
Artificial Intelligence
Group

Realization of Random Forest for Real-Time
Evaluation through Tree Framing

Sebastian Buschjäger, Kuan-Hsun Chen, Jian-Jia Chen and Katharina Morik
TU Dortmund University - Arti�cal Intelligence Group and Design Automation for Embedded Systems Group

November 18, 2018

1 / 14

Artificial Intelligence
Group

Motivation

FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth

I It produces roughly 180 MB/s of data
I Only 1 in 10.000 measurements is interesting
I Bandwidth to transmit measurements is limited

Idea Use a Random Forest to �lter measurements before further processing

I Pre-train forest on simulated data, then apply it in the real world
I Physicist know Random Forests
I Very good black-box learner, no hyperparameter tuning necessary

Goal Execute Random Forest in real-time and keep-up with 180 MB/s of data

Constraint Size and energy available is limited→ Model must run on embedded system

2 / 14

Artificial Intelligence
Group

Motivation

FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth

I It produces roughly 180 MB/s of data
I Only 1 in 10.000 measurements is interesting
I Bandwidth to transmit measurements is limited

Idea Use a Random Forest to �lter measurements before further processing

I Pre-train forest on simulated data, then apply it in the real world
I Physicist know Random Forests
I Very good black-box learner, no hyperparameter tuning necessary

Goal Execute Random Forest in real-time and keep-up with 180 MB/s of data

Constraint Size and energy available is limited→ Model must run on embedded system

2 / 14

Artificial Intelligence
Group

Motivation

FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth

I It produces roughly 180 MB/s of data
I Only 1 in 10.000 measurements is interesting
I Bandwidth to transmit measurements is limited

Idea Use a Random Forest to �lter measurements before further processing

I Pre-train forest on simulated data, then apply it in the real world
I Physicist know Random Forests
I Very good black-box learner, no hyperparameter tuning necessary

Goal Execute Random Forest in real-time and keep-up with 180 MB/s of data

Constraint Size and energy available is limited→ Model must run on embedded system

2 / 14

Artificial Intelligence
Group

Motivation

FACT First G-APD Cherenkov Telescope continously monitors the sky for gamma rays
Goal Have a small, cheap telescope which can be deployed everywhere on earth

I It produces roughly 180 MB/s of data
I Only 1 in 10.000 measurements is interesting
I Bandwidth to transmit measurements is limited

Idea Use a Random Forest to �lter measurements before further processing

I Pre-train forest on simulated data, then apply it in the real world
I Physicist know Random Forests
I Very good black-box learner, no hyperparameter tuning necessary

Goal Execute Random Forest in real-time and keep-up with 180 MB/s of data

Constraint Size and energy available is limited→ Model must run on embedded system

2 / 14

Artificial Intelligence
Group

Recap Decision Trees and Random Forest

0

2

6

1211

0.15 0.85

5

109

0.1 0.9

0.2 0.8

1

43

87

0.25 0.75

0.4 0.6

0.3 0.7

I DTs split the data in regions until each region is “pure”
I Splits are binary decisions if x belongs to certain region
I Leaf nodes contain actual prediction for a given region
I RFs built multiple DTs on subsets of the data/features

Question How to implement a Decision Tree / Random Forest?

3 / 14

Artificial Intelligence
Group

Recap Decision Trees and Random Forest

0

2

6

1211

0.15 0.85

5

109

0.1 0.9

0.2 0.8

1

43

87

0.25 0.75

0.4 0.6

0.3 0.7

I DTs split the data in regions until each region is “pure”
I Splits are binary decisions if x belongs to certain region
I Leaf nodes contain actual prediction for a given region
I RFs built multiple DTs on subsets of the data/features

Question How to implement a Decision Tree / Random Forest?
3 / 14

Artificial Intelligence
Group

Recap Computer architecture

CPU 1

Cache 1

CPU 2

Cache 2

Shared Cache

Main memory

Cache line

Cache set

Data

I CPU computations are much faster than memory access
I Memory-Hierarchy (Caches) is used to hide slow memory
I Caches assume spatial-temporal locality of accesses

Question How to implement a Decision Tree / Random Forest?

4 / 14

Artificial Intelligence
Group

Implementing Decision Trees (1)

Fact There are at-least two ways to implement DTs in modern programming languages

Native-Tree Store nodes in array and iterate it in a loop

Node t[] = {/* ... */ };

bool predict(short const * x){

unsigned int i = 0;

while(!t[i].isLeaf) {

if (x[t[i].f] <= t[i].s) {

i = t[i].l;

} else {

i = t[i].r;

}

}

return t[i].pred;

}

+ Simple to implement

+ Small ‘hot’-code

- Requires D-Cache (array)

- Requires I-Cache (code)

- Requires indirect memory access

5 / 14

Artificial Intelligence
Group

Implementing Decision Trees (1)

Fact There are at-least two ways to implement DTs in modern programming languages

Native-Tree Store nodes in array and iterate it in a loop

Node t[] = {/* ... */ };

bool predict(short const * x){

unsigned int i = 0;

while(!t[i].isLeaf) {

if (x[t[i].f] <= t[i].s) {

i = t[i].l;

} else {

i = t[i].r;

}

}

return t[i].pred;

}

+ Simple to implement

+ Small ‘hot’-code

- Requires D-Cache (array)

- Requires I-Cache (code)

- Requires indirect memory access

5 / 14

Artificial Intelligence
Group

Implementing Decision Trees (2)

Fact There are at-least two ways to implement DTs in modern programming languages

If-Else-Tree Unroll tree into if-else instructions

bool predict(short const * x){

if(x[0] <= 8191){

if(x[1] <= 2048){

return true;

} else {

return false;

}

} else {

if(x[2] <= 512){

return true;

} else {

return false;

}

}

}

+ No indirect memory access

+ Compiler can optimize aggressively

+ Only I-Cache required

- I-Cache usually small

- No ‘hot’-code

6 / 14

Artificial Intelligence
Group

Implementing Decision Trees (2)

Fact There are at-least two ways to implement DTs in modern programming languages

If-Else-Tree Unroll tree into if-else instructions

bool predict(short const * x){

if(x[0] <= 8191){

if(x[1] <= 2048){

return true;

} else {

return false;

}

} else {

if(x[2] <= 512){

return true;

} else {

return false;

}

}

}

+ No indirect memory access

+ Compiler can optimize aggressively

+ Only I-Cache required

- I-Cache usually small

- No ‘hot’-code

6 / 14

Artificial Intelligence
Group

Probabilistic execution model of DTs

Basic idea Analyse the structure of trained tree and keep most important paths in Cache

0

2

6

1211

0.15 0.85

5

109

0.1 0.9

0.2 0.8

1

43

87

0.25 0.75

0.4 0.6

0.3 0.7

Branch-probability pi→j
Path-probability p(π) = pπ0→π1 · . . . · pπL−1→πL

Expected path length Å[L] =
∑

π p(π) · |π |

Example

p((0, 1, 3)) = 0.3 · 0.4 · 0.25 = 0.03
p((0, 2, 6)) = 0.7 · 0.8 · 0.85 = 0.476

7 / 14

Artificial Intelligence
Group

Probabilistic execution model of DTs

Basic idea Analyse the structure of trained tree and keep most important paths in Cache

0

2

6

1211

0.15 0.85

5

109

0.1 0.9

0.2 0.8

1

43

87

0.25 0.75

0.4 0.6

0.3 0.7

Branch-probability pi→j
Path-probability p(π) = pπ0→π1 · . . . · pπL−1→πL

Expected path length Å[L] =
∑

π p(π) · |π |

Example

p((0, 1, 3)) = 0.3 · 0.4 · 0.25 = 0.03
p((0, 2, 6)) = 0.7 · 0.8 · 0.85 = 0.476

7 / 14

Artificial Intelligence
Group

Probabilistic optimizations for DTs

Capacity misses Cache memory is not enough to store all code

But Computation kernel of tree might �t into cache

Solution Compute computation kernel for budget β

K = argmax
{
p(T)

���T ⊆ T s.t.∑
i∈T

s(i) ≤ β
}

I Start with the root node
I Greedily add nodes until budget is exceeded

Note

I Estimate s(·) based on assembly analysis
I Choose β based on the properties of speci�c CPU model

8 / 14

Artificial Intelligence
Group

Probabilistic optimizations for DTs

Capacity misses Cache memory is not enough to store all code

But Computation kernel of tree might �t into cache

Solution Compute computation kernel for budget β

K = argmax
{
p(T)

���T ⊆ T s.t.∑
i∈T

s(i) ≤ β
}

I Start with the root node
I Greedily add nodes until budget is exceeded

Note

I Estimate s(·) based on assembly analysis
I Choose β based on the properties of speci�c CPU model

8 / 14

Artificial Intelligence
Group

Probabilistic optimizations for DTs

Capacity misses Cache memory is not enough to store all code

But Computation kernel of tree might �t into cache

Solution Compute computation kernel for budget β

K = argmax
{
p(T)

���T ⊆ T s.t.∑
i∈T

s(i) ≤ β
}

I Start with the root node
I Greedily add nodes until budget is exceeded

Note

I Estimate s(·) based on assembly analysis
I Choose β based on the properties of speci�c CPU model

8 / 14

Artificial Intelligence
Group

Probabilistic optimizations for DTs (2)

Further optimizations

I Reduce memory consumption of nodes for native trees with clever implementation
I Increase cache-hit rate for if-else trees by swapping nodes with higher probability

In total Compare 1 baseline method and 4 di�erent implementations

Questions

I What is the performance-gain of these optimizations?
I How do these optimizations perform on di�erent CPU architectures?
I How do these optimizations perform with di�erent forest con�gurations?

9 / 14

Artificial Intelligence
Group

Probabilistic optimizations for DTs (2)

Further optimizations

I Reduce memory consumption of nodes for native trees with clever implementation
I Increase cache-hit rate for if-else trees by swapping nodes with higher probability

In total Compare 1 baseline method and 4 di�erent implementations

Questions

I What is the performance-gain of these optimizations?
I How do these optimizations perform on di�erent CPU architectures?
I How do these optimizations perform with di�erent forest con�gurations?

9 / 14

Artificial Intelligence
Group

Probabilistic optimizations for DTs (2)

Further optimizations

I Reduce memory consumption of nodes for native trees with clever implementation
I Increase cache-hit rate for if-else trees by swapping nodes with higher probability

In total Compare 1 baseline method and 4 di�erent implementations

Questions

I What is the performance-gain of these optimizations?
I How do these optimizations perform on di�erent CPU architectures?
I How do these optimizations perform with di�erent forest con�gurations?

9 / 14

Artificial Intelligence
Group

Experimental Setup

Approach

I Use a Code-Generator to compile sklearn forests (DTs,RF,ET) of varying size to C-Code
I Test resulting code + optimizations on 12 datatest on 3 di�erent CPU architectures

Hardware

I X86 Desktop PC with Intel i7-6700 with 16 GB RAM
I ARM Raspberry-Pi 2 with ARMv7 and 1GB RAM
I PPC NXP Reference Design Board with T4240 processors and 6GB RAM

10 / 14

Artificial Intelligence
Group

Experimental Setup

Approach

I Use a Code-Generator to compile sklearn forests (DTs,RF,ET) of varying size to C-Code
I Test resulting code + optimizations on 12 datatest on 3 di�erent CPU architectures

Hardware

I X86 Desktop PC with Intel i7-6700 with 16 GB RAM
I ARM Raspberry-Pi 2 with ARMv7 and 1GB RAM
I PPC NXP Reference Design Board with T4240 processors and 6GB RAM

10 / 14

Artificial Intelligence
Group

Experimental Setup (2)

Dataset # Examples # Features Accuracy
adult 8141 64 0.76 - 0.86
bank 10297 59 0.86 - 0.90
covertype 145253 54 0.51 - 0.88
fact 369450 16 0.81 - 0.87
imdb 25000 10000 0.54 - 0.80
letter 5000 16 0.06 - 0.95
magic 4755 10 0.64 - 0.87
mnist 10000 784 0.17 - 0.96
satlog 2000 36 0.40 - 0.90
sensorless 14628 48 0.10 - 0.99
wearable 41409 17 0.57 - 0.99
wine-quality 1625 11 0.49 - 0.68

11 / 14

Artificial Intelligence
Group

Results: Desktop PC with Intel (X86)

Note Behaviour similar for DTs, RF and ET→ Focus in RF here

0 5 10 15 20

1

2

3

4

StandardNativeTree
OptimizedNativeTree

StandardIfTree
OptimizedIfTree

Results
I Optimizations improve performance
I if-else trees are clear winner

Interpretation
I Large I-Cache (256 KiB) favors if-else
I Compiler can utilize CISC architecture for
if-else

I Native trees do not bene�t from I-Cache and
CISC

Take-away On X86 CPUs, if-else trees should be favoured

12 / 14

Artificial Intelligence
Group

Results: Desktop PC with Intel (X86)

Note Behaviour similar for DTs, RF and ET→ Focus in RF here

0 5 10 15 20

1

2

3

4

StandardNativeTree
OptimizedNativeTree

StandardIfTree
OptimizedIfTree

Results
I Optimizations improve performance
I if-else trees are clear winner

Interpretation
I Large I-Cache (256 KiB) favors if-else
I Compiler can utilize CISC architecture for
if-else

I Native trees do not bene�t from I-Cache and
CISC

Take-away On X86 CPUs, if-else trees should be favoured

12 / 14

Artificial Intelligence
Group

Results: Raspberry Pi with ARMv7 (ARM)

Note Behaviour similar for DTs, RF and ET→ Focus in RF here

0 5 10 15 20

1

2

3

4

5

6

StandardNativeTree
OptimizedNativeTree

StandardIfTree
OptimizedIfTree

Results
I Optimizations improve performance
I No clear winner for larger trees

Interpretation
I Smaller I-Cache (32 KiB) only �ts small trees
I Smaller D-Cache (512 KiB) only �ts small trees
I Requires more instructions than CISC

Take-away Use if-else version for small trees. For larger ones there is no clear
recommendation

13 / 14

Artificial Intelligence
Group

Results: Raspberry Pi with ARMv7 (ARM)

Note Behaviour similar for DTs, RF and ET→ Focus in RF here

0 5 10 15 20

1

2

3

4

5

6

StandardNativeTree
OptimizedNativeTree

StandardIfTree
OptimizedIfTree

Results
I Optimizations improve performance
I No clear winner for larger trees

Interpretation
I Smaller I-Cache (32 KiB) only �ts small trees
I Smaller D-Cache (512 KiB) only �ts small trees
I Requires more instructions than CISC

Take-away Use if-else version for small trees. For larger ones there is no clear
recommendation

13 / 14

Artificial Intelligence
Group

Summary and Take-Aways

Modern physics experiments generate huge amounts of data

But We can use ML to �lter-out unwanted measurements before further processing

Our approach Use a code-generator to generate optimized RF code

I There are at-least two ways to implement Decision Trees in modern languages
I Native trees mostly rely on the data cache
I If-else trees mostly rely on the instruction cache
I Careful cache management can increase performance by 2 − 6 (1500 compared to sklearn)
I Optimizations & implementations behave di�erently on di�erent CPU architectures

Now Physicist can generate optimized C code for each new experiment

And you as well!

https://bitbucket.org/sbuschjaeger/arch-forest

14 / 14

https://bitbucket.org/sbuschjaeger/arch-forest

Artificial Intelligence
Group

Summary and Take-Aways

Modern physics experiments generate huge amounts of data

But We can use ML to �lter-out unwanted measurements before further processing

Our approach Use a code-generator to generate optimized RF code

I There are at-least two ways to implement Decision Trees in modern languages
I Native trees mostly rely on the data cache
I If-else trees mostly rely on the instruction cache
I Careful cache management can increase performance by 2 − 6 (1500 compared to sklearn)
I Optimizations & implementations behave di�erently on di�erent CPU architectures

Now Physicist can generate optimized C code for each new experiment

And you as well!

https://bitbucket.org/sbuschjaeger/arch-forest

14 / 14

https://bitbucket.org/sbuschjaeger/arch-forest

Artificial Intelligence
Group

Summary and Take-Aways

Modern physics experiments generate huge amounts of data

But We can use ML to �lter-out unwanted measurements before further processing

Our approach Use a code-generator to generate optimized RF code

I There are at-least two ways to implement Decision Trees in modern languages
I Native trees mostly rely on the data cache
I If-else trees mostly rely on the instruction cache
I Careful cache management can increase performance by 2 − 6 (1500 compared to sklearn)
I Optimizations & implementations behave di�erently on di�erent CPU architectures

Now Physicist can generate optimized C code for each new experiment

And you as well!

https://bitbucket.org/sbuschjaeger/arch-forest

14 / 14

https://bitbucket.org/sbuschjaeger/arch-forest

