
Enabling End-User Datawarehouse Mining
MiningMart Version 1.1

User Guide

The MiningMart User Guide

Timm Euler, Martin Scholz

Dortmund, Germany, June 26, 2007

2

Contents

1 Getting Started 7
1.1 Support . 7
1.2 Licensing information . 7
1.3 File names in this document . 7
1.4 Connecting to the database . 8

1.4.1 Oracle . 8
1.4.2 PostgreSQL . 9
1.4.3 MySQL . 10
1.4.4 Editing the connection information 10
1.4.5 M4 data information . 11

1.5 Installing and running MiningMart 11
1.5.1 General hints . 11
1.5.2 Windows . 12
1.5.3 Linux or Solaris . 12

1.6 Integration with YALE . 14
1.7 Upgrading from older versions . 14
1.8 External code . 14
1.9 List of operators that use external algorithms 15

2 Basic Concepts in MiningMart 17
2.1 The MiningMart approach . 18
2.2 Basic notions in MiningMart . 19

3 The Graphical User Interface 25
3.1 General issues . 25
3.2 Case editor . 27
3.3 Concept editor . 29

4 Operators and their Parameters 33
4.1 General issues . 33
4.2 Concept operators . 34

4.2.1 MultiRelationalFeatureConstruction 34
4.2.2 JoinByKey . 35
4.2.3 UnionByKey . 35

3

4 CONTENTS

4.2.4 Pivotize . 36
4.2.5 ReversePivotize . 37
4.2.6 SpecifiedStatistics . 38
4.2.7 RowSelectionByQuery . 40
4.2.8 RowSelectionByRandomSampling 40
4.2.9 DeleteRecordsWithMissingValues 40
4.2.10 SegmentationStratified . 41
4.2.11 SegmentationByPartitioning 41
4.2.12 SegmentationWithKMean 41
4.2.13 UnSegment . 42
4.2.14 RemoveDuplicates . 42
4.2.15 Repeat . 42
4.2.16 Materialize . 43
4.2.17 MaterializeWithPKs . 43
4.2.18 YaleModelApplier . 43
4.2.19 CreatePrimaryKey . 44
4.2.20 AttributeDerivation . 44
4.2.21 FeatureConstructionByRelation 45
4.2.22 Windowing . 46
4.2.23 SimpleMovingFunction . 46
4.2.24 WeightedMovingFunction 47
4.2.25 ExponentialMovingFunction 47
4.2.26 SignalToSymbolProcessing 48
4.2.27 Apriori . 48
4.2.28 Feature Construction with TF/IDF 49
4.2.29 Union . 49

4.3 Feature selection operators . 50
4.3.1 FeatureSelectionByAttributes 50
4.3.2 RemoveFeatures . 51
4.3.3 FeatureSelectionWithSVM 51
4.3.4 SimpleForwardFeatureSelectionGivenNoOfAttributes . . . 52
4.3.5 SimpleBackwardFeatureSelectionGivenNoOfAttributes . . 52
4.3.6 FloatForwardFeatureSelectionGivenNoOfAtt 53
4.3.7 FloatBackwardFeatureSelectionGivenNoOfAtt 53
4.3.8 UserDefinedFeatureSelection 54

4.4 Feature construction operators 54
4.4.1 AssignAverageValue . 54
4.4.2 AssignModalValue . 54
4.4.3 AssignMedianValue . 54
4.4.4 AssignDefaultValue . 55
4.4.5 AssignStochasticValue . 55
4.4.6 Binarify . 55
4.4.7 MergeAttributes . 56
4.4.8 MissingValuesWithRegressionSVM 56
4.4.9 LinearScaling . 57
4.4.10 LogScaling . 57

CONTENTS 5

4.4.11 SupportVectorMachineForRegression 58
4.4.12 SupportVectorMachineForClassification 58
4.4.13 GenericFeatureConstruction 59
4.4.14 DateToNumeric . 60
4.4.15 TimeIntervalManualDiscretization 60
4.4.16 NumericIntervalManualDiscretization 61
4.4.17 EquidistantDiscretizationGivenWidth 61
4.4.18 EquidistantDiscretizationGivenNoOfIntervals 62
4.4.19 EquifrequentDiscretizationGivenCardinality 62
4.4.20 EquifrequentDiscretizationGivenNoOfIntervals 62
4.4.21 UserDefinedDiscretization 63
4.4.22 ImplicitErrorBasedDiscretization 63
4.4.23 ErrorBasedDiscretizationGivenMinCardinality 64
4.4.24 ErrorBasedDiscretizationGivenNoOfInt 64
4.4.25 GroupingGivenMinCardinality 65
4.4.26 GroupingGivenNoOfGroups 65
4.4.27 UserDefinedGrouping . 65
4.4.28 UserDefinedGroupingWithDefaultValue 66
4.4.29 ImplicitErrorBasedGrouping 66
4.4.30 ErrorBasedGroupingGivenMinCardinality 67
4.4.31 ErrorBasedGroupingGivenNoOfGroups 67

4.5 Operators creating relationships 68
4.5.1 CreateOneToManyRelation 68
4.5.2 CreateManyToManyRelation 68

4.6 Other Operators . 69
4.6.1 ComputeSVMError . 69
4.6.2 PrepareForYale . 69

5 The Case Repository 71
5.1 The Internet Presentation of Cases 71
5.2 How to download a case . 72
5.3 How to document a case . 72
5.4 How to upload a case . 73

6 CONTENTS

Chapter 1

Getting Started

1.1 Support

Support for installing and working with MiningMart is available in this docu-
ment and some README files in the distribution. Further, support questions can
be addressed by email to:

miningmart@ls8.cs.uni-dortmund.de

The MiningMart team, consisting of Timm Euler and Martin Scholz, will be
happy to answer your specific questions.

1.2 Licensing information

Please refer to the file MM HOME/LICENSES.

1.3 File names in this document

Unpacking the zip file you have downloaded from the MiningMart website, or
running the Windows installer (see section 1.5), will create a directory named
MiningMart-1.1. The complete path up to and including this directory is ab-
breviated in this and all other MiningMart documentation by MM HOME.

As an example, assume that somewhere in the documentation, the file
MM HOME/lib/postgresql.jar is mentioned. This indicates that you can find
the file postgresql.jar in the directory

• C:\Programs\MiningMart-1.1\lib\, to use an example for Windows;

• /home/username/analysis/MiningMart-1.1/lib/, as an example for
Linux or Solaris.

7

8 CHAPTER 1. GETTING STARTED

1.4 Connecting to the database

MiningMart works with relational databases. It currently supports three data-
base systems: Oracle, MySQL and PostgreSQL. If you do not have access to an
installed and running database system of one of these three types, you cannot
use MiningMart.

MiningMart distinguishes between two types of data: the data you would like
to transform/prepare/analyse, and its own data (see chapter 2). The former is
called business data in this document, while the latter is called M4 data since
MiningMart is based on a model called M4. These two types of data can be
stored in the same database schema (accessible by the same database user),
or in different schemas (with two different database users); the latter setting
is a little safer, and is the default setting, but it may also be convenient to
use the first setting. When two schemas are used, you would typically create
one database schema/database user explicitly for the M4 data, while using an
existing schema/user for your existing data.

When you start MiningMart for the first time, you need to have certain
pieces of information at hand in order to tell MiningMart how it should connect
to your database, and to which database users the data belongs. The following
sections explain this for each type of database system. Please refer also to the
documentation of your database system.

1.4.1 Oracle

• An Oracle database has a global name, or SID. The database denoted by
this name can have many database schemas and can be accessed by many
database users. You must ask the administrator of your Oracle database
in order to get this name. The name is case-sensitive. (If MiningMart asks
for two different database names, one for the business and one for the M4
data, use the same name for both.)

• You may need to know the JDBC driver class name of the JDBC driver
you are using. MiningMart offers a default driver class name which should
work without problems, but if you are using a different JDBC driver (see
section 1.5), you may have to change this default class name.

• Your Oracle database is running on a certain host, whose name you must
tell MiningMart (example: dbserver.mynet.de). If the database system is
running on the same computer as MiningMart, the default entry localhost

can be used.

• Your Oracle database accepts connections at a certain port. MiningMart
offers the default port value for Oracle, 1521, but if your database uses a
different port, you must tell MiningMart so.

• The business data is accessible by a certain database user. You must give
MiningMart the name of this user.

1.4. CONNECTING TO THE DATABASE 9

• The business user’s password must be given.

• If you have created an extra database user for MiningMart’s own data,
the name for this user must be given to MiningMart as the M4 user. If
you do not want to create an extra user, enter the same user name as for
the business data.

• The M4 user’s password must be given. If your M4 user is the same as
your business user, then of course the password is also the same.

1.4.2 PostgreSQL

• A PostgreSQL database has a global name. The database denoted by this
name can have many database schemas and can be accessed by many data-
base users. You must ask the administrator of your PostgreSQL database
in order to get this name. The name is case-sensitive. (If MiningMart asks
for two different database names, one for the business and one for the M4
data, use the same name for both.)

• You may need to know the JDBC driver class name of the JDBC driver
you are using. MiningMart offers a default driver class name which should
work without problems, but if you are using a different JDBC driver (see
section 1.5), you may have to change this default class name.

• Your PostgreSQL database is running on a certain host, whose name you
must tell MiningMart (example: dbserver.mynet.de). If the database
system is running on the same computer as MiningMart, the default entry
localhost can be used.

• Your PostgreSQL database accepts connections at a certain port. Min-
ingMart offers the default port value for PostgreSQL, 5432, but if your
database uses a different port, you must tell MiningMart so.

• The business data is accessible by a certain database user. You must give
MiningMart the name of this user.

• The business user’s password must be given.

• If you have created an extra database user for MiningMart’s own data,
the name for this user must be given to MiningMart as the M4 user. If
you do not want to create an extra user, enter the same user name as for
the business data.

• The M4 user’s password must be given. If your M4 user is the same as
your business user, then of course the password is also the same.

10 CHAPTER 1. GETTING STARTED

1.4.3 MySQL

• You may need to know the JDBC driver class name of the JDBC driver
you are using. MiningMart offers a default driver class name which should
work without problems, but if you are using a different JDBC driver (see
section 1.5), you may have to change this default class name.

• Your MySQL database is running on a certain host, whose name you
must tell MiningMart (example: dbserver.mynet.de). If the database
system is running on the same computer as MiningMart, the default entry
localhost can be used.

• Your MySQL database accepts connections at a certain port. MiningMart
offers the default port value for MySQL, 3306, but if your database uses
a different port, you must tell MiningMart so.

• The business data is accessible in a certain database. You must give Min-
ingMart the name of this database.

• The business data is accessible by a certain database user. You must give
MiningMart the name of this user.

• The business user’s password must be given.

• You can create an extra database and an extra user for MiningMart’s own
data. If you do so, the database name, user name, and password for this
M4 database must be given to MiningMart. Otherwise you can use the
same entries as for the business data.

1.4.4 Editing the connection information

Each MiningMart session accesses one particular database schema (or data-
base under MySQL) for the business data, and one particular database schema
(database under MySQL) for its own data. The latter may be the same as the
former.

If you have different database schemas with different sets of data you would
like to analyse, or if your database organisation changes, you may want to edit
the connection information that MiningMart uses. This can be done in two ways:

• After MiningMart has started, choose the item Edit DB settings in the
Tools menu. Make sure to save and close your Case before doing so. After
editing the connection information, the MiningMart system will exit and
you have to start it again; this is necessary to ensure that the right M4
data is read.

• Before MiningMart has started, you can edit the configuration file that
MiningMart uses to store its connection information. The complete path
to and name of this file is given in the file MiningMartHome.properties as
the value for the key DB CONFIG PATH. You can open the indicated file using

1.5. INSTALLING AND RUNNING MININGMART 11

an ordinary text editor, and edit the connection settings. You can keep
several different versions of the connection configuration file, and indicate
in the file MiningMartHome.properties which one you would like to use
each time you start MiningMart. (Under Linux or Solaris, it is perhaps
more convenient to let the entry in MiningMartHome.properties point
to a symbolic link, and to change this link before starting MiningMart.)

1.4.5 M4 data information

The MiningMart system generally handles two database schemas (users). The
first one is called the business data schema. It holds the data you want to analyse
and preprocess with the MiningMart system. The second schema, the so-called
M4 schema, holds metadata information about your business data and your
preprocessing chains. You should not only reserve sufficient space on disk for
your source business data, but account some extra space for materializing some
of the views. For the M4 schema, on the other hand, 100 MByte should be
sufficient for normal usage.

When you start MiningMart for the first time, the system will create a
number of tables in the M4 schema which it uses to store the cases etc, unless
these tables exist already (from an older MiningMart version). If any table in the
M4 schema happens to have a name that is used by MiningMart, that table will
be deleted! If you want to make sure that none of your tables are deleted, you
can check the file MM HOME/m4install/<yourDbSystem>/CreateM4Tables.sql

for the table names that are going to be used.

You can also choose to prepare the M4 tables yourself, by using the scripts in
the directory MM HOME/m4install/<yourDbSystem>/. Note that when running
the provided scripts that install M4 tables, to be used by MiningMart, into
your M4 database schema, any old tables with identical names are deleted. If
you have used MiningMart before, this will delete all your cases! Please refer to
section 1.7 to learn about saving your old cases.

Please refer to the file MM HOME/m4install/README.txt for further informa-
tion on how to prepare the database manually, or simply start the system if you
want the system to prepare the database automatically.

1.5 Installing and running MiningMart

1.5.1 General hints

MiningMart works with relational databases. Three database management sys-
tems (DBMS) are supported: Oracle (version 8.1.6 or higher), PostgreSQL (ver-
sion 7.2 or higher), and MySql (tested for version 5.0 and higher). Although
MiningMart uses standard SQL wherever possible, access to certain important
database system tables is not standardised among DBMS vendors, so that adapt-
ing MiningMart to other DBMS is not difficult but has not been done yet.

12 CHAPTER 1. GETTING STARTED

MiningMart distinguishes between business data and its own M4 data (see
also chapter 2). The business data is the collection of tables you want to prepro-
cess or analyse. One specific database schema should be used for this data; under
MySql, a specific database should be used. This schema is called business schema

everywhere in this documentation. For information on database schemas, and
how to create and manipulate them, please refer to your Oracle, PostgreSQL, or
MySql documentation. It is useful to create a second database schema (or just
a second database under MySql) for the M4 data. This M4 schema should be
empty to start with, and will be filled with MiningMart-specific tables by the
system (see section 1.4.5).

See section 1.4 to learn about the database connection information
which you need when starting MiningMart for the first time.

With these hints you should be able to install MiningMart easily by following
the instructions below. (They are also to be found in the files MM HOME/README

and MM HOME/INSTALL).

1.5.2 Windows

You can download a file called miningmart-1.1.exe. Save the file somewhere
on your file system. Double-click on the file to start the installation program.
You will be asked for the destination directory where MiningMart is to be in-
stalled. The default directory is a subdirectory of your “programs” directory,
such as C:\Programs\MiningMart-1.1. But please note that you need to have
Administrator status in order to install MiningMart there. If you do not have
Administrator status on your computer, simply choose another directory where
you have write access.

If you would like to use an Oracle database, you will also be asked to provide
the location of a JDBC driver file that comes with Oracle. This file contains Java
classes that MiningMart (which is written in Java) needs to access your Oracle
database. The file is usually called ojdb14.jar (for Java 1.4), classes13.jar,
classes12.zip (for lower Java versions) or similar. MiningMart will work with
any of these files. Please consult your Oracle documentation to find the file. If
you are not going to use Oracle, you can skip this section of the installer.

After the installer has finished, you can start MiningMart in one of two ways:

• Click Start, then Programs, then MiningMart-1.1and then StartMiningMart.

• Go to the directory where MiningMart was installed, then go to the sub-
directory (subfolder) called bin. Double-click on the file startMM.bat.

1.5.3 Linux or Solaris

Follow these steps:

1. You should read the file MM HOME/README.

2. You must have Java installed on your system. MiningMart is tested for
Java 1.4 and 1.5. For more information see http://java.sun.com.

1.5. INSTALLING AND RUNNING MININGMART 13

3. Your Oracle, Postgres, or MySql installation provides a JDBC driver.
This is a file which a Java program can use to read and write from
the database. Your Oracle, Postgres or MySql documentation will tell
you where to find the file. The Oracle file is often called ojdbc14.jar,
classes13.jar, classes12.zip or similar. The Postgres file is usually
called postgresql.jar and the MySql file should be called
mysql-connector-version-bin.jar or similar.

As an Oracle user, please place a copy of that file into MM HOME/lib/.
If you are using Linux or Solaris, that’s it. If you are using Windows
and have not chosen this file during installation, you may now have to
edit one line in the file MM HOME\bin\mmart.bat: you will find the line
set ORA=%MMART HOME%\lib\classes12.zip in this file. Change the line
so that the file name is correct, ie matches the Oracle JDBC driver file
name.

If you are going to use postgres: A Postgres JDBC file is already provided
in MM HOME/lib/ under the license described in
MM HOME/licenses/LICENSE POSTGRESQL JDBC. However, you may still have
to find the JDBC file that belongs to your own Postgres installation if
you are experiencing troubles (particularly for Postgres versions 8.x or
higher). Just copy the file to MM HOME/lib/. If you are using Linux or
Solaris, that’s it. If you are using Windows, you may now have to edit
one line in the file MM HOME\bin\mmart.bat: you will find the line set

POSTGR=%MMART HOME%\lib\postgresql.jar in this file. Change the line
so that the file name is correct, ie matches the Postgres JDBC driver file
name.

For MySql the procedure is the same as for Postgres; a JDBC file is already
provided, which has been tested for MySql version 5.0. If you are going to
use a higher version of MySql, you may also have to use a later version of
the JDBC file. Please proceed as described above for Postgres in order to
let MiningMart use your JDBC file.

4. Open and edit the file MM HOME/bin/mmart.sh. Follow the instructions
given in comments in that file: there is only one obligatory line to edit.
The line looks like this before you have changed it:

MMART HOME=

After you have changed it, it should look something like this:

MMART HOME=/home/myname/analysis/MiningMart-1.1/

Save the edited version of the file under the same name.

5. Make sure that the file mentioned in step 4 is executable. The command
chmod u+x mmart.sh will ensure this.

6. That’s all. You can now run MiningMart by issuing the command
./mmart.sh & from the MM HOME/bin directory.

14 CHAPTER 1. GETTING STARTED

1.6 Integration with YALE

To enable a smooth integration between preprocessing, learning, and applying
models, two new operators called PrepareForYale and YaleModelApplier have
been implemented to bridge the gap between MiningMart and the very powerful
open-source Yale learning toolbox. Yale has a Weka wrapper, offers automatic
parameter setting, and powerful feature selection and construction algorithms
on top of common classifiers as provided by Weka. After preprocessing raw
data within your database you might want to draw a sample fitting in main
memory, which can be read directly by a Yale operator. This can easily be done
with the help of the PrepareForYale operator. Then you are able to train your
classifiers (or induce some other kind of model) based on the samples. Finally
you may want to apply the model to unseen data. In this case MiningMart’s
YaleModelApplier operator can be used to create a new database view, holding
the predictions for the new data.

Yale can be downloaded at http://yale.sf.net/

1.7 Upgrading from older versions

This section is relevant if you have old MiningMart cases that you still want to
use after upgrading the system. If you do not care about your old cases, then you
can simply install the latest system from scratch. Otherwise you should export

all your cases to XML files using the export facility of your old system. Then
you may delete your M4 schema and install it anew (see section 1.4.5). Using
the import facility of the new system, you can then re-create all your cases.

However, you do not need to delete your cases. Simply run the script

• MM HOME/m4install/oracle/replace operators.sql, or

• MM HOME/m4install/postgres/replace operators.sql,

depending on your database system. Start these scripts from an SQL command
line in the M4 database schema. This will update the information about Min-
ingMart’s operators without changing the M4 schema.

1.8 External code

Although MiningMart was implemented in Java, some operators use external
algorithms, not all of which are included in all distributions or for all operating
systems. A list of operators using external algorithms can be found in section
1.9.

The operators that use these external implementations all employ machine
learning algorithms. The MiningMart team cannot give support for these ex-
ternal implementations. If these operators do not work on your system, it is
suggested to use the very powerful YALE learning environment (see section 1.6)

1.9. LIST OF OPERATORS THAT USE EXTERNAL ALGORITHMS 15

for all machine learning experiments. MiningMart provides two operators that
ease the integration with YALE (see section 1.6).

If your installation does not include them, binary files for the external op-
erators can be put into the directory MM HOME/ext/bin/<os-name>/, where
<os-name> is to be replaced with one of Windows, Linux or SunOS.

Currently the following tools are supported if put to the directory specified
above:

• mySVM, a Support Vector Machine by Stefan Rueping
For details please refer to
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/

The wrapper expectes the target files mysvm and predict.

• Apriori, implemetation of Bart Goethals
For details please refer to
http://www.cs.helsinki.fi/u/goethals/software/index.html

The wrapper expects the binary apriori.

1.9 List of operators that use external algorithms

• Apriori

• FeatureSelectionWithSVM

• MissingValuesWithRegressionSVM

• SupportVectorMachineForRegression

• SegmentationWithKMean

16 CHAPTER 1. GETTING STARTED

Chapter 2

Basic Concepts in
MiningMart

In this chapter you will learn about the basic ideas behind MiningMart. Its
different components and the way they interact will be explained. Basic notions
that will be needed for any MiningMart session are presented. This will also
help you to understand this document and any other documents related to
MiningMart.

MiningMart is a system that supports the development, documentation and
re-use of results in knowledge discovery. It is assumed that you are familiar with
general concepts in Knowledge Discovery (Data Mining). However, we give a few
informal definitions here to provide a common understanding. More information
about Data Mining can be found on the MiningMart webpages:
http://mmart.cs.uni-dortmund.de

• The Knowledge Discovery Process refers to the technical steps of data
acquisition, data cleaning, data preparation as well as data mining and
model testing.

• Data Mining is the step in the knowledge discovery process where a Ma-
chine Learning algorithm is applied to learn a model which is used to make
predictions on new data.

• Preprocessing comprises all steps that are undertaken in order to bring the
data into a format that is accessible for data mining. The result of pre-
processing is the input for data mining without any further modifications.
The input for preprocessing is the data as it is stored in a data warehouse
or even the operational database of an institution.

Section 2.1 gives an overview of the MiningMart approach to the knowledge
discovery process. In section 2.2, basic terms that are used in MiningMart are
defined and explained. Those terms will be used everywhere in the MiningMart
system and documentation, so it is a good idea to familiarize yourself with them.

17

18 CHAPTER 2. BASIC CONCEPTS IN MININGMART

2.1 The MiningMart approach

MiningMart provides support for knowledge discovery applications. Thus the
system is aimed at those people in an institution who actually work with the
institution’s data and process it in various ways in order to gather statistics
or other higher-level information. While the system provides an intuitive ac-
cess to data and easy handling of processing steps, users should have a certain
knowledge about how their data is stored before the application of MiningMart.

MiningMart works with relational databases. It assumes that all input data
is given in tables in a relational database and its output are new tables in this
database. It also stores its own data in relational tables. Thus, there are no
limitations to the amount of data that MiningMart can handle.

Referring to the definitions at the beginning of this chapter, MiningMart
supports the whole knowledge discovery process but focusses clearly on pre-
processing. That is, the system provides a few common data mining algorithms
which can be applied directly from the system, but its main value is the support
for the technical steps that are needed to bring the data into a format which can
be used for data mining. Like the input, the output of the system is a number
of relational database tables, but in the output tables the data is stored in a
representation suitable for data mining. Thus, you can use your favourite data
mining algorithm easily because the input data for it is stored in a table in your
database in exactly the right format after the application of MiningMart.

MiningMart supports preprocessing by applying a number of data process-
ing steps to its input. Each step is graphically represented in the MiningMart
workspace. The complete sequence of steps is stored in the database and can
also be exported to other sites where MiningMart is in use. In this way, a docu-
mentation of the whole knowledge discovery process is achieved. All the details
of a discovery process can be easily saved for later usage, can be modified using
a graphical user interface, and can be transferred from one discovery process to
another.

MiningMart uses a layer of abstraction of the actual data to model the
knowledge discovery process. This abstraction allows to publish successful dis-
covery applications for the benefit of other users, while sensitive details are
hidden. This means that you can benefit easily from the work done by other
MiningMart users. The MiningMart web pages provide a central platform for
the exchange of successful discovery processes, called cases (see section 2.2). On
this platform, such cases are described both in terms of their relevance to a
business and in technical terms, which allows you to find cases which are similar
to the application you have in mind. You can then download such cases into
your MiningMart system and make the necessary modifications towards your
own data.

The following section describes these central ideas in more detail by explain-
ing the basic MiningMart terminology. Once you have become familiar with
those basic notions, you can start your own MiningMart application easily.

2.2. BASIC NOTIONS IN MININGMART 19

2.2 Basic notions in MiningMart

This section explains several terms that are used throughout the MiningMart
system and its documentation. You can use this section for general reference.
Where words are printed in italics, they have their own entry in this section.

Business data This is the data in which knowledge is to be discovered. It
must be stored in a relational database. It can consist of any number of tables,
views and relations between them. The MiningMart system assumes that all
data is stored in one database schema; if this is not the case, a single schema
with database links to the needed tables should be set up (please refer to the
documentation of your DBMS).

Metadata This is “administrative” data which MiningMart uses to store in-
formation about the business data as well as about the knowledge discovery
process. Metadata can be stored in a separate database schema (which can live
in a separate database) from the business data, or in the same schema. Mining-
Mart uses a fixed data model for its metadata, which is called M4 (MiningMart
MetaModel).

M4 (MiningMart MetaModel) This is the fixed data model in which Min-
ingMart stores its own information, called Metadata. M4 consists of several
parts, but it is not important for users of MiningMart to know much about it.

Conceptual level As explained in section 2.1, MiningMart uses a layer of
abstraction of the business data in order to hide sensitive details from other
MiningMart users. This layer is the conceptual level. Its name stems from the
fact that on this level, the data is described in everyday concepts rather than in
terms of its technical representation. For example, many institutions have got
data about their customers. So it could make sense to introduce the common
concept “Customer” on the conceptual level, where it represents the data about
customers. Information about this level forms part of the Metadata described
above.

The conceptual level is the most important one for MiningMart users, be-
cause all the data processing is described in terms of the conceptual level. That
is, whenever the customer data in the above example is accessed, this is done
via the concept “Customer”. In contrast to this level, there is the relational

level which also forms part of the Metadata, but which contains less abstract
information about the business data. Both levels must be connected (see below).

Relational level On this level, the business data is described in terms of
its technical representation. This means that the relational level (being part
of the Metadata) stores exact information about the tables and columns that
contain the business data. While a concept such as “Customer” may be rather
common in several institutions, the way the data about customers is organised

20 CHAPTER 2. BASIC CONCEPTS IN MININGMART

will be different in each institution. Therefore, sharing MiningMart applications
(as explained in section 2.1) makes use only of the conceptual level.

Connections (of the conceptual and relational level) Information about
a concept like “Customer” and about the specific business data table containing
customer data must be linked. Thus, there exist connections in MiningMart
between the conceptual level and the relational level. Concepts are connected
to columnsets, features are connected to columns (see the definitions of these
terms).

There are two ways to create a connection: the user can create one, or the
MiningMart compiler can do that. The central idea is that there are some con-

cepts, called DB concepts, that represent the input business data for the case.
For these, the connection to the database object they represent is defined by
the user (with the help of the concept editor). When selecting a DB concept in
the concept editor, the menu item ’Create Connection’ is available to do so.

Other concepts, called MINING concepts, represent business data that was
created automatically during the execution of a MiningMart step. This execution
is done by the compiler; thus, the compiler creates not only the data but also
the connections to the concepts and features.

Case A case is a knowledge discovery process, or data preprocessing appli-
cation, as modelled in MiningMart. Users work on one case at a time. A case
contains the processing steps which may be organised in chains. Cases can be
exported and imported. They are the unit of knowledge sharing: the web plat-
form described in chapter 5 lists successful cases which were exported by other
MiningMart users and can be downloaded and imported. (Only the conceptual
level is ex- or imported; after import, you need to connect that information to
the relational level.)

Step A step represents a single processing task in a case. In each step, ex-
actly one operator is applied. Steps are represented by icons in the MiningMart
workspace (the case editor). Steps are applied to the data in a certain user-
defined order, where the input of one step depends on the output of the previ-
ous one. These dependencies are represented in the MiningMart workspace by
arrows. They form a Directed Acyclic Graph (DAG), that is, there must not be
any cyclic dependencies. You can give explanatory names to the steps of a case.

Chain Any number of steps can be organised into chains. This provides a
means to organise large cases with many steps so that the functions performed
in that case become clearer. Comprising several steps which together perform
some definable task (like data cleaning, for example) gives a better overview of
the case. You can give explanatory names to the chains of a case. You can also
nest chains, i.e. have chains inside chains.

2.2. BASIC NOTIONS IN MININGMART 21

Operator An operator performs a single, precisely defined task on the busi-

ness data. An operator is applied by creating a step, setting its parameters,
and compiling the step. A step’s parameters define the input and output for
an operator in terms of the data on the conceptual level. There are two basic
kinds of operators: those whose output is a concept and those that add an extra
feature to their input concept. A few operators do not belong to either of these
categories. Examples for tasks that operators perform are the replacement of
missing values in the data that belongs to the input concept, or the creation of
a new view on the data from the input concept, or the selection of important
features from the input concept, etc.

A list of all operators with their technical description and details can be
found in chapter 4.

Parameter Parameters are related to steps; they define their input and output
on the conceptual level. Some parameters that many steps need are: TheInput-
Concept, which defines the concept whose data is processed; TheOutputConcept
or TheOutputAttribute, which define the output, ie the result of processing;
etc. For every operator, its parameters are listed in detail in chapter 4.

Concept A concept in MiningMart represents an everyday notion for which
there exists data in the database. For example, as mentioned earlier, a con-
cept “Customer” may exist in MiningMart and refer to one or more tables in
the database that contain data about customers. Concepts have features which
define them. The MiningMart system provides a concept editor to create, edit
and delete concepts and their features. Concepts belong to the conceptual level.
Concepts are connected to ColumnSets which represent the database contents
on the relational level.

There are two types of concepts: DB and MINING. The first type are con-
cepts whose data exists before any MiningMart step is executed. That is, these
concepts represent the input data for the case. All MINING concepts, in con-
trast, are not connected to any data before the execution (called compilation)
of a MiningMart step. The MiningMart compiler creates the data that belongs
to the MINING concepts and connects it to them. See also under compiler and
connection.

Subconcept link A concept is a subconcept of another concept if it has the
same list of features, but the corresponding Columnset contains only rows that
are also present in the other concept’s columnset. The link between a subconcept
and its super concept is displayed in the Concept Editor as a dashed arrow.

Projection A concept is a projection of another concept if all of its features ap-
pear in the other concept, but the other concept also has at least one additional
feature. Further, the corresponding columnset contains only rows that are also
present in the other concept’s columnset (except for the additional feature(s)).
A projection link is displayed in the Concept Editor as a dotted arrow.

22 CHAPTER 2. BASIC CONCEPTS IN MININGMART

Feature A feature is an attribute of a concept. For example, a concept “Cus-
tomer” may have the features “Age”, “Income”, “Address”, etc. A concept
“Product” may have the features “Price”, “Number of Sales” and others. There
exist two kinds of features in MiningMart: BaseAttributes and MultiColumn-

Features. Like concepts, features can be parameters.

BaseAttribute A BaseAttribute is a feature. It represents a single attribute of
the MiningMart concept it belongs to. BaseAttributes are connected to Columns

which represent a database column on the relational level. For example, the
concept “Customer” may have a BaseAttribute “Age” which is connected to a
column of a table in the database called “cust age”.

MultiColumnFeature A MultiColumnFeature is a feature. It represents a
conceptual bundle of attributes of a concept. Thus, it consists of at least two
BaseAttributes. For example, a MultiColumnFeature “Address” may be used
to bundle the BaseAttributes “Street”, “City” and “TelephoneNumber”. Mul-
tiColumnFeatures are a conceptual device in MiningMart which may be used
to structure the concepts in order to give a more intuitive view on the business
data.

Relation A relation represents a database link between two tables. It can
either be a 1:n-relation or an n:m-relation. Relations in MiningMart store the
information about foreign keys and primary keys as well as (optional) cross
tables so that the operators can use this information. Thus, relations can be
parameters like concepts and features. As such, they should belong to the con-

ceptual level; however, since they also store database-related information, they
might also be said to belong to both levels (conceptual and relational). A rela-
tion is displayed in the Concept Editor as a solid arrow (for 1:n-relations) or a
solid double-arrow (for n:m relations).

ColumnSet ColumnSets are MiningMart objects that directly represent a
database table or view. As such, they belong to the relational level. Each ColumnSet
is connected to exactly one concept (but a concept may have more than one
ColumnSet). Each ColumnSet contains one or more Columns.

Column A Column is a MiningMart object that directly represents a column
in a database table or view. Columns belong to the relational level. Each Column
belongs to exactly one ColumnSet, but a ColumnSet can contain any positive
number of Columns.

Compiler, compilation The MiningMart compiler performs the central task
in MiningMart: it executes operators. That is, it reads the input parameters of an
operator, applies the operator-specific processing to the data that corresponds
to (is connected to) this input, and creates the output data and connects it to
the concepts or features that are specified by the operator’s output parameters.

2.2. BASIC NOTIONS IN MININGMART 23

The compilation of any step depends on the compilation of previous steps if a
step uses input that is the output of a previous step.

The compiler can be executed in two modes: lazy and eager. This only
makes a difference if there are concepts in the case that have more than one
ColumnSet, which can happen as the result of a segmentation operator (see
sections 4.2.10, 4.2.11 and 4.2.12 in chapter 4). In lazy mode, the compiler
executes the operator-specific task only on the first of the ColumnSets that
belong to the input concept of that operator, which saves time for testing. For
full compilation, the eager mode is needed.

Concept editor In this view you can create, view, or delete concepts and
their relations on both the conceptual and relational level.

Case editor In this view you can create, view, or delete steps; you can ar-
range them into chains and define the input and output parameters of their
operators. The case editor shows the currently defined sequence of steps, with
their dependencies represented by arrows. More details can be found in chapter
3.

Export Cases can be exported with the export function. This will store all
the Metadata that defines the case into a single file. This file can then be used
for importing the case into another database (by another user, for example). See
also chapter 5.

Import After exporting, a case can be imported into a new database. After im-
port, all the Metadata of the case is available; however, the connections between
the conceptual and relational level must still be made (see under connections).
See also chapter 5.

24 CHAPTER 2. BASIC CONCEPTS IN MININGMART

Chapter 3

The Graphical User
Interface

This chapter explains the main issues for handling MiningMart as a user. Users
should read chapter 2 and section 4.1 before they start to work with the sys-
tem. MiningMart provides two views on the data transformation process: one is
centred on the steps and their dependencies, the other focuses on the data sets
and semantic links between them. The former view is called the Case editor and
is described in section 3.2. The latter view is called the Concept editor and is
described in section 3.3. Before describing these editors, section 3.1 gives a few
general hints.

3.1 General issues

The central notion in MiningMart is the Case; it can be compared to a file in
text editors or other applications, except that only one case can be open at any
time. The Case menu therefore offers options to open and save an existing case
or to create a new case. Cases are stored in the database. Cases can be exported
from the database to files, or imported from files to the database. Deleting a case
means to remove it from the database. The menu item New Case From Data

allows to set up a new case directly from a set of database tables or views. Simply
select which tables and/or views you would like to have represented in your
case, and MiningMart will create a case with the corresponding data schema.
The menu item Switch editor can be used to change from the case editor to
the concept editor or back. The menu items Print and Export image allow to
print the contents of the main working area (the central area) to postscript or
*.png files.

The Insert menu will be explained in sections 3.2 and 3.3.

The options of the Compile menu are only available when the Case editor is
opened; see section 3.2.

25

26 CHAPTER 3. THE GRAPHICAL USER INTERFACE

The Tools menu allows to change the connection settings by which Mining-
Mart connects to the database (menu option Edit DB settings). This should
not be done when a case is opened. Another option in this menu, called Arrange

Items on Grid, is to arrange the icons shown in either the case or concept ed-
itor on a grid, which helps to straighten the lines. The result of this can only
be seen after the case has been saved, closed, and re-opened. The other options
are explained in sections 3.2 and 3.3.

The Windows menu offers different options. Grid toggles between visible and
invisible states of a grid on the working pane. Look’n’Feel allows to change
the look and feel of the graphical interface. Show indicates which of the possible
elements for the right-hand frame are displayed. Presentation creates a win-
dow that gives maximal space to the contents of the working pane. The most
important item in this menu is Preferences. When you choose it, a new win-
dow opens with three areas. The first displays all available operators (for your
overview; they are also available in the Insert menu and the context menu, see
section 3.2). The second allows you to change the verbosity level of the log out-
put. The different levels are given names which indicate the kinds of operations
the system logs if that level or a lower level is chosen. The higher you go in the
list, the less output is produced in the log window and log file. Finally, the third
area allows you to choose the types of links between concepts that the concept
editor should display. This choice is applied from the next time that the concept
editor is opened onwards. See also section 3.3.

The Help menu opens the MiningMart help system (menu item Contents)
which allows you to browse through help topics. You can also start a web browser
if your system is configured to allow this. The About option displays copyright
information.

The following list provides some general hints which may help you getting
familiar with the handling of MiningMart.

• Every case must have one top-level chain to which all its steps and other
chains belong. So when creating a new case, please create a new chain
first (using the Insert menu), then you can start creating steps inside
this chain. Open the chain by double-clicking on it.

• When creating a new step, you can view and edit its parameters by double-
clicking it. When editing a text-field parameter (by typing), please remem-
ber to press ’Enter’ after editing, otherwise the new value is not recognised.

• It is a good idea to save the case you are editing regularly, in particular
before starting the compiler.

• In general, icons in both editors can be freely moved around, allowing
to create a clear web structure of steps or concepts. For large cases the
“Bird’s view” can be very helpful in both editors.

• Every MiningMart item can be documented. There is a Description field
in the lower left corner of the working area which always applies to the

3.2. CASE EDITOR 27

Figure 3.1: The case editor.

currently selected element. You can enter any text here, it will be saved
and displayed whenever the element is selected again. For BaseAttributes,
the description field can be found in the lower right corner of the working
area when a BaseAttribute is selected in the concept editor (see 3.3).

3.2 Case editor

In this editor you mainly create Steps. Each step uses one operator that trans-
forms the input data and creates an output representation. The output repre-
sentation can be inspected in the concept editor (section 3.3). The output is not
actually created in the database until the step is compiled.

A step is created by choosing the operator it employs, either from the context
menu which appears when you right-click into the working tab, or from the menu
item Insert/Operator.

Steps are connected by Transitions. If two steps are not connected, the out-
put of one is not available as input for the other. The menu item Insert/Tran-

sition can be used to create a transition from one step to the next. Figure 3.1
shows a screenshot of the case editor with steps and transitions.

Double-clicking on a step, or choosing Insert/Show StepSettings, will
open the parameter view for this step on the right hand side of the working
area. You can edit the parameters of the selected step here. You should read
at least section 4.1 and the section in chapter 4 that corresponds to the oper-
ator your step is using, in order to understand how the parameters work and

28 CHAPTER 3. THE GRAPHICAL USER INTERFACE

what values they should be given. The Valid button can be used to check the
syntactical validity of the parameters; for example, if an obligatory parame-
ter is missing, an error message will be given when this button is clicked. The
button Show input estimations will display some available information about
the data contents of the input concept of the current step. This information is
usually estimated and therefore not always reliable, but it can help to choose
suitable parameter settings.

Steps can be collected in Chains. Despite their names, chains can not only
contain linear sequences of steps but any transition structure. Every case must
have exactly one top level chain; when you create a new case, the first thing you
have to do therefore is to create a chain using the menu item Insert/Chain/Chain.
All other steps and chains are subelements of this chain. Double-clicking on a
chain opens a new working tab in which its steps and subchains are displayed.
Chains can be created by selecting any number of steps (using the mouse to
mark a rectangular area of selection) and by then choosing Insert/Chain/Merge
Chain. A chain can be dissolved by selecting it and choosing Insert/Chain/Un-

merge Chain.
The OperatorTools pane on the right hand side of the working area provides

shortcuts for most of these tasks.
Right-clicking on a chain and choosing Show concepts involved opens the

concept editor, but displays only the concepts used as input or output in any
step of that chain. This allows to keep a clearer overview of the concepts in large
cases.

When a step and its parameters are fully specified, it can be compiled. Com-
pilation means to create the relational level output (in the database) that corre-
sponds to the output concepts that have been created in MiningMart. See also
chapter 2 and section 3.3. The Compile menu offers various options to compile
a single step or a number of steps. Compilation results are logged in the log tab
and file. Error messages are displayed. An error immediately stops the compi-
lation. Choosing the menu item Garbage collection removes the compilation
results from the database. The flag Compile in lazy mode can be used to make
the compiler create only one output Columnset when several Columnsets are ex-
pected; see the paragraph on compilation in section 2.2. The menu item Kill

compile can be used to stop the current compiler run.
There are two features for more advanced users in the Tools menu (when the

case editor is opened; three other features are relevant for the concept editor, and
are explained in section 3.3). The first, called Add Reversing Step, is to add a
step automatically that reverses a computation of another step. Only steps that
employ the operators LinearScaling, LogScaling, or any Grouping operator,
can be reversed. The step to be reversed must be selected before choosing this
option; if no step is selected or the selected step does not involve a reversable
operator, nothing will happen. Otherwise the new, reversing step is displayed
automatically. The step transition has to be added manually, and some parame-
ters of the reversing step may have to be adapted. It employs a special operator
called ReverseFeatureConstruction which cannot be employed directly, but
it is documented like other operators in chapter 4.

3.3. CONCEPT EDITOR 29

Figure 3.2: The concept editor.

The other advanced option in the Tools menu is Recommend Materialisa-

tions. In large cases this option can be used to automatically find suitable
places for inserting a Materialisation operator (see section 4.2.16 for a de-
scription of this operator). Every time this option is called, atmost one place
for materialisation is recommended; in order to get all recommendations, please
call this option repeatedly until a message informs you that no more places will
be recommended. You can choose to have the Materialisation steps be inserted
automatically by MiningMart. If you choose this option, please be aware that it
works best if the chain into which the step is inserted automatically is currently
visible. If you are experiencing troubles, it is recommended to save the case,
then close and re-open it. If there are still problems, you may have to perform
some edits around the new step. Normally the automatic insertion should run
without problems. If you want to be safe, export your case before inserting a
materialisation operator, then you can always re-create the exported version by
importing the exported file.

3.3 Concept editor

Concepts represent data tables or views in MiningMart and the concept editor
is the tool to create, manipulate or delete them. Figure 3.2 shows a screenshot
of the concept editor.

In MiningMart there are two types of concepts: DB and Mining. The former
are indicated by a small database icon; the latter show a tool icon. The DB

concepts are used to represent tables or views in the database which have existed

30 CHAPTER 3. THE GRAPHICAL USER INTERFACE

before MiningMart was started. The Mining concepts represent tables or views
created with MiningMart. Consequently, DB concepts have to be connected to
database objects manually, while this connection is set up automatically by the

compiler for Mining concepts. A concept is connected if it is associated with at
least one Columnset; the latter directly represents a database table or view.

There are two ways of creating a DB concept. The first is to choose Insert/New
concept, then give the name for the concept, and then add BaseAttributes to it.
Adding BaseAttributes is done by right-clicking on the concept icon, choosing
Show BaseAttributes and then using the New button to add single BaseAt-
tributes. The second way of creating a DB concept is to choose Insert/Concept
from Table and then choose directly the database table or view this concept is
going to represent. Then the names of the concept and its BaseAttributes will
be copied from the names of the database table or view and its columns. The
advantage is that a concept created in this way is immediately connected; the
disadvantage is that the names may have to be changed manually if the ones
from the database objects are unsuitable.

A DB concept that is not connected to a columnset shows a red database
icon; a connected one shows a green one. Further, the number of columnsets is
indicated in the concept icon; the number 0 indicates a missing connection to
columnsets. Only DB concepts can be manually connected to database objects
(represented by columnsets). To this end, right-click on the concept icon and
choose Create connection. This will display a tab in the right hand area which
allows you to choose the database table or view for the connection. Now you
have two options: (i) Select one table or view and click Create. This will create
the columnset, and you will have to connect each BaseAttribute of the concept
to zero or one column. (ii) Select one or more tables or views, select a Matcher
and click Match. This will also create the columnset, and MiningMart will use
an automatic matching method that depends on the selected matcher to try
to connect the BaseAttributes to the columns automatically. This automatic
matching is based on the names of the BaseAttributes and columns, which means
that if the names are not similar at all then no suitable matching is likely to be
found. But you can change the mapping of BaseAttributes to columns easily by
hand afterwards, and in fact at any time by right-clicking on a concept’s icon
and choosing Show mapping. If you click on a column in the mapping tab on
the right hand side, the list of available columns is displayed and the desired
one can be chosen.

When a concept is connected, right-clicking on it and choosing Show Column-

sets displays the columnsets attached to it. The buttons Show data and Show

statistics can be used to inspect the data that is contained in the table or
view represented by this columnset, and some statistical information about it.
For views and virtual columns (the latter are created by the compiler) there
is an SQL field that displays the SQL code which realises this view or virtual
column.

Mining concepts are not usually created by hand but by creating a step in
the case editor whose output is a concept. Such output concepts are always
Mining concepts, and their connection to database objects can only be realised

3.3. CONCEPT EDITOR 31

by compiling the steps whose output they are.

Depending on which operator created a Mining concept, there are often some
semantic links to the input concept. In MiningMart the three types of semantic
links between concepts are subconcept links (represented by dashed arrows),
projections (represented by dotted arrows) and relationships (represented by
solid arrows); see section 2.2. In the standard setting, MiningMart always dis-
plays all three types of links, but you can choose which ones to display in the
Window/Preferences/Concept links menu item. These links can also be cre-
ated by hand using the icons in the ConceptTools tab on the right hand side.
They can be removed by right-clicking on a link and choosing Delete.

Relations

Relations (or relationships) represent foreign key links between tables or views.
The two types “one-to-many” (1:n) and “many-to-many” (n:m) are distin-
guished. When creating a relationship by hand, the BaseAttributes of the two
concepts involved which correspond to the database columns that realise the
keys must be specified. For many-to-many relationships, also the cross table
must be chosen from the available database objects, and its key columns must
be specified.

Data models

More advanced users can try to connect several concepts to database tables
or views at once. To understand this functionality, the notion of a data model

is important. A data model is, technically, simply a collection of concepts to-
gether with relation(ship)s between them (projections and subconcept links are
ignored). Conceptually, a data model is a snapshot of the database at a partic-
ular point during data preparation. The most salient data model is the initial

or input data model of a Case. This data model consists simply of all concepts
of type DB, since they represent the input to the Case, before any preparation
has taken place. When a few operations have been applied to a data model, a
new data model is the result; it represents the results of the preparation so far.
Thus every Step in MiningMart produces not only an output concept, but this
output concept is also part of a resulting data model that represents all prepared
data at the point of processing that immediately follows the Step. The context
menu item Show resulting data model, available for Steps in the case editor,
allows to inspect this resulting data model.

The concepts of one data model can be connected to some database tables
or views all at once. The menu item Match Input Data in the Tools menu
(available when the concept editor is opened) can be used to match the input
(initial) data model to some tables/views. When selecting this functionality, you
are asked to provide at least one database table or view that the initial data
model should be connected to. MiningMart will then use its schema matching
engine to determine a suitable mapping of the concepts of the initial data model
to the tables/views selected by you. Before the connections are performed, you

32 CHAPTER 3. THE GRAPHICAL USER INTERFACE

are shown MiningMart’s mapping suggestions, and you can edit the mapping
before creating the connections. Sometimes the suggested mapping is only par-
tial, because no tables that are similar enough to a given concept could be found.
In these cases you can still complement the suggested mapping. After creating
the connections, you can always change the connection of a particular concept
by right-clicking on it and choosing “Create connection” (see above).

The menu item Match Result of Step... lets you connect the data model
resulting from a particular Step (which you will choose) to some database tables
or views.

The menu item Match Any Data Model, finally, can be used to let Mining-
Mart search for the best-matching data model that fits to the tables/views you
selected for connecting. The search will include the initial data model and the
data model resulting from any Step. The best point of matching will be deter-
mined based on name similarities. This feature is useful when you download a
large case from the case base (see chapter 5), and you would like to find the
point in the given preparation process where your data fits in best, so that you
can start processing the data from there (instead of from the beginning of the
given Case, which might include superfluous or unsuitable operations).

Chapter 4

Operators and their
Parameters

This chapter explains the operators currently available in MiningMart. Oper-
ators form the basic building blocks of the data preprocessing phase in the
Knowledge Discovery process. There are a number of operators for different
purposes, as explained below.

4.1 General issues

There are mainly two kinds of operators, distinguished by their output on the
conceptual level: those that have an output Concept (Concept Operators, listed
in sections 4.2 and 4.3), and those that have an output BaseAttribute (Feature

Construction Operators, listed in section 4.4). Two operators create relation-
ships, see section 4.5. Further there are some special operators without any
output on the conceptual level, listed in section 4.6.

All operators have parameters, such as input Concept or output BaseAt-
tribute. The parameters must be instantiated (i.e. given values) for every step
that uses the operator. The name of such a parameter is fixed for the operator
and cannot be changed. For instance, TheInputConcept is used for the input
Concept for all operators.

Parameter arrays

Some operators have an unspecified number of parameters of the same type.
For example, the learning operators take as input a number of BaseAttributes
of the same concept and use them to construct their training examples. All
these BaseAttributes use the same prefix for their parameter name (here The-

PredictingAttributes). Such parameters, which may contain a list, are marked
with the word List in the operator descriptions below.

33

34 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

Coordinated parameters

Sometimes several parameters are realised as arrays (see previous paragraph),
and their semantics require that the values of two or more parameters are related
to each other for the same position in the arrays. For example, the grouping
operators have parameters that specify which value(s) of an input attribute are
mapped to which value of the new output attribute. These operators can map
several (groups of) values to new values; which values are mapped to which
others is then specified by using the same position in the parameter arrays.
In the GUI such parameters are highlighted by blue frames; the button “Show
groups” can be used to verify that the values of the parameters are sorted in
the right way. This button is only available if any coordinated parameters are
available.

Loops

Special attention is needed if an operator is applied in a loop. All feature con-
struction operators are loopable; further, the concept operator RowSelection-
ByQuery is loopable. Feature construction operators are applied to one target
attribute of an input concept and produce an output attribute. Looping means
that the operator is applied to several target attributes (one after the other) and
produces the respective number of output attributes. For each loop the target
attribute, the output attribute and other parameters (namely those marked as
“looped” below) can be different, but the input concept is the same in all loops.

For the concept operator RowSelectionByQuery, looping means that several
query conditions are formulated using the parameters of this operator (one set
of parameters for each condition), and that they are connected with AND. See
the description of this operator.

In the following sections, all current operators are listed with their exact
name, a short description and the names of their parameters. In general, all input
BaseAttributes belong to the input Concept, and all output BaseAttributes
belong to the output Concept.

4.2 Concept operators

All Concept operators take an input Concept and create at least one new
ColumnSet which they attach to the output Concept. The output Concept must
have all its Features attached to it before the operator is compiled. All Concept
operators have the two parameters TheInputConcept and TheOutputConcept,
which are marked as inherited in the following parameter descriptions.

4.2.1 MultiRelationalFeatureConstruction

Takes a list of concepts which are linked by relationships, and selects specified
Features from them which are collected in the output Concept, via a join on
the concepts of the chain. To be more precise: Relationships are only defined

4.2. CONCEPT OPERATORS 35

by the user between initial Concepts of a Case. Suppose there is a chain of
initial Concepts C1, . . . , Cn such that between all Ci and Ci+1, 1 ≤ i < n, Ci

is the FromConcept of the i-th Relationship and Ci+1 is its ToConcept. These
Concepts may be modified in the Case being modelled, to result in new Concepts
C ′

1, . . . , C
′

n
, where some C ′

i
may be equal to Ci. However, the BaseAttributes

that correspond to the Relationship keys are still present in the new Concepts
C ′

i
. By using their names, this operator can find the key Columns and join the

new Concepts C ′

i
.

The parameter table below refers to this explanation. Note that all input
Concepts are the new Concepts C ′

i
, but all input Relations link the original

Concepts Ci.

ParameterName ObjectType Type Remarks
TheInputConcept CON IN Concept C ′

1 (inherited)
TheConcepts CON List IN Concepts C ′

2, . . . , C
′

n

TheRelations REL List IN they link C1, . . . , Cn

TheChainedFeatures BA or MCF List IN from C ′

1, . . . , C
′

n

TheOutputConcept CON OUT inherited

4.2.2 JoinByKey

Takes a list of concepts, plus attributes indicating their primary keys, and joins
the concepts. In TheOutputConcept, only one of the keys will be present. Each
BaseAttribute specified in TheKeys must be a primary key of one of TheCon-

cepts; thus, the number of entries in TheConcepts and TheKeys must be equal.
If several of the input concepts contain a BaseAttribute (or a MultiColumn-

Feature) with the same name, a special mapping mechanism is needed to re-
late them to different features in TheOutputConcept. For this, the parameters
MapInput and MapOutput exist. Use MapInput to specify any feature in one
of TheConcepts, and use MapOutput to specify the corresponding feature in
TheOutputConcept. To make sure that for each MapInput the right MapOut-

put is found by this operator, it uses the coordination mechanism (see section
4.1). However, these two parameters only need to be specified for every pair of
equally-named features in TheConcepts. So there are not necessarily as many
“maps” as there are features in TheOutputConcept.

ParameterName ObjectType Type Remarks
TheConcepts CON List IN no TheInputConcept!
TheKeys BA List IN
MapInput BA or MCF IN coordinated
MapOutput BA or MCF OUT coordinated
TheOutputConcept CON OUT inherited

4.2.3 UnionByKey

Takes a list of concepts, plus attributes indicating their primary keys, and unifies
the concepts. In contrast to the operator JoinByKey (section 4.2.2), the output

36 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

columnset is a union of the input columnsets rather than a join. For each value
occuring in one of the key attributes of an input columnset a tuple in the output
columnset is created. If a value is not present in all key attributes of the input
columnsets, the corresponding (non-key) attributes of the output columnset are
filled by NULL values.

In TheOutputConcept, only one of the keys will be present. Each BaseAtt-

ribute specified in TheKeys must be a primary key of one of TheConcepts;
thus, the number of entries in TheConcepts and TheKeys must be equal.

If several of the input concepts contain a BaseAttribute (or a MultiColumn-
Feature) with the same name, a special mapping mechanism is needed to re-
late them to different features in TheOutputConcept. For this, the parameters
MapInput and MapOutput exist. Use MapInput to specify any feature in one
of TheConcepts, and use MapOutput to specify the corresponding feature in
TheOutputConcept. To make sure that for each MapInput the right MapOut-

put is found by this operator, it uses the coordination mechanism (see section
4.1). However, these two parameters only need to be specified for every pair of
equally-named features in TheConcepts. So there are not necessarily as many
“maps” as there are features in TheOutputConcept.

ParameterName ObjectType Type Remarks
TheConcepts CON List IN no TheInputConcept!
TheKeys BA List IN
MapInput BA or MCF IN “looped”!
MapOutput BA or MCF OUT “looped”!
TheOutputConcept CON OUT inherited

4.2.4 Pivotize

Pivotisation means to take the values that occur in an index attribute and create
a new attribute for each of these values. The new attributes contain the values
of a pivot attribute in those rows that contain the corresponding index value.
Thus the pivot values are distributed over the new attributes which correspond
to the index values. For clarification a simple example is given here. Assume
that this is the input table/concept:

PrimaryKey IndexAttr PivotAttr
1 M 5
2 M 4
3 F 7

Then pivotization without aggregation produces the following output:

PrimaryKey IndexAttr PivotAttr PivotAttr M PivotAttr F
1 M 5 5 NULL
2 M 4 4 NULL
3 F 7 NULL 7

This operator (Pivotize) creates a new output concept that does not contain
the original index nor pivot attribute. Instead, the rows in the output concept are

4.2. CONCEPT OPERATORS 37

grouped by additional attributes and optionally aggregated using an aggregation
function. In the example above, if no GroupBy-Attributes are selected and SUM
is the aggregation function, the output will be

PivotAttr M PivotAttr F
9 7

However, if the primary key attribute is selected as a GroupBy-Attribute,
the output will look like this (because each value of the primary key is its own
group):

PrimaryKey PivotAttr M PivotAttr F
1 5 NULL
2 4 NULL
3 NULL 7

The values in TheIndexAttribute must be mapped by hand to names for the
new attributes. For this, the parameters IndexValue and MappedAttribute are
provided in loops, so that each loop specifies one mapping. Every value used in
IndexValue should of course occur in TheIndexAttribute. ThePivotAttribute will
not appear in TheOutputConcept, only in TheInputConcept.

The AggregationOperator is one of NONE, SUM, MIN, MAX, AVG (average)
and COUNT. If NONE is chosen no aggregation will take place. NONE cannot
be chosen if any GroupBy-attributes are given (the parameter TheGroupByAt-

tributes is optional).
The parameter NullOrZero specifies whether NULL or 0 should be used

whereever empty fields are created, such as in the last output table in the
example above.

ParameterName ObjectType Type Remarks
TheInputConcept CON IN inherited
TheIndexAttribute BA IN see text
ThePivotAttribute BA IN see text
TheGroupByAttributes BA or MCF List IN optional
IndexValue V IN “looped”!
MappedAttribute BA OUT “looped”!
AggregationOperator V IN SUM or MIN etc.
NullOrZero V IN one of Null, Zero

TheOutputConcept CON OUT inherited

4.2.5 ReversePivotize

This operator reverses a pivotization (see operator Pivotize, section 4.2.4),
except for the aggregation which cannot be reversed (since from an aggregated
value the single values cannot be known).

The operator takes a list of attributes, ThePivotizedAttributes from the input
concept, and assumes that all values of these attributes are compatible, so that
they can all be used as values of a single new attribute in the output concept,
which will get the name given in the parameter NameForPivotAttribute. Further

38 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

the operator assumes that all ThePivotizedAttributes are assigned with a certain
IndexValue, or even a combination of index values. Thus for every attribute
listed as ThePivotizedAttribute, one entry for IndexValues must be listed. The
output concept will contain new index attributes for every type of index value.
These attributes will list all combinations of index values that are listed as
IndexValues as their values. The output concept will also contain an attribute
with the name given in NameForPivoAttribute, which will take the value of
ThePivotizedAttributes that corresponds to the combination of the index values
taken by the index attributes.

For clarification a simple example is given here. Assume that this is the input
table/concept (with fictitious distribution of gender in some cities):

City Inhabitants Male Inhabitants Female
London 0.52 0.48
Paris 0.49 0.51

Vienna 0.5 0.5

Then reverse pivotization can produce the following output:

City Gender Percentage
London Male 0.52
London Female 0.48
Paris Male 0.49
Paris Female 0.51

Vienna Male 0.5
Vienna Female 0.5

To achieve this, ThePivotizedAttributes must be Inhabitants Male and In-

habitants Female; two corresponding IndexValues must be given as Male and
Female; the name Gender must be given as parameter NameForIndexAttributes

and the name Percentage must be given as parameter NameForPivotAttribute.
The optional parameter TheKeyAttribute can be set to any extra attribute

if there are any, here City. The only effect is that a 1 : n relation can be created
between the input and output concept of this operator in the concept editor.

ParameterName ObjectType Type Remarks
TheInputConcept CON IN inherited
ThePivotizedAttributes BA List IN see text
IndexValues V List IN one per pivotized attribute
TheKeyAttribute BA IN optional
NameForPivotAttribute V IN name of attribute in output
NameForIndexAttributes V List IN name of attributes in output
TheOutputConcept CON OUT inherited

4.2.6 SpecifiedStatistics

An operator which computes certain statistical values for the TheInputConcept.
The computed values appear in a ColumnSet which contains exactly one row
with the statistical values per group of tuples, and which belongs to TheOut-

4.2. CONCEPT OPERATORS 39

putConcept. Groups of tuples are built by listing attributes with the GroupBy

parameter. Each combination of values of the underlying BaseAttributes forms
one group. If no attributes are listed with the parameter list GroupBy, then the
operator will output a single tuple with the statistics of all the ColumnSet.

The sum of all values of a numerical attribute can be computed by specifying
the corresponding BaseAttribute with the parameter AttributesComputeSum.
There can be more such attributes; the sum is computed for each. TheOut-

putConcept must contain a BaseAttribute for each sum which is computed;
their names must be those of the input attributes, followed by the suffix “ SUM”.
The total number of entries in an attribute can be computed by specifying
a BaseAttribute with the parameter AttributesComputeCount. There can be
more such attributes; the number of entries is computed for each. TheOutput-

Concept must contain a BaseAttribute for each count which is computed; their
names must be those of the input attributes, followed by the suffix “ COUNT”.

The number of unique values in an attribute can be computed by specifying
a BaseAttribute with the parameter AttributesComputeUnique. There can be
more such attributes; the number of unique values is computed for each. The-

OutputConcept must contain a BaseAttribute for each number of unique values
which is computed; their names must be those of the input attributes, followed
by the suffix “ UNIQUE”.

For ordinal attributes the parameter lists AttributesComputeMin and
AttributesComputeMax exists. The operator writes the minimum and maximum
values of the corresponding attributes to the output BaseAttributes with the
suffixes “ MIN” and “ MAX”.

Further, for a BaseAttribute specified with AttributesComputeDistrib, the
distribution of its values is computed. For example, if a BaseAttribute contains
the values 2, 4 and 6, three output BaseAttributes will contain the number
of entries in the input where the value was 2, 4 and 6, respectively. For each
BaseAttribute whose value distribution is to be computed, the possible values
must be given with the parameter DistribValues. One entry in this parameter
is a comma-separated string containing the different values; in the example, the
string would be “2,4,6”. Thus, the number of entries in AttributesComputeDis-

trib and DistribValues must be equal. TheOutputConcept will contain the corre-
sponding number of BaseAttributes (three in the example); their names will
be those of the input attributes, followed by the suffix “ <value>”. In the ex-
ample, TheOutputConcept would contain the BaseAttributes “inputBaName 2’
’, “inputBaName 4” and “inputBaName 6”.

40 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

ParameterName ObjectType Type Remarks
TheInputConcept CON IN inherited
AttributesComputeSum BA List IN numeric
AttributesComputeCount BA List IN (see
AttributesComputeUnique BA List IN
AttributesComputeMin BA List IN
AttributesComputeMax BA List IN
AttributesComputeDistrib BA List IN text)
GroupBy BA List IN as GROUP BY in SQL
DistribValues V List IN
TheOutputConcept CON OUT inherited

4.2.7 RowSelectionByQuery

The output Concept contains only records that fulfill the SQL condition formu-
lated by the parameters of this operator. This operator is loopable! If applied
in a loop, the conditions from the different loops are connected by AND. Every
condition consists of a left-hand side, an SQL operator and a right-hand side.
Together, these three must form a valid SQL condition. For example, to specify
that only records (rows) whose value of attribute sale is either 50 or 60 should
be selected, the left condition is the BaseAttribute for sale, the operator is IN,
and the right condition is (50, 60).

If this operator is applied in a loop, only the three parameters modelling the
condition change from loop to loop, while input and output Concept remain the
same.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited (same in all loops)
TheLeftCondition BA IN any BA of input concept
TheConditionOperator V IN an SQL operator: <, =, . . .

TheRightCondition V IN
TheOutputConcept CON OUT inherited (same in all loops)

4.2.8 RowSelectionByRandomSampling

Puts atmost as many rows into the output Concept as are specified in the
parameter HowMany. Selects the rows randomly.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
HowMany V IN max. no. of rows
TheOutputConcept CON OUT inherited

4.2.9 DeleteRecordsWithMissingValues

Puts only those rows into the output Concept that have an entry which is NOT
NULL in the Column for the specified TheTargetAttribute.

4.2. CONCEPT OPERATORS 41

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN may have NULL entries
TheOutputConcept CON OUT inherited

4.2.10 SegmentationStratified

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented according to the values of the specified attribute,
so that each resulting Columnset corresponds to one value of the attribute.
For numeric attributes, intervals are built automatically (this makes use of the
statistics tables and the functions that compute the statistics). The specified
attribute will not be present in the output concept.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheAttribute BA IN
TheOutputConcept CON OUT inherited

4.2.11 SegmentationByPartitioning

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented randomly into as many Columnsets as are specified
by the parameter HowManyPartitions.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
HowManyPartitions V IN positive integer
TheOutputConcept CON OUT inherited

4.2.12 SegmentationWithKMean

A MultiStep operator (creates several ColumnSets for the output Concept). The
input Concept is segmented according to the clustering method KMeans (an ex-
ternal learning algorithm). The number of ColumnSets in the output concept
is therefore not known before the application of this operator. However, the
parameter HowManyPartitions specifies a maximum for this number. The pa-
rameter OptimizePartitionNum is a boolean that specifies if this number should
be optimized by the learning algorithm (but it will not exceed the maximum).
The parameter SampleSize gives a maximum number of learning examples for
the external algorithm. The algorithm (KMeans) uses ThePredictingAttributes

for clustering; these attributes must belong to TheInputConcept.

42 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
HowManyPartitions V IN positive integer
OptimizePartitionNum V IN true or false

ThePredictingAttributes BA List IN
SampleSize V IN positive integer
TheOutputConcept CON OUT inherited

4.2.13 UnSegment

This operator is the inverse to any segmentation operator (see 4.2.10, 4.2.11,
4.2.12). While a segmentation operator segments its input concept’s ColumnSet
into several ColumnSets, UnSegment joins several ColumnSets into one. This
operator makes sense only if a segmentation operator was applied previously
in the chain, because it exactly reverses the function of that operator. To do
so, the parameter UnsegmentAttribute specifies indirectly which of the three
segmentation operators is reversed:

If a SegmentationStratified operator is reversed (section 4.2.10), this param-
eter gives the name of the BaseAttribute that was used for stratified segmen-
tation. Note that this BaseAttribute will belong to TheOutputConcept of this
operator, because the re-unified ColumnSet contains different values for this at-
tribute (whereas before the execution of this operator, the different ColumnSets
did not contain this attribute, but each represented one of its values).

If a SegmentationByPartitioning operator is reversed (section 4.2.11), this
parameter must have the value “(Random)”.

If a SegmentationWithKMean operator is reversed (section 4.2.12), this pa-
rameter must have the value “(KMeans)”.

Note that the segmentation to be reversed by this operator can be any
segmentation in the chain before this operator.

ParameterName ObjectType Type Remarks
TheInputConcept CON IN inherited
UnsegmentAttribute BA OUT see text
TheOutputConcept CON OUT inherited

4.2.14 RemoveDuplicates

This operator produces an output concept that is a copy of the input concept,
but all duplicate entries are removed from the corresponding ColumnSet.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheOutputConcept CON OUT inherited

4.2.15 Repeat

The repeat operator will create the same view of TheInputConcept as often
as specified by HowOften in the OutputConcept, which leads to repeated ap-

4.2. CONCEPT OPERATORS 43

plications of the following steps. This is e.g. useful to apply the same chain on
different samples, drawn in one of the succeeding steps.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
HowOften V IN number of views to create
TheOutputConcept CON OUT inherited

4.2.16 Materialize

This operator is a normal concept operator, but it is a pure technical construc-
tion to enforce materialization of ColumnSets. The table name of the output
can (optionally) be specified as a parameter, which is useful if you want to ac-
cess the preprocessed data afterwards. If multiple ColumnSets are connected to
TheInputConcept, then each of the corresponding table names will be extended
by a numerical suffix like “ 1”.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TableName V IN name of output table
TheOutputConcept BA IN inherited

4.2.17 MaterializeWithPKs

This operator is an extension of the Materialize operator described in section
4.2.16. It materialises the table and also creates a primary key constraint in
the database that declares the columns that correspond to the BaseAttributes
given in the parameter PrimaryKey as primary keys of the created table.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TableName V IN name of output table
PrimaryKey BA List IN
TheOutputConcept BA IN inherited

4.2.18 YaleModelApplier

This operator is able to apply a model written by the learning toolbox Yale to
an example set as given by a database table. The result is available as a database
view. The first thing you need to have is a PrimaryKey feature in your example
set view, represented by TheInputConcept. Unlike other operators this operator
will not work correctly if the specified primary key attribute is not unique.
Usually not all of the available attributes will be available for prediction, so an
array of PredictingAttributes has to be specified. Please note that the primary
key must not be part of this list. The model is referenced by an absolute path in
your file system to the model file written by Yale. Finally the base attribute to
be predicted (PredictedAttribute) and TheOutputConcept need to be specified.

44 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

The order of predicting attributes must be the same as during learning. If
you want to induce a model with Yale using a database view, then please give an
explicit list of attributes in the SELECT part of the DatabaseExampleSource

operator of Yale. The order of attributes in MiningMart is given by the order
in the array PredictingAttributes.

It is possible to apply this operator in loops. The input and output concept,
and the predicting attributes will be the same for all loops, while the model file
and the output base attribute should change for each loop.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
PrimaryKey BA IN a unique attribute
PredictingAttributes BA List IN attribute list as during learning
ModelFile V IN absolute path to model file
PredictedAttribute BA OUT new attribute to be predicted
TheOutputConcept CON OUT inherited

4.2.19 CreatePrimaryKey

Simple concept operator for creating a view representing the same concept with
an additional primary key. If the original concept has duplicates, then the ability
of this operator to remove (SELECT DISTINCT ...) or keep these duplicates
might be interesting. This operator is also applicable to views that already have
a primary key. In the database the newly created attribute will be used for
indexing in the output view.

Parameters are TheInputConcept and TheOutputConcept, the PrimaryKey

to be added, and a flag AllowDuplicates, indicating whether the created view
should explicitly make sure that the same tuple will not appear multiple times
in the output concept.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
PrimaryKey BA IN the new primary key
AllowDuplicates V IN one of “true” or “false”
TheOutputConcept CON OUT inherited

4.2.20 AttributeDerivation

This is a general operator whose behaviour users can determine by Java pro-
gramming. It creates a concept that contains all attributes of the input concept
and one additional attribute. The values of this additional attribute are deter-
mined by running a Java program that users can provide. The file
“MM HOME/lib/AttrDeriv.jar” provides an example implementation (in the
file AttrDerivExample.java) that simply copies the contents of the (optional)
target attribute to the output attribute. But in general any method to fill
the output can be used. You have to add your own Java class to the “At-
trDeriv.jar” java archive. The name of your Java class is given to the opera-

4.2. CONCEPT OPERATORS 45

tor as the input parameter ClassName. Your Java class must implement the
interface AttrDerivInterface which is included in the file “AttrDeriv.jar”.
Please refer to the example implementation and its Java comments. The in-
terface AttrDerivInterface prescribes one method to be implemented which
returns a String[] object, ie an array of strings. The strings give the new values
of the attribute in the output. You must use Java 1.5 (alias JDK 5.0) to compile
your Java classes.

ParameterName ObjType Type Remarks
TheInputConcept CON IN
ClassName V IN Name of your Java class
TheTargetAttribute BA IN optional!
TypeOfOutputAttribute V IN Datatype for new attribute
TheOutputAttribute BA OUT Name of new attribute
TheOutputConcept CON OUT

4.2.21 FeatureConstructionByRelation

An operator that adds information from one concept to another concept. The
two concepts must be linked by a relationship, which is given by the parameter
TheRelation. The From-Concept of that relation provides the target attribute.
The operator creates a copy of the To-Concept of TheRelation with a new, addi-
tional attribute. The name of the new attribute is given as TheOutputAttribute.
The values of the new attribute are aggregated values, aggregated by the given
function and computed from TheTargetAttribute.

The computation of aggregated values is done only for those entities of the
To-Concept for which related entities are available in the From-Concept (the
latter are then aggregated). What is more, the aggregation is specified to range
only over particular entities (of the From-Concept), namely those whose value
of TheTargetAttribute matches the value of TheTargetAttribute that is most
frequent in the relationship.

For example, suppose that two concepts with data about customers and
products of a company are linked by a relationship that indicates which prod-
uct has been bought by which customer. The From-Concept has the product
information and the To-Concept has the customer data. Then this operator can
compute the number of times a customer has bought the product that has been
bought most often by any customer. Thus the operator computes a single new
aggregated value for each entity in the customer concept (the value may be
empty if the customer has not bought the frequent product). In this example
the AggregationOperator would be COUNT. Choosing VALUE OF as Aggregation-

Operator omits any aggregation.

46 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

ParameterName ObjType Type Remarks
TheRelation REL IN
TheTargetAttribute BA IN from From-Concept of TheRelation

AggregationOperator V IN COUNT, SUM or VALUE OF
TheOutputAttribute BA OUT added to To-Concept of TheRelation

TheOutputConcept CON OUT

4.2.22 Windowing

Windowing is applicable to time series data. It takes two BaseAttributes from
the input Concept; one of them contains time stamps, the other values. In the
output Concept each row gives a time window; there will be two time stamp
BaseAttributes which give the beginning and the end of each time window.
Further, there will be as many value attributes as specified by the WindowSize;
they contain the values for each window. Distance gives the distance between
windows in terms of number of time stamps.

While TimeBaseAttrib and ValueBaseAttrib are BaseAttributes that be-
long to TheInputConcept, OutputTimeStartBA, OutputTimeEndBA and the Win-

dowedValuesBAs belong to TheOutputConcept.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TimeBaseAttrib BA IN time stamps
ValueBaseAttrib BA IN values
WindowSize V IN positive integer
Distance V IN positive integer
OutputTimeStartBA BA OUT start time of window
OutputTimeEndBA BA OUT end time of window
WindowedValuesBA BA List OUT as many as WindowSize

TheOutputConcept CON OUT inherited

4.2.23 SimpleMovingFunction

This operator combines windowing with the computation of the average value
in each window. There is only one OutputValueBA which contains the average
of the values in a window of the given WindowSize; windows are computed
with the given Distance between each window. See also the description of the
Windowing operator in section 4.2.22.

4.2. CONCEPT OPERATORS 47

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
InputTimeBA BA IN
InputValueBA BA IN
WindowSize V IN
Distance V IN
OutputTimeStartBA BA OUT
OutputTimeEndBA BA OUT
OutputValueBA BA OUT
TheOutputConcept CON OUT inherited

4.2.24 WeightedMovingFunction

This operator works like SimpleMovingFunction (section 4.2.23), but the weighted
average is computed. The window size is not given explicitly, but is determined
from the number of Weights given. The sum of all Weights must be 1.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
InputTimeBA BA IN
InputValueBA BA IN
Weights V List IN sum must be 1
Distance V IN positive integer
OutputTimeStartBA BA OUT
OutputTimeEndBA BA OUT
OutputValueBA BA OUT
TheOutputConcept CON OUT inherited

4.2.25 ExponentialMovingFunction

A time series smoothing operator. For two values with the given Distance, the
first one is multiplied with TailWeight and the second one with HeadWeight.
The resulting average is written into OutputValueBA and becomes the new tail
value. HeadWeight and TailWeight must sum to 1.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
InputTimeBA BA IN
InputValueBA BA IN
HeadWeight V IN
TailWeight V IN
Distance V IN positive integer
OutputTimeBA BA OUT
OutputValueBA BA OUT
TheOutputConcept CON OUT inherited

48 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

4.2.26 SignalToSymbolProcessing

A time series abstraction operator. Creates intervals, their bounds are given
in OutputTimeStartBA and OutputTimeEndBA. The average value of every
interval will be in AverageValueBA. The average increase in that interval is in
IncreaseValueBA. Tolerance determines when an interval is closed and a new one
is opened: if the average increase, interpolated from the last interval, deviates
from a value by more than Tolerance, a new interval begins.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
InputTimeBA BA IN
InputValueBA BA IN
Tolerance V IN non-negative real number
AverageValueBA BA OUT
IncreaseValueBA BA OUT
OutputTimeStartBA BA OUT
OutputTimeEndBA BA OUT
TheOutputConcept CON OUT inherited

4.2.27 Apriori

An implementation of the well known Apriori algorithm for the data mining
step. It works on a sample read from the database. The sample size is given by
the parameter SampleSize.

The input format is fixed. There is one input concept (TheInputConcept)
having a BaseAttribute for the customer ID (parameter: CustID), one for the
transaction ID (TransID), and one for an item part of this customer/transaction’s
itemset (Item). The algorithm expects all entries of these BaseAttributes to
be integers. No null values are allowed.

It then finds all frequent (parameter: MinSupport) rules with at least the
specified confidence (parameter: MinConfidence). Please keep in mind that these
settings (especially the minimal support) are applied to a sample!

The output is specified by three parameters. TheOutputConcept is the con-
cept the output table is attached to. It has two BaseAttributes, PremiseBA for
the premises of rules and ConclusionBA for the conclusions. Each entry for one
of these attributes contains a set of whitespace-separated item IDs (integers).

4.2. CONCEPT OPERATORS 49

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
CustID BA IN customer id (integer, not NULL)
TransID BA IN transaction id (integer, not NULL)
Item BA IN item id (integer, not NULL)
MinSupport V IN minimal support (integer)
MinConfidence V IN minimal confidence (in [0, 1])
SampleSize V IN the size of the sample to be used
PremiseBA BA OUT premises of rules
ConclusionBA BA OUT conclusions of rules
TheOutputConcept CON OUT inherited

4.2.28 Feature Construction with TF/IDF

This operator calulates term frequencies / inverse document frequencies, a mea-
sure known from information retrieval. In this setting the operator is applied
for time series with binary attributes, instead.

The parameter TheSelectedAttributes contains a list of attributes, for which
the TF/IDF values should be calculated. TheKey is the primary key attribute
of this time series, while TheTimeStamp is the attribute holding the time infor-
mation of the tuple.

Unlike other Feature Construction operators this one yields a concept, not
a single feature.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheSelectedAttributes BA List IN attribs to calc. TFIDF for
TheTimeStamp BA IN type TIME
TheKey BA IN key attribute
TheOutputConcept CON OUT inherited

4.2.29 Union

This operator implements the normal UNION functionality known from SQL,
thus the different Concepts specified as input need to be union-compatible.
There is one “main” TheInputConcept, which specifies the BaseAttributes of
the TheOutputConcept. If features of TheInputConcept are deselected, then the
features will also be deselected in the output. All further attributes in these
Concepts will be ignored, all missing attributes will be replaced by artificially
added “named NULL values”, which does not work for all datatypes!

Please note, that if you have no primary keys defined and you have multiple
occurences of the same tuples, then SQL will usually remove all duplicates when
applying a UNION-operation. In some cases you may prefer a “bag” or “multi-
set” semantics. For this reason the parameter DataMode allows to switch between
set and multi-set.

50 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
FurtherConcepts CON List IN Union compatible Concepts
DataMode V IN set or multi-set mode?
TheOutputConcept CON OUT inherited

4.3 Feature selection operators

Feature selection operators are also concept operators in that their output is a
Concept, but they are listed in their own section since they have some common
special properties. All of them (except FeatureSelectionByAttributes, see 4.3.1,
and RemoveFeatures, see 4.3.2) use external algorithms to determine which fea-
tures are taken over to the output concept. This means that at the time of
designing an operating chain, it is not known which features will be selected.
How can a complete, valid chain be designed then, since the input of later op-
erators may depend on the output of a feature selection operator, which is only
determined at compile time?

The answer is that conceptually, all possible features are present in the out-
put concept of a feature selection operator, while the compiler creates Columns
for only some of them (the selected ones). This means that in later steps, some of
the features that are used for the input of an operator may not have a Column.
If the operator depends on a certain feature, the compiler checks whether a
Column is present, and shows an error message if no Column is found. If the
operator is executable without that Column, no error occurs.

All feature selection operators have a parameter TheAttributes which spec-
ifies the set of features from which some are to be selected. (Again this is not
true for FeatureSelectionByAttributesand RemoveFeatures, see 4.3.1 and 4.3.2.)
The parameter is needed because not all of the features of TheInputConcept can
be used, as they may include a key attribute or the target attribute for a data
mining step, which should not be deselected. This means that all attributes from
TheInputConcept that are not listed as one of TheAttributes will be present in
TheOutputConcept both on the conceptual and on the relational level.

4.3.1 FeatureSelectionByAttributes

This operator can be used for manual feature selection, which means that the
user specifies all features to be selected. This is done by providing all and only
the features that are to be selected in TheOutputConcept. The operator then
simply copies those features from TheInputConcept to TheOutputConcept which
are present in TheOutputConcept. It can be used to get rid of features that are
not needed in later parts of the operator chain. All features in TheOutputConcept

must have a corresponding feature (with the same name) in TheInputConcept.

4.3. FEATURE SELECTION OPERATORS 51

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheSelectedFeatures FEA IN will be in TheOutputConcept
TheOutputConcept CON OUT inherited

4.3.2 RemoveFeatures

This operator can be used for manual feature selection, but here the user specifies
all features not to be selected. This is done by providing all and only the features
that are to be removed from TheInputConcept. The operator then simply copies
all other features from TheInputConcept to TheOutputConcept. It can be used
to get rid of features that are not needed in later parts of the operator chain.
All features in TheOutputConcept must have a corresponding feature (with the
same name) in TheInputConcept.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
FeaturesToRemove FEA IN will not be in TheOutputConcept
TheOutputConcept CON OUT inherited

4.3.3 FeatureSelectionWithSVM

A Feature Selection operator. This operator uses the ξα-estimator as computed
by a Support Vector Machine training run to compare the classification perfor-
mance of different feature subsets. Searching either forward or backward, it finds
the best feature subset according to this criterion. Thus it performs a simple
beam search of width 1.

TheTargetAttribute must be binary as Support Vector Machines can only
solve binary classification problems. (The ξα-estimator can only be computed
for classification problems.) The parameter PositiveTargetValue specifies the
class label of the positive class. There are some SVM-specific parameters; the
table gives reasonable values to choose if nothing is known about the data or
SVMs. For the KernelType, only the following values (Strings) are possible: dot,

polynomial, neural, radial, anova. Dot is the linear kernel and can be taken as
default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to de-
termine a maximum number of training examples. The other runs in the data-
base; it is used if the optional parameter UseDB SVM is set to the String true.
When this version is used, an additional parameter TheKey is needed which
gives the BaseAttributewhose column is the primary key of TheInputConcept.
(TheKey can be left out only if the ColumnSet that belongs to TheInputCon-

cept represents a table rather than a view.) The database algorithm restricts the
possible kernel types to dot and radial. It can also use the parameter SampleSize.

52 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheAttributes BA list IN see section 4.3
TheTargetAttribute BA IN must be binary
PositiveTargetValue V IN the positive class label
KernelType V IN see explanation above
SampleSize V IN see explanation above
C V IN positive real; try 1.0
Epsilon V IN positive real; try 0.1
UseDB SVM V IN optional; one of true, false

TheKey BA IN optional
SearchDirection V IN one of forward, backward

TheOutputConcept CON OUT inherited

4.3.4 SimpleForwardFeatureSelectionGivenNoOfAttributes

A Feature Selection operator. This operator adds one feature a time start-
ing from the empty set until the required number of features NoOfAttributes

is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Use this operator if only
a small number of original attributes is to be selected. The selection is done
from the set of TheAttributes, attributes not specified in this set are selected
automatically.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheAttributes BA list IN see section 4.3
TheClassAttribute BA IN must be categorial
NoOfAttributes V IN positive integer
SampleSize V IN positive integer
TheOutputConcept CON OUT inherited

4.3.5 SimpleBackwardFeatureSelectionGivenNoOfAttributes

A Feature Selection operator. This operator removes one feature a time start-
ing from all attributes until the required number of features NoOfAttributes

is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Use this operator if a
large number of original attributes is to be selected. The selection is done from
the set of TheAttributes, attributes not specified in this set are selected auto-
matically.

4.3. FEATURE SELECTION OPERATORS 53

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheAttributes BA list IN see section 4.3
TheClassAttribute BA IN must be categorial
NoOfAttributes V IN positive integer
SampleSize V IN positive integer
TheOutputConcept CON OUT inherited

4.3.6 FloatForwardFeatureSelectionGivenNoOfAtt

A Feature Selection operator. This operator adds one feature a time starting
from empty set until the required number of features NoOfAttributes is reached.
The attributes are selected with respect to TheClassAttribute, the group opti-
mises the information dependence criterion. Unlike the simple operator, after
adding a feature a check is performed if another feature should be removed. Use
this operator if only a small number of original attributes is to be selected. The
selection is done from the set of TheAttributes, attributes not specified in this
set are selected automatically.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheAttributes BA list IN see section 4.3
TheClassAttribute BA IN must be categorial
NoOfAttributes V IN positive integer
SampleSize V IN positive integer
TheOutputConcept CON OUT inherited

4.3.7 FloatBackwardFeatureSelectionGivenNoOfAtt

A Feature Selection operator. This operator removes one feature a time start-
ing from all attributes until the required number of features NoOfAttributes

is reached. The attributes are selected with respect to TheClassAttribute, the
group optimises the information dependence criterion. Unlike the simple oper-
ator, after removing a feature a check is performed if another feature should be
added. Use this operator if a large number of original attributes is to be selected.
The selection is done from the set of TheAttributes, attributes not specified in
this set are selected automatically.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheAttributes BA list IN see section 4.3
TheClassAttribute BA IN must be categorial
NoOfAttributes V IN positive integer
SampleSize V IN positive integer
TheOutputConcept CON OUT inherited

54 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

4.3.8 UserDefinedFeatureSelection

A Feature Selection operator. This operator copies exactly those features from
TheInputConcept to TheOutputConcept that are specified in TheSelectedAt-

tributes. It can be used for the same task as the operator FeatureSelection-

ByAttributes, see 4.3.1, namely when the user knows which features to select.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheSelectedAttributes BA list IN the user’s selection
TheOutputConcept CON OUT inherited

4.4 Feature construction operators

Almost all operators in this section are loopable. For loops, TheInputConcept

remains the same while TheTargetAttribute, TheOutputAttribute and further
operator-specific parameters can change from loop to loop (loop numbers start
with 1). See also section 4.1.

4.4.1 AssignAverageValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the average value of that Column. The operator computes the column statis-
tics if they are not computed yet, which may take some time.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
TheOutputAttribute BA OUT inherited

4.4.2 AssignModalValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the modal value of that Column. The operator computes the column statistics
if they are not computed yet, which may take some time.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN
TheOutputAttribute BA OUT inherited

4.4.3 AssignMedianValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the median of that Column. The operator computes the column statistics if
they are not computed yet, which may take some time.

4.4. FEATURE CONSTRUCTION OPERATORS 55

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN
TheOutputAttribute BA OUT inherited

4.4.4 AssignDefaultValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by the DefaultValue.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited
DefaultValue V IN
TheOutputAttribute BA OUT inherited

4.4.5 AssignStochasticValue

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by a value which is randomly selected according to the distribution of present
values in this attribute. For example, if half of the entries in TheTargetAttribute

have a specific value, this value is chosen with a probability of 0.5. The operator
computes the column statistics if they are not computed yet, which may take
some time.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited
TheOutputAttribute BA OUT inherited

4.4.6 Binarify

This operator is often called “Dichotomisation”. It introduces one new attribute
per loop. The new attribute takes only two values, 1 and 0. The value 1 is taken
whenever the target attribute takes the target value, otherwise the value 0 is
taken. Thus the new attribute is a binary indicator (or a boolean flag) showing
the presence or absence of the target value in the target attribute for each row in
the input concept. By looping this operator, several target values can be used,
so that several new boolean attributes are created.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited
TargetValue V IN looped!
TheOutputAttribute BA OUT looped!

56 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

4.4.7 MergeAttributes

This operator merges TheTargetAttribute and the AttributeToMerge. TheOutpu-

tAttribute will have the value of TheTargetAttribute where the AttributeToMerge

has the value NULL, and it will have the value of the AttributeToMerge where
TheTargetAttribute has the value NULL. So if both attributes have the value
NULL, so will TheOutputAttribute.

If both attributes have a non-null value, the parameter ClashResolvation

decides how to resolve this clash. It takes one of two values, Priority or
ValueCombination. If the former is chosen, then the value of TheTargetAttribute

is chosen over the one from the AttributeToMerge (only for clashes) because the
target attribute has priority over the attribute to merge. If the latter value is
taken, a new value is introduced for TheOutputAttribute that represents the
particular combination of the values that have clashed.

This operator should only be applied to sparsely populated attributes, in
order to create better populated attributes. It is also useful for combining an
attribute with missing values with an attribute that contains predictions for the
missing values. For this latter application, choose the priority clash resolvation
method, and make the attribute with missing values the target attribute, and
the attribute with predicted values the attribute to merge.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited
AttributeToMerge BA IN
ClashResolvation V IN “Priority” or “ValueCombination”
TheOutputAttribute BA OUT result of merge

4.4.8 MissingValuesWithRegressionSVM

A MissingValue operator. Each missing value in TheTargetAttribute is replaced
by a predicted value. For prediction, a Support Vector Machine (SVM) is trained
in regression mode from ThePredictingAttributes (taking TheTargetAttribute

values that are not missing as target function values). All ThePredictingAt-

tributes must belong to TheInputConcept. TheOutputAttribute contains the orig-
inal values, plus the predicted values where the original ones were missing.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,

anova. Dot is the linear kernel and can be taken as default.
This operator can use two different versions of the Support Vector Machine

algorithm. One runs in main memory; it needs the parameter SampleSize to de-
termine a maximum number of training examples. The other runs in the data-
base; it is used if the optional parameter UseDB SVM is set to the String true.
When this version is used, an additional parameter TheKey is needed which
gives the BaseAttribute whose column is the primary key of TheInputConcept.
(TheKey can be left out only if the ColumnSet that belongs to TheInputConcept

4.4. FEATURE CONSTRUCTION OPERATORS 57

represents a table rather than a view.) The database algorithm restricts the pos-
sible kernel types to dot and radial. It can also use the parameter SampleSize.
You can only use it if you have the DB version of mySVM installed.

With the parameters LossFunctionPos and LossFunctionNeg, the loss func-
tion that is used for the regression can be biased such that predicting too high
is more expensive (LossFunctionPos > LossFunctionNeg) or less expensive
(LossFunctionNeg > LossFunctionPos)than predicting too low. If both val-
ues are equal, no bias is used. The parameter C balances training error against
generalisation quality; positive values between 0.01 and 1000 have been used
successfully in the literature. Epsilon limits the allowed error an example may
produce; small values under 0.5 should be used.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited
ThePredictingAttributes BA List IN
KernelType V IN see explanation above
SampleSize V IN see explanation above
LossFunctionPos V IN positive real; try 1.0
LossFunctionNeg V IN positive real; try 1.0
C V IN positive real; try 1.0
Epsilon V IN positive real; try 0.1
UseDB SVM V IN optional; one of true, false

TheKey BA IN optional
TheOutputAttribute BA OUT inherited

4.4.9 LinearScaling

A scaling operator. Values in TheTargetAttribute are scaled to lie between
NewRangeMin and NewRangeMax in TheOutputAttribute.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited
NewRangeMin V IN new min value
NewRangeMax V IN new max value
TheOutputAttribute BA OUT inherited

4.4.10 LogScaling

A scaling operator. Values in TheTargetAttribute are scaled to their logarithm
to the given LogBase.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited
LogBase V IN
TheOutputAttribute BA OUT inherited

58 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

4.4.11 SupportVectorMachineForRegression

A data mining operator. Values in TheTargetAttribute are used as target func-
tion values to train the SVM on examples that are formed with ThePredicting-

Attributes. All ThePredictingAttributes must belong to TheInputConcept. The-

OutputAttribute contains the predicted values.
There are some SVM-specific parameters; the table gives reasonable values

to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,

anova. Dot is the linear kernel and can be taken as default.
This operator can use two different versions of the Support Vector Machine

algorithm. One runs in main memory; it needs the parameter SampleSize to de-
termine a maximum number of training examples. The other runs in the data-
base; it is used if the optional parameter UseDB SVM is set to the String true.
When this version is used, an additional parameter TheKey is needed which
gives the BaseAttribute whose column is the primary key of TheInputConcept.
(TheKey can be left out only if the ColumnSet that belongs to TheInputConcept

represents a table rather than a view.) The database algorithm restricts the pos-
sible kernel types to dot and radial. It can also use the parameter SampleSize.
You can only use it if you have the DB version of mySVM installed.

With the parameters LossFunctionPos and LossFunctionNeg, the loss func-
tion that is used for the regression can be biased such that predicting too high
is more expensive (LossFunctionPos > LossFunctionNeg) or less expensive
(LossFunctionNeg > LossFunctionPos)than predicting too low. If both val-
ues are equal, no bias is used. The parameter C balances training error against
generalisation quality; positive values between 0.01 and 1000 have been used
successfully in the literature. Epsilon limits the allowed error an example may
produce; small values under 0.5 should be used.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited
ThePredictingAttributes BA List IN
KernelType V IN see explanation above
SampleSize V IN see explanation above
LossFunctionPos V IN positive real; try 1.0
LossFunctionNeg V IN positive real; try 1.0
C V IN positive real; try 1.0
Epsilon V IN positive real; try 0.1
UseDB SVM V IN optional; one of true, false

TheKey BA IN optional
TheOutputAttribute BA OUT inherited

4.4.12 SupportVectorMachineForClassification

A data mining operator. Values in TheTargetAttribute are used as target func-
tion values to train the SVM on examples that are formed with ThePredicting-

4.4. FEATURE CONSTRUCTION OPERATORS 59

Attributes. TheTargetAttribute must be binary as Support Vector Machines can
only solve binary classification problems. The parameter PositiveTargetValue

specifies the class label of the positive class. All ThePredictingAttributes must
belong to TheInputConcept. TheOutputAttribute contains the predicted values.

There are some SVM-specific parameters; the table gives reasonable values
to choose if nothing is known about the data or SVMs. For the KernelType,
only the following values (Strings) are possible: dot, polynomial, neural, radial,

anova. Dot is the linear kernel and can be taken as default.

This operator can use two different versions of the Support Vector Machine
algorithm. One runs in main memory; it needs the parameter SampleSize to de-
termine a maximum number of training examples. The other runs in the data-
base; it is used if the optional parameter UseDB SVM is set to the String true.
When this version is used, an additional parameter TheKey is needed which
gives the BaseAttributewhose column is the primary key of TheInputConcept.
(TheKey can be left out only if the ColumnSet that belongs to TheInputConcept

represents a table rather than a view.) The database algorithm restricts the pos-
sible kernel types to dot and radial. It can also use the parameter SampleSize.
You can only use it if you have the DB version of mySVM installed.

The parameter C balances training error against generalisation quality; pos-
itive values between 0.01 and 1000 have been used successfully in the literature.
Epsilon limits the allowed error an example may produce; small values under
0.5 should be used.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited; must be binary
ThePredictingAttributes BA List IN
KernelType V IN see explanation above
SampleSize V IN see explanation above
C V IN positive real; try 1.0
Epsilon V IN positive real; try 0.1
UseDB SVM V IN optional; one of true, false

TheKey BA IN optional
PositiveTargetValue V IN the positive class label
TheOutputAttribute BA OUT inherited

4.4.13 GenericFeatureConstruction

This operator creates an output attribute on the basis of a given SQL definition
(Parameter SQL String). The definition must be well-formed SQL defining how
values for the output attribute are computed based on one of the attributes in
TheInputConcept. To refer to the attributes in TheInputConcept, the names of
the BaseAttributes are used—and not the names of any Columns. For exam-
ple, if there are two BaseAttributes named “INCOME” and “TAX” in TheIn-

putConcept, this operator can compute their sum if SQL String is defined as
“(INCOME + TAX)”.

60 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

TheTargetAttribute is needed to have a blueprint for TheOutputAttribute.
The operator ignores TheTargetAttribute, except that it uses its conceptual data
type, and the relational data type of its column, to specify the corresponding
data types for TheOutputAttribute.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited; specifies datatype
SQL String V IN see text
TheOutputAttribute BA OUT inherited

4.4.14 DateToNumeric

This operator extracts numerical parts of database fields in DATE format. This is
useful if you need to perform arithmetic operations on time stamps, for example
when you need to represent the time as days since a given start date. Parameters
are simply an TheInputConcept, TheTargetAttribute of type TIME, and Output-

Format, currently one of Year YYYY, Year YY, Month of Year, Day of Month,
Hour of Day, Minute of Hour, and Second of Minute. The result is stored in
TheOutputAttribute.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited; type: DATE
OutputFormat V IN see text
TheOutputAttribute BA OUT inherited

4.4.15 TimeIntervalManualDiscretization

This operator can be used to discretize a time attribute manually. The looped
parameters specify a mapping to be performed from TheTargetAttribute, a
BaseAttribute of type TIME, to a set of user specified categories. As for all
FeatureConstruction operators a BaseAttribute TheOutputAttribute is added to
TheInputConcept.

The mapping is defined by looped parameters. An interval is specified by
its lower bound IntervalStart, its upper bound IntervalEnd and two additional
parameters StartIncExc and EndIncExc, stating if the interval bounds are in-
cluded (value: “I”) or excluded (value: “E”). The value an interval is mapped
to is given by the looped parameter MapTo. If an input value does not belong
to any interval, it is mapped to the value DefaultValue.

To be able to cope with various time formats (e.g. ’HH-MI-SS’) the operator
reads the given format from the parameter TimeFormat.

4.4. FEATURE CONSTRUCTION OPERATORS 61

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited, type: TIME
IntervalStart V IN “looped”, lower bound of interval
IntervalEnd V IN “looped”, upper bound of interval
MapTo V IN value to map time interval to
StartIncExc V IN one of “I” and “E”
EndIncExc V IN one of “I” and “E”
DefaultValue V IN value if no mapping applies
TimeFormat V IN ORACLE specific time format
TheOutputAttribute BA OUT inherited

4.4.16 NumericIntervalManualDiscretization

This operator can be used to discretize a numeric attribute manually. It is very
similar to the operator TimeIntervalManualDiscretization described in 4.4.15.
The looped parameters IntervalStart, IntervalEnd, StartIncExc, EndIncExc, and
MapTo. again specify a mapping to be performed. If an input value does not be-
long to any interval, it is mapped to the value DefaultValue. TheTargetAttribute

must be of type ordinal.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN inherited, type: ORDINAL
IntervalStart V IN “looped”, lower bound of interval
IntervalEnd V IN “looped”, upper bound of interval
MapTo V IN value to map time interval to
StartIncExc V IN one of “I” and “E”
EndIncExc V IN one of “I” and “E”
DefaultValue V IN value if no mapping applies
TimeFormat V IN ORACLE specific time format
TheOutputAttribute BA OUT inherited

4.4.17 EquidistantDiscretizationGivenWidth

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute

into intervals with given width IntervalWidth starting at StartPoint. The first
and the last interval cover also the values out of range.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
StartPoint V IN optional
IntervalWidth V IN a positive real number
ClosedTo V IN one of LEFT or RIGHT

TheOutputAttribute BA OUT should be categorial

62 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

4.4.18 EquidistantDiscretizationGivenNoOfIntervals

A discretization operator. Numeric attributes are discretized and the output is a
categorial attribute. This operator divides the range of TheTargetAttribute into
the given number of intervals NoOfIntervals with the same width. The first and
the last interval cover also the values out of range. Values of TheOutputAttribute

can be specified in the parameter Label.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
NoOfIntervals V IN integer
ClosedTo V IN one of LEFT or RIGHT

Label V List IN optional
TheOutputAttribute BA OUT should be categorial

4.4.19 EquifrequentDiscretizationGivenCardinality

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute

into intervals with given Cardinality (number of examples whose values are in
the interval). The first and the last interval cover also the values out of range.
CardinalityType decides how the parameter Cardinality is to be interpreted.
Values of TheOutputAttribute can be specified in the parameter Label (this makes
sense only if CardinalityType is RELATIVE).

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
CardinalityType V IN ABSOLUTE or RELATIVE

Cardinality V IN positive
ClosedTo V IN one of LEFT or RIGHT

Label V List IN optional
TheOutputAttribute BA OUT should be categorial

4.4.20 EquifrequentDiscretizationGivenNoOfIntervals

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute

into the given number of intervals NoOfIntervals. The intervals have the same
cardinality (number of examples with values within the interval). The first and
the last interval cover also the values out of range. Values of TheOutputAttribute

can be specified in the parameter Label.

4.4. FEATURE CONSTRUCTION OPERATORS 63

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
NoOfIntervals V IN positive integer > 1
ClosedTo V IN one of LEFT or RIGHT

Label V List IN optional
TheOutputAttribute BA OUT should be categorial

4.4.21 UserDefinedDiscretization

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute

into intervals according to user given cutpoints TheCutpoints, which is a list of
values which each give a cutpoint for the intervals to be created. The cutpoints
must be given in ascending order. Values of TheOutputAttribute can be specified
in the parameter Label.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
TheCutpoints V IN see text
ClosedTo V IN one of LEFT or RIGHT

Label V List IN optional
TheOutputAttribute BA OUT should be categorial

4.4.22 ImplicitErrorBasedDiscretization

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute

into intervals by merging subsequent values with the same majority class (or
classes) given in TheClassAttribute. TheClassAttribute contains the labels of an
example as in a Machine Learning setting. The resulting intervals minimize the
classification error. If FullMerge is set to YES, then an interval with two or more
majority classes is merged with its neighbour, if both intervals share the same
majority class. The parameter SampleSize gives a maximum number of learning
examples for the external algorithm.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
TheClassAttribute BA IN must be categorial
ClosedTo V IN one of LEFT or RIGHT

FullMerge V IN one of YES or NO

SampleSize V IN optional; positive integer
TheOutputAttribute BA OUT should be categorial

64 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

4.4.23 ErrorBasedDiscretizationGivenMinCardinality

A discretization operator. Numeric attributes are discretized and the output is
a categorial attribute. This operator divides the range of TheTargetAttribute

into intervals with cardinality greater or equal to MinCardinality. MinCardinal-

ityType decides if MinCardinality values are read as absolute values (integers)
or relative values (real, between 0 and 1). TheTargetAttribute is divided into
intervals with respect to TheClassAttribute, but unlike the implicit discretiza-
tion, intervals with single majority class are further merged if they do not have
the required cardinality. This will increase the classification error. TheClassAt-

tribute contains the labels of an example as in a Machine Learning setting. The
parameter SampleSize gives a maximum number of learning examples for the
external algorithm.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
TheClassAttribute BA IN must be categorial
MinCardinalityType V IN ABSOLUTE or RELATIVE

MinCardinality V IN positive
ClosedTo V IN one of LEFT or RIGHT

SampleSize V IN optional; positive integer
TheOutputAttribute BA OUT should be categorial

4.4.24 ErrorBasedDiscretizationGivenNoOfInt

A discretization operator. Numeric attributes are discretized and the output is a
categorial attribute. This operator divides the range of TheTargetAttribute into
at most NoOfIntervals intervals. TheTargetAttribute is divided into intervals
with respect to TheClassAttribute, but unlike the implicit discretization, if the
number of interval exceeds NoOfIntervals, intervals are further merged. This
will increase the classification error. TheClassAttribute contains the labels of an
example as in a Machine Learning setting. Values of TheOutputAttribute can be
specified in the parameter Label. The parameter SampleSize gives a maximum
number of learning examples for the external algorithm.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
TheClassAttribute BA IN must be categorial
NoOfIntervals V IN positive integer > 1
ClosedTo V IN one of LEFT or RIGHT

Label V List IN optional
SampleSize V IN optional; positive integer
TheOutputAttribute BA OUT should be categorial

4.4. FEATURE CONSTRUCTION OPERATORS 65

4.4.25 GroupingGivenMinCardinality

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator groups values of TheTargetAttribute by iteratively merging in each
step two groups with the lowest frequencies until all groups have the cardinality
(number of examples with values within the interval) at least MinCardinality.
The algorithm has been inspired by hierarchical clustering. MinCardinalityType

decides if MinCardinality values are read as absolute values (integers) or relative
values (real, between 0 and 1).

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
MinCardinalityType V IN ABSOLUTE or RELATIVE

MinCardinality V IN positive
TheOutputAttribute BA OUT should be categorial

4.4.26 GroupingGivenNoOfGroups

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator groups values of TheTargetAttribute by iteratively merging in each step
two groups with the lowest frequencies until the number of groups NoOfGroups

is reached. The algorithm has been inspired by hierarchical clustering. Values
of TheOutputAttribute can be specified in the parameter Label.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
NoOfGroups V IN positive integer
Label V List IN optional
TheOutputAttribute BA OUT should be categorial

4.4.27 UserDefinedGrouping

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator creates groups of TheTargetAttribute according to specifications given
by the user in TheGroupings, which is a list of values. Each of the values in
the list in turn is a String that lists values of TheTargetAttribute which should
be grouped together, separating them with a comma. Values not specified for
grouping retain their original values. Values of TheOutputAttribute can be spec-
ified in the parameter Label.

66 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
TheGroupings V List IN see text
Label V List IN optional
TheOutputAttribute BA OUT should be categorial

4.4.28 UserDefinedGroupingWithDefaultValue

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator creates groups of TheTargetAttribute values according to specifications
given by the user in TheGroupings, which is a list of values. Each of the values in
the list in turn is a String that lists values of TheTargetAttribute which should
be grouped together, separating them with a comma. Values not specified for
grouping are grouped into default group Default. Values of TheOutputAttribute

can be specified in the parameter Label.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
Default V IN default group
Label V List IN optional
TheOutputAttribute BA OUT should be categorial

4.4.29 ImplicitErrorBasedGrouping

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into groups with the same
majority class (or classes) given in TheClassAttribute. If FullMerge is set to yes,
then a group with two or more majority classes is merged with a group that
has the same majority class. The resulting grouping minimizes the classifica-
tion error. TheClassAttribute contains the labels of an example as in a Machine
Learning setting. The parameter SampleSize gives a maximum number of learn-
ing examples for the external algorithm.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
TheClassAttribute BA IN must be categorial
FullMerge V IN one of YES or NO

SampleSize V IN optional; positive integer
TheOutputAttribute BA OUT should be categorial

4.4. FEATURE CONSTRUCTION OPERATORS 67

4.4.30 ErrorBasedGroupingGivenMinCardinality

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into groups with the cardi-
nality above the given threshold MinCardinality. MinCardinalityType decides if
MinCardinality values are read as absolute values (integers) or relative values
(real, between 0 and 1). The grouping is performed with respect to TheClas-

sAttribute, but unlike implicit grouping, groups with a single majority class are
further merged if they do not have the required cardinality. This will increase
the classification error. TheClassAttribute contains the labels of an example as
in a Machine Learning setting. The parameter SampleSize gives a maximum
number of learning examples for the external algorithm.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
TheClassAttribute BA IN must be categorial
SampleSize V IN optional; positive integer
MinCardinalityType V IN ABSOLUTE or RELATIVE

MinCardinality V IN positive
TheOutputAttribute BA OUT should be categorial

4.4.31 ErrorBasedGroupingGivenNoOfGroups

A grouping operator. Values of TheTargetAttribute are grouped under a certain
label which is stored in TheOutputAttribute, which must be categorial. This
operator merges the values of TheTargetAttribute into at most NoOfGroups

groups. The grouping is performed with respect to TheClassAttribute, but un-
like the implicit discretization, if the number of groups exceeds NoOfGroups,
groups are further merged. This will increase the classification error. Values of
TheOutputAttribute can be specified in the parameter Label. TheClassAttribute

contains the labels of an example as in a Machine Learning setting. The param-
eter SampleSize gives a maximum number of learning examples for the external
algorithm.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetAttribute BA IN must be numeric
TheClassAttribute BA IN must be categorial
NoOfGroups V IN integer > 1
Label V List IN optional
SampleSize V IN optional; positive integer
TheOutputAttribute BA OUT should be categorial

68 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

4.5 Operators creating relationships

4.5.1 CreateOneToManyRelation

This operator creates a 1 : n-relationship between its two given input concepts.
The relationship is created on the conceptual level, and connected to keys in
the database when the step that employs this operator is compiled. Note that
for technical reasons the two input concepts must be connected to a ColumnSet

that represents a database table, not a view, since views cannot have primary
keys. If you would like to apply this operator to input views, use materialisa-
tion operators (section 4.2.16) in order to produce tables, before applying this
operator.

ParameterName ObjType Type Remarks
TheFromConcept CON IN must be a table
TheToConcept CON IN must be a table
FromConceptKeys BA List IN
ToConceptKeys BA List In
TheRelation REL OUT Name of new relationship

4.5.2 CreateManyToManyRelation

This operator creates an n : m-relationship between its two given input con-
cepts. The relationship is created on the conceptual level, and connected to keys
in the database when the step that employs this operator is compiled. Note that
for technical reasons the two input concepts must be connected to a ColumnSet

that represents a database table, not a view, since views cannot have primary
keys. If you would like to apply this operator to input views, use materialisa-
tion operators (section 4.2.16) in order to produce tables, before applying this
operator.

The (template for the) cross table for the new relationship must be rep-
resented by a MiningMart concept, given as parameter TheCrossTable. This
concept can represent a view. The actual cross table for the new relationship
will be created by the operator; its name is given by the optional parameter
NameForCrossTable

ParameterName ObjType Type Remarks
TheFromConcept CON IN must be a table
TheToConcept CON IN must be a table
TheCrossTable CON IN
NameForCrossTable V IN optional
FromConceptKeys BA List IN
ToConceptKeys BA List In
CrossToFromConceptKeys BA List IN
CrossToToConceptKeys BA List IN
TheRelation REL OUT Name of new relationship

4.6. OTHER OPERATORS 69

4.6 Other Operators

4.6.1 ComputeSVMError

A special evaluation operator used for obtaining some results for the regres-
sion SVM. Values in TheTargetValueAttribute are compared to those in The-

PredictedValueAttribute. The average loss is determined taking the asymmet-
ric loss function into account. That is why the SVM parameters are needed
here as well. Note that they must have the same value as for the operator
SupportVectorMachineForRegression, which must have preceded this evalu-
ation operator in the chain.

ParameterName ObjType Type Remarks
TheInputConcept CON IN inherited
TheTargetValueAttribute BA IN actual values
ThePredictedValueAttribute BA IN predicted values
LossFunctionPos V IN (same values
LossFunctionNeg V IN as in SVM-
Epsilon V IN ForRegression)

4.6.2 PrepareForYale

This operator has no output for MiningMart. It produces an XML file that
can be read by the YALE software. The file will be given the name provided
in ExperimentFileName. In YALE, this will provide a very basic experiment
that starts by reading data from the database, that is, from the business data
schema used by MiningMart. This operator makes the combination of YALE
and MiningMart more convenient.

If TheInputConcept to this operator has more than one Columnset, the
YALE file produced will contain the YALE operator IteratingOperatorChain,
and for each Columnset a query file will be produced that is read in one itera-
tion of the operator chain in YALE. The parameter QueryFilePrefix is used for
this purpose; the query files produced will have a number added to the given
prefix, starting with 1. If there is only one Columnset in TheInputConcept,
the parameter QueryFilePrefix is ignored. Both filename parameters expect full
paths.

The parameters TheLabel and ThePrimaryKey are optional. They provide
information to YALE about the label (for learning) and the primary key of the
data set. Of course, this information can also be added manually in YALE.

ParameterName ObjType Type Remarks
TheInputConcept CON IN
TheLabel BA IN optional
ThePrimaryKey BA IN optional
ExperimentFileName V IN complete path and filename
QueryFilePrefix V IN only for multiple columnsets

70 CHAPTER 4. OPERATORS AND THEIR PARAMETERS

Chapter 5

The Case Repository

One of the basic ideas behind MiningMart is the aspect of sharing knowledge
about successful cases. The MiningMart project has set up a central web plat-
form which allows the public exchange and documentation of exported cases.
This chapter describes how the platform can be used to benefit from other users’
work and to let others benefit from one’s own work.
The case base can be found on the MiningMart web site:

http://mmart.cs.uni-dortmund.de

The direct link is:

http://mmart.cs.uni-dortmund.de/caseBase/index.html

5.1 The Internet Presentation of Cases

As soon as an efficient chain of preprocessing has been found, it can easily be
exported and added to an Internet repository of best-practice MiningMart cases.
Only the conceptual level is submitted, so even if a case handles sensitive infor-
mation, as is true for most medical or business applications, it is still possible to
distribute the valuable ideas for re-use, while hiding all the sensitive data and
even the local database schema.

To support users in finding the most relevant cases, their inherent structure
is exploited. The internet interface visualizes the conceptual elements like chains,
steps and concepts as web pages, linked by HTML links if the corresponding
elements are connected in the case. It is possible to navigate through the case-
base and to investigate single steps, to see which operators were used on which
kind of concepts, to see which concepts were used as input or output in which
steps, which features belong to a concept, and so on.

To each case some free text descriptions giving an overview of the case and
the application domain can be added. This allows other users to easily relate the
work done in one case to their own goals, rather than getting too much involved
in technical details at an early stage.

To use the internet case repository, please use an ordinary web browser and

71

72 CHAPTER 5. THE CASE REPOSITORY

go to the address given at the beginning of this chapter. You can click through
the structure of the cases which are already there.

The following sections describe what to do if you have found a case that you
would like to download and modify in your own MiningMart system, and what
to do if you want to contribute a case to the internet repository.

5.2 How to download a case

On the MiningMart case base start page (see above) there is a list of cases.
Clicking on one case name brings up the main starting page for that case. There
is a bulleted item called “Exported into M4 file”; clicking on the file name will
make your browser download the file.

The file may have to be unpacked if its name ends with “.zip”.

After unpacking the file, you can import it into your MiningMart system.
There is a menu item “Import Case” in the “Case” menu. Using it will allow
you to select the file, and give a name to the case which is to be imported.
Then the case is available in your MiningMart system. You should save it if you
want to keep it, since importing the case does not automatically save it to your
database.

If you want to execute the case or a modified version of it, you now have to
link the concepts of type DB to your own database tables or views. This may
mean that you have to adjust the exact form of concepts to the structure of
your database objects, or that you have to insert additional steps to the case
which bring your data into a suitable format. For every concept of type DB (the
ones with a small database symbol in their icon), use the concept editor and
its “Create connection”-function. Then continue with the relationships between
the concepts, if there are any. Once these items are connected to your database
tables or views, you can continue by compiling the steps or making adjustments
to the case.

5.3 How to document a case

For the documentation of your case, which is especially important if you want to
publish its conceptual level in the internet case repository (see following section),
there is a description field for every step, chain, concept, baseattribute etc. which
can be edited directly in the GUI. It can be found in the lower left frame of
the MiningMart GUI; there is a special tab “Description” which applies to the
currently selected element. For the attributes of a concept there is an extra
description field in the right hand frame when the BaseAttributes of a concept
are displayed.

Any descriptions entered in these fields are shown in the internet repository
if you publish your case there. They help other users to find out about details
of your case.

5.4. HOW TO UPLOAD A CASE 73

5.4 How to upload a case

If you have developed a successful knowledge discovery case, you have the option
to let other users benefit from your work by publishing its conceptual level in
the internet case repository. MiningMart allows you to export all conceptual
metadata into a single file. After you have opened a case, choose “Export Case”
from the “Case” menu.

You are then shown a file browsing dialogue with which you can choose
a name for the exported file. It is common to use the file extension .xml for
exported MiningMart files, since these files use an XML syntax. Please wait
until all M4 objects are exported.

You can now send the exported file to the following email address:
miningmart@ls8.cs.uni-dortmund.de

The MiningMart team will then do some technical tests to check the consistency
of the case. You will be kindly asked to provide some background information
about the application domain etc. per email. Then the case will be added by
MiningMart administrators to the central case base, and will be available under
the web address above.

