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FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth
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Goal Have a small, cheap telescope which can be deployed everywhere on earth

> It produces roughly 180 MB/s of data
> Only 1in 10.000 measurements is interesting
> Bandwidth to transmit measurements is limited

Idea Use a Random Forest to filter measurements before further processing

> Pre-train forest on simulated data, then apply it in the real world
> Physicist know Random Forests
> Very good black-box learner, no hyperparameter tuning necessary
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FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth

> It produces roughly 180 MB/s of data
> Only 1in 10.000 measurements is interesting
> Bandwidth to transmit measurements is limited

Idea Use a Random Forest to filter measurements before further processing

> Pre-train forest on simulated data, then apply it in the real world
> Physicist know Random Forests
> Very good black-box learner, no hyperparameter tuning necessary

Goal Execute Random Forest in real-time and keep-up with 180 MB/s of data

Constraint Size and energy available is limited — Model must run on embedded system
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Recap Decision Trees and Random Forest

DTs split the data in regions until each region is “pure”
Splits are binary decisions if x belongs to certain region
Leaf nodes contain actual prediction for a given region
RFs built multiple DTs on subsets of the data/features
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Recap Decision Trees and Random Forest

> DTs split the data in regions until each region is “pure”

> Splits are binary decisions if x belongs to certain region

> Leaf nodes contain actual prediction for a given region

> RFs built multiple DTs on subsets of the data/features
Question How to implement a Decision Tree / Random Forest?
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> CPU computations are much faster than memory access
» Memory-Hierarchy (Caches) is used to hide slow memory
> Caches assume spatial-temporal locality of accesses

Question How to implement a Decision Tree / Random Forest?

Artificial Intelligence
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Implementing Decision Trees (1)

Fact There are at-least two ways to implement DTs in modern programming languages

Native-Tree Store nodes in array and iterate it in a loop
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Fact There are at-least two ways to implement DTs in modern programming languages

Native-Tree Store nodes in array and iterate it in a loop

Node t[] = {/* ... */3};
bool predict(short const * x){ + Sin1pleto anlen1ent
unsigned int i = 0;
while(!t[i].isLeaf) {
if (x[t[il.f] <= t[il.s) {

+

Small ‘hot’-code

i = t[il.1; - Requires D-Cache (array)
} else {
i = t[il.r; - Requires I-Cache (code)
}
} - Requires indirect memory access

return t[i].pred;
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Implementing Decision Trees (2)

Fact There are at-least two ways to implement DTs in modern programming languages

If-Else-Tree Unroll tree into if-else instructions
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Implementing Decision Trees (2)

Fact There are at-least two ways to implement DTs in modern programming languages

If-Else-Tree Unroll tree into if-else instructions

bool predict(short const * x){
if (x[0] <= 8191)1
if (x[1] <= 2048){
return true;
} else {
return false;

+

No indirect memory access

+

Compiler can optimize aggressively

}
} else {
if(x[2] <= 512){
return true;
} else {
return false;

+

Only I-Cache required

I-Cache usually small

" No ‘hot’-code
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Probabilistic execution model of DTs

Basic idea Analyse the structure of trained tree and keep most important paths in Cache

Branch-probability p;_,;

Path-probability p(n) = pry—rz; - - - - Prjq1—om,
Expected path length E[L] = 3, p(x) - ||
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Probabilistic execution model of DTs

Basic idea Analyse the structure of trained tree and keep most important paths in Cache

Branch-probability p;_,;
Path-probability p(n) = pry—rz; - - - - Prjq1—om,
Expected path length E[L] = 3, p(x) - ||

Example
p((0,1,3)) = 0.3-0.4-0.25=0.03

p((0,2,6)) 0.7-0.8-0.85 = 0.476
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Probabilistic optimizations for DTs

Capacity misses Cache memory is not enough to store all code

But Computation kernel of tree might fit into cache
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Capacity misses Cache memory is not enough to store all code
But Computation kernel of tree might fit into cache

Solution Compute computation kernel for budget g

K = arg max {p(T)|T C ‘Ts.t.Zs(i) < B}
ieT
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Capacity misses Cache memory is not enough to store all code
But Computation kernel of tree might fit into cache

Solution Compute computation kernel for budget g

K = arg max {p(T)‘T C Ts.t.Zs(i) < B}
ieT

> Start with the root node
> Greedily add nodes until budget is exceeded

Note

> Estimate s(-) based on assembly analysis
> Choose B based on the properties of specific CPU model
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Probabilistic optimizations for DTs (2)

Further optimizations

> Reduce memory consumption of nodes for native trees with clever implementation
> Increase cache-hit rate for if-else trees by swapping nodes with higher probability
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> Reduce memory consumption of nodes for native trees with clever implementation
> Increase cache-hit rate for if-else trees by swapping nodes with higher probability

In total Compare 1 baseline method and 4 different implementations
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Further optimizations

> Reduce memory consumption of nodes for native trees with clever implementation
> Increase cache-hit rate for if-else trees by swapping nodes with higher probability

In total Compare 1 baseline method and 4 different implementations

Questions

> What is the performance-gain of these optimizations?
> How do these optimizations perform on different CPU architectures?
> How do these optimizations perform with different forest configurations?
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Experimental Setup

Approach

» Use a Code-Generator to compile sklearn forests (DTs,RF,ET) of varying size to C-Code
> Test resulting code + optimizations on 12 datatest on 3 different CPU architectures
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Approach

» Use a Code-Generator to compile sklearn forests (DTs,RF,ET) of varying size to C-Code
> Test resulting code + optimizations on 12 datatest on 3 different CPU architectures

Hardware

> X86 Desktop PC with Intel i7-6700 with 16 GB RAM
> ARM Raspberry-Pi 2 with ARMv7 and 1GB RAM
» PPC NXP Reference Design Board with T4240 processors and 6GB RAM
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Dataset # Examples # Features Accuracy
adult 8141 64 0.76 - 0.86
bank 10297 59 0.86-0.90
covertype 145253 54 0.51-0.88
fact 369450 16 0.81-0.87
imdb 25000 10000 0.54-0.80
letter 5000 16 0.06 - 0.95
magic 4755 10 0.64 - 0.87
mnist 10000 784 0.7 - 0.96
satlog 2000 36 0.40-0.90
sensorless 14628 48 0.10 - 0.99
wearable 41409 177 0.57-0.99
wine-quality 1625 11 0.49-0.68

Artificial Intelligence
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Results: Desktop PC with Intel (X86)

Note Behaviour similar for DTs, RF and ET — Focus in RF here

—— Results

> Optimizations improve performance
» if-else trees are clear winner

Interpretation
> Large I-Cache (256 KiB) favors if-else
» Compiler can utilize CISC architecture for
if-else
> Native trees do not benefit from I-Cache and

I I I I I CISC
0 5 10 15 20
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Note Behaviour similar for DTs, RF and ET — Focus in RF here

— Results

> Optimizations improve performance
» if-else trees are clear winner

Interpretation
> Large I-Cache (256 KiB) favors if-else
» Compiler can utilize CISC architecture for
if-else
> Native trees do not benefit from I-Cache and

I I I I I CISC
0 5 10 15 20

Take-away On X86 CPUs, if-else trees should be favoured
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Results: Raspberry Pi with ARMv7 (ARM)

Note Behaviour similar for DTs, RF and ET — Focus in RF here

Results
> Optimizations improve performance
> No clear winner for larger trees

Interpretation
> Smaller I-Cache (32 KiB) only fits small trees
» Smaller D-Cache (512 KiB) only fits small trees
> Requires more instructions than CISC

0 5 10 15 20
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Note Behaviour similar for DTs, RF and ET — Focus in RF here

‘ Results

> Optimizations improve performance
> No clear winner for larger trees

Interpretation
> Smaller I-Cache (32 KiB) only fits small trees
» Smaller D-Cache (512 KiB) only fits small trees
> Requires more instructions than CISC

Take-away Use if-else version for small trees. For larger ones there is no clear
recommendation

13 /14



technische universitat CS Ia computer 0@’ Artificial Intelligence

dortmund science 12 Group

Summary and Take-Aways

Modern physics experiments generate huge amounts of data

But We can use ML to filter-out unwanted measurements before further processing
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https://bitbucket.org/sbuschjaeger/arch-forest
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Modern physics experiments generate huge amounts of data
But We can use ML to filter-out unwanted measurements before further processing

Our approach Use a code-generator to generate optimized RF code

There are at-least two ways to implement Decision Trees in modern languages

Native trees mostly rely on the data cache

If-else trees mostly rely on the instruction cache

Careful cache management can increase performance by 2 — 6 ( 1500 compared to sklearn)
Optimizations & implementations behave differently on different CPU architectures
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Modern physics experiments generate huge amounts of data
But We can use ML to filter-out unwanted measurements before further processing

Our approach Use a code-generator to generate optimized RF code

There are at-least two ways to implement Decision Trees in modern languages

Native trees mostly rely on the data cache

If-else trees mostly rely on the instruction cache

Careful cache management can increase performance by 2 — 6 ( 1500 compared to sklearn)
Optimizations & implementations behave differently on different CPU architectures
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Now Physicist can generate optimized C code for each new experiment

And you as well!

https://bitbucket.org/sbuschjaeger/arch-forest
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