.7) into (13.6), we have
\[
x_{k+1} - x^* = \sum_{i=1}^n [1 + \lambda_i P_k^*(\lambda_i)] \xi_i v_i
\]
Using $\|z\|^2_A = z^T A z = \sum_{i=1}^n \lambda_i (v_i^T z)^2$,
\[
\|x_{k+1} - x^*\|^2_A = \sum_{i=1}^n \lambda_i [1 + \lambda_i P_k^*(\lambda_i)]^2 \xi_i^2.
\]

The polynomial P_k^* generated by the CG algorithm minimizes the LHS, and therefore,
\[
\|x_{k+1} - x^*\|^2_A = \min_{P_k} \sum_{i=1}^n \lambda_i [1 + \lambda_i P_k(\lambda_i)]^2 \xi_i^2
\]

\[
\leq \min_{P_k} \max_{1 \leq i \leq n} [1 + \lambda_i P_k(\lambda_i)]^2 \left(\sum_{j=1}^n \lambda_j^2 \right)
\]

\[
= \min_{P_k} \max_{1 \leq i \leq n} [1 + \lambda_i P_k(\lambda_i)]^2 \|x_0 - x^*\|^2_A. \quad (13.8)
\]

We use the above property to show the following theorems.
Theorem 13.2. If A has only r distinct eigenvalues, then the CG algorithm will terminate at the solution in at most r iterations.

Proof. Suppose that the eigenvalues λ_i, $i = 1, 2, \ldots, n$, of A take on the r distinct values $\tau_1 < \tau_2 < \cdots < \tau_r$. We define a polynomial $Q_r(\lambda)$ by

$$Q_r(\lambda) = \frac{(-1)^r}{\tau_1 \tau_2 \cdots \tau_r} (\lambda - \tau_1) \cdots (\lambda - \tau_r).$$

Then $Q_r(\lambda_i) = 0$ for $i = 1, 2, \ldots, n$, and $Q_r(0) = 1$, and therefore $Q_r(\lambda) - 1$ is a degree-r polynomial with a root at $\lambda = 0$. That is, if we define the function

$$\tilde{P}_{r-1}(\lambda) = (Q_r(\lambda) - 1)\lambda,$$

then it is a polynomial of degree $r - 1$. Taking $k = r - 1$ in (13.8), we get

$$0 \leq \min_{\tilde{P}_{r-1}} \max_{1 \leq i \leq n} [1 + \lambda_i \tilde{P}_{r-1}(\lambda_i)]^2 \leq \max_{1 \leq i \leq n} [1 + \lambda_i \tilde{P}_{r-1}(\lambda_i)]^2 = \max_{1 \leq i \leq n} Q_r^2(\lambda_i) = 0.$$

That is, $\|x_r - x^*\|_A^2 = 0$ from (13.8), and therefore $x_r = x^*$.

By similar arguments, we can show the following results.

Theorem 13.3. Let $0 < \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be the eigenvalues of A. Then,

$$\|x_{k+1} - x^*\|_A^2 \leq \left(\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1}\right)^2 \|x_0 - x^*\|_A^2.$$

Or, for $\kappa(A) = \|A\|_2 ||A^{-1}\|_2 = \lambda_n/\lambda_1$,

$$\|x_k - x^*\|_A^2 \leq 2 \left(\frac{\sqrt{\kappa(A)} - 1}{\sqrt{\kappa(A)} + 1}\right)^k \|x_0 - x^*\|_A^2.$$

To understand this result, suppose that A has m large eigenvalues, where the rest $n - m$ smaller eigenvalues are clustered around 1. Defining $\epsilon = \lambda_{n-m} - \lambda_1$, this theorem tells that after $m + 1$ steps we have

$$\|x_{m+1} - x^*\|_A \approx \frac{\epsilon}{2} \|x_0 - x^*\|_A,$$

so that for small ϵ, the CG iterate x_{m+1} will provide a good estimate of the solution.

References