technische universitat Ecomputer o~ Artificial Intelligence
dortmund G I science 12 @" Group

REALIZATION OF RANDOM FOREST FOR REAL-TIME
EVALUATION THROUGH TREE FRAMING

Sebastian Buschjager, Kuan-Hsun Chen, Jian-Jia Chen and Katharina Morik

TU Dortmund University - Artifical Intelligence Group and Design Automation for Embedded Systems Group

November 18, 2018

1/14

technische universitat Ia computer 0@‘ Artificial Intelligence
dortmund science 12 ‘ Group

FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth

2/14

technische universitat Ia computer 0@‘ Artificial Intelligence
dortmund science 12 ‘ Group

FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth

> It produces roughly 180 MB/s of data
> Only 1in 10.000 measurements is interesting
> Bandwidth to transmit measurements is limited

2/14

dortmund

technische universitat Ia co_mpute1r2 értiﬂciallntelligence
science ‘ roup

FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth

> It produces roughly 180 MB/s of data
> Only 1in 10.000 measurements is interesting
> Bandwidth to transmit measurements is limited

Idea Use a Random Forest to filter measurements before further processing

> Pre-train forest on simulated data, then apply it in the real world
> Physicist know Random Forests
> Very good black-box learner, no hyperparameter tuning necessary

2/14

technische universitat Ia computer e@ Artificial Intelligence
dortmund science 12 ‘ Group

FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth

> It produces roughly 180 MB/s of data
> Only 1in 10.000 measurements is interesting
> Bandwidth to transmit measurements is limited

Idea Use a Random Forest to filter measurements before further processing

> Pre-train forest on simulated data, then apply it in the real world
> Physicist know Random Forests
> Very good black-box learner, no hyperparameter tuning necessary

Goal Execute Random Forest in real-time and keep-up with 180 MB/s of data

Constraint Size and energy available is limited — Model must run on embedded system

2/14

technische universitat CS Ia computer @@’ Artificial Intelligence

science 12

dortmund Group

Recap Decision Trees and Random Forest

DTs split the data in regions until each region is “pure”
Splits are binary decisions if x belongs to certain region
Leaf nodes contain actual prediction for a given region
RFs built multiple DTs on subsets of the data/features

vV vYyy

3/14

technische universitat Ia computer €~ Artificial Intelligence
dortmund G science 12 @"’ Group

Recap Decision Trees and Random Forest

> DTs split the data in regions until each region is “pure”

> Splits are binary decisions if x belongs to certain region

> Leaf nodes contain actual prediction for a given region

> RFs built multiple DTs on subsets of the data/features
Question How to implement a Decision Tree / Random Forest?

3/14

technische universitat I 2 computer 0?‘
dortmund science 12 ‘

Cache line

l

TT TN
‘Cache 1‘ KCaChe 2}

‘ Shared Cache

111

‘ Main memory ‘

N

Cache set

> CPU computations are much faster than memory access
» Memory-Hierarchy (Caches) is used to hide slow memory
> Caches assume spatial-temporal locality of accesses

Question How to implement a Decision Tree / Random Forest?

Artificial Intelligence

4[4

technische universitét CS Ia computer @’ Artificial Intelligence
dortmund science 12 ¢ Group

Implementing Decision Trees (1)

Fact There are at-least two ways to implement DTs in modern programming languages

Native-Tree Store nodes in array and iterate it in a loop

5/14

technische universitat Ia computer 0@‘ Artificial Intelligence
dortmund science 12 ‘ Group

Fact There are at-least two ways to implement DTs in modern programming languages

Native-Tree Store nodes in array and iterate it in a loop

Node t[] = {/* ... */3};
bool predict(short const * x){ + Sin1pleto anlen1ent
unsigned int i = 0;
while(!t[i].isLeaf) {
if (x[t[il.f] <= t[il.s) {

+

Small ‘hot’-code

i = t[il.1; - Requires D-Cache (array)
} else {
i = t[il.r; - Requires I-Cache (code)
}
} - Requires indirect memory access

return t[i].pred;

5/14

technische universitét CS Ia computer @’ Artificial Intelligence
dortmund science 12 ¢ Group

Implementing Decision Trees (2)

Fact There are at-least two ways to implement DTs in modern programming languages

If-Else-Tree Unroll tree into if-else instructions

6/14

technische universitét Ia computer (o~ Artificial Intelligence
dortmund G science 12 @"' Group

Implementing Decision Trees (2)

Fact There are at-least two ways to implement DTs in modern programming languages

If-Else-Tree Unroll tree into if-else instructions

bool predict(short const * x){
if (x[0] <= 8191)1
if (x[1] <= 2048){
return true;
} else {
return false;

+

No indirect memory access

+

Compiler can optimize aggressively

}
} else {
if(x[2] <= 512){
return true;
} else {
return false;

+

Only I-Cache required

I-Cache usually small

" No ‘hot’-code

6/14

technische universitat CS Ia computer ’ Artificial Intelligence
dortmund science 12 Group

Probabilistic execution model of DTs

Basic idea Analyse the structure of trained tree and keep most important paths in Cache

Branch-probability p;_,;

Path-probability p(n) = pry—rz; - - - - Prjq1—om,
Expected path length E[L] = 3, p(x) - ||

7/14

technische universitat Ia computer €~ Artificial Intelligence
dortmund G science 12 @"’ Group

Probabilistic execution model of DTs

Basic idea Analyse the structure of trained tree and keep most important paths in Cache

Branch-probability p;_,;
Path-probability p(n) = pry—rz; - - - - Prjq1—om,
Expected path length E[L] = 3, p(x) - ||

Example
p((0,1,3)) = 0.3-0.4-0.25=0.03

p((0,2,6)) 0.7-0.8-0.85 = 0.476

7114

technische universitét CS IE computer @’ Artificial Intelligence
dortmund science 12 ¢ Group

Probabilistic optimizations for DTs

Capacity misses Cache memory is not enough to store all code

But Computation kernel of tree might fit into cache

8/14

technische universitat CS Ia computer ’ Artificial Intelligence
dortmund science 12 Group

Probabilistic optimizations for DTs

Capacity misses Cache memory is not enough to store all code
But Computation kernel of tree might fit into cache

Solution Compute computation kernel for budget g

K = arg max {p(T)|T C ‘Ts.t.Zs(i) < B}
ieT

8/14

technische universitat Ia computer e@ Artificial Intelligence
dortmund science 12 ‘ Group

Capacity misses Cache memory is not enough to store all code
But Computation kernel of tree might fit into cache

Solution Compute computation kernel for budget g

K = arg max {p(T)‘T C Ts.t.Zs(i) < B}
ieT

> Start with the root node
> Greedily add nodes until budget is exceeded

Note

> Estimate s(-) based on assembly analysis
> Choose B based on the properties of specific CPU model

8/14

technische universitat CS Ia computer @@’ Artificial Intelligence

dortmund science 12 Group

Probabilistic optimizations for DTs (2)

Further optimizations

> Reduce memory consumption of nodes for native trees with clever implementation
> Increase cache-hit rate for if-else trees by swapping nodes with higher probability

9/14

technische universitat Ia computer €~ Artificial Intelligence
dortmund G science 12 @"’ Group

Probabilistic optimizations for DTs (2)

Further optimizations

> Reduce memory consumption of nodes for native trees with clever implementation
> Increase cache-hit rate for if-else trees by swapping nodes with higher probability

In total Compare 1 baseline method and 4 different implementations

9/14

technische universitat Ia computer e@ Artificial Intelligence
dortmund science 12 ‘ Group

Further optimizations

> Reduce memory consumption of nodes for native trees with clever implementation
> Increase cache-hit rate for if-else trees by swapping nodes with higher probability

In total Compare 1 baseline method and 4 different implementations

Questions

> What is the performance-gain of these optimizations?
> How do these optimizations perform on different CPU architectures?
> How do these optimizations perform with different forest configurations?

9/14

technische universitat Ia computer €~ Artificial Intelligence
dortmund G science 12 @"’ Group

Experimental Setup

Approach

» Use a Code-Generator to compile sklearn forests (DTs,RF,ET) of varying size to C-Code
> Test resulting code + optimizations on 12 datatest on 3 different CPU architectures

10/ 14

technische universitat Ia computer e@ Artificial Intelligence
dortmund science 12 ‘ Group

Approach

» Use a Code-Generator to compile sklearn forests (DTs,RF,ET) of varying size to C-Code
> Test resulting code + optimizations on 12 datatest on 3 different CPU architectures

Hardware

> X86 Desktop PC with Intel i7-6700 with 16 GB RAM
> ARM Raspberry-Pi 2 with ARMv7 and 1GB RAM
» PPC NXP Reference Design Board with T4240 processors and 6GB RAM

10/ 14

technische universitat

Ia computer
science 12

Dataset # Examples # Features Accuracy
adult 8141 64 0.76 - 0.86
bank 10297 59 0.86-0.90
covertype 145253 54 0.51-0.88
fact 369450 16 0.81-0.87
imdb 25000 10000 0.54-0.80
letter 5000 16 0.06 - 0.95
magic 4755 10 0.64 - 0.87
mnist 10000 784 0.7 - 0.96
satlog 2000 36 0.40-0.90
sensorless 14628 48 0.10 - 0.99
wearable 41409 177 0.57-0.99
wine-quality 1625 11 0.49-0.68

Artificial Intelligence

Group

1/14

technische universitét Ia computer (o~ Artificial Intelligence
dortmund G science 12 @"‘ Group

Results: Desktop PC with Intel (X86)

Note Behaviour similar for DTs, RF and ET — Focus in RF here

—— Results

> Optimizations improve performance
» if-else trees are clear winner

Interpretation
> Large I-Cache (256 KiB) favors if-else
» Compiler can utilize CISC architecture for
if-else
> Native trees do not benefit from I-Cache and

I I I I I CISC
0 5 10 15 20

12/14

technische universitat Ia computer 0@‘ Artificial Intelligence
dortmund science 12 ‘ Group

Note Behaviour similar for DTs, RF and ET — Focus in RF here

— Results

> Optimizations improve performance
» if-else trees are clear winner

Interpretation
> Large I-Cache (256 KiB) favors if-else
» Compiler can utilize CISC architecture for
if-else
> Native trees do not benefit from I-Cache and

I I I I I CISC
0 5 10 15 20

Take-away On X86 CPUs, if-else trees should be favoured

12/14

technische universitat Ia computer €~ Artificial Intelligence
dortmund G science 12 @"’ Group

Results: Raspberry Pi with ARMv7 (ARM)

Note Behaviour similar for DTs, RF and ET — Focus in RF here

Results
> Optimizations improve performance
> No clear winner for larger trees

Interpretation
> Smaller I-Cache (32 KiB) only fits small trees
» Smaller D-Cache (512 KiB) only fits small trees
> Requires more instructions than CISC

0 5 10 15 20

13 /14

technische universitat Ia computer 0@‘ Artificial Intelligence
dortmund science 12 ‘ Group

Note Behaviour similar for DTs, RF and ET — Focus in RF here

‘ Results

> Optimizations improve performance
> No clear winner for larger trees

Interpretation
> Smaller I-Cache (32 KiB) only fits small trees
» Smaller D-Cache (512 KiB) only fits small trees
> Requires more instructions than CISC

Take-away Use if-else version for small trees. For larger ones there is no clear
recommendation

13 /14

technische universitat CS Ia computer 0@’ Artificial Intelligence

dortmund science 12 Group

Summary and Take-Aways

Modern physics experiments generate huge amounts of data

But We can use ML to filter-out unwanted measurements before further processing

14 [14

https://bitbucket.org/sbuschjaeger/arch-forest

technische universitat Ia computer e@ Artificial Intelligence
dortmund science 12 ‘ Group

Modern physics experiments generate huge amounts of data
But We can use ML to filter-out unwanted measurements before further processing

Our approach Use a code-generator to generate optimized RF code

There are at-least two ways to implement Decision Trees in modern languages

Native trees mostly rely on the data cache

If-else trees mostly rely on the instruction cache

Careful cache management can increase performance by 2 — 6 (1500 compared to sklearn)
Optimizations & implementations behave differently on different CPU architectures

vV VvyVvVvyVvyywy

1% [14

https://bitbucket.org/sbuschjaeger/arch-forest

technische universitat Ia computer e@ Artificial Intelligence
dortmund science 12 ‘ Group

Modern physics experiments generate huge amounts of data
But We can use ML to filter-out unwanted measurements before further processing

Our approach Use a code-generator to generate optimized RF code

There are at-least two ways to implement Decision Trees in modern languages

Native trees mostly rely on the data cache

If-else trees mostly rely on the instruction cache

Careful cache management can increase performance by 2 — 6 (1500 compared to sklearn)
Optimizations & implementations behave differently on different CPU architectures

vV VvyVvVvyVvyywy

Now Physicist can generate optimized C code for each new experiment

And you as well!

https://bitbucket.org/sbuschjaeger/arch-forest

14 [14

https://bitbucket.org/sbuschjaeger/arch-forest

