
Artificial Intelligence
Group

Gaussian Model Trees for Traffic Imputation

Sebastian Buschjäger, Thomas Liebig and Katharina Morik

TU Dortmund University - Arti�cal Intelligence Group

February 20, 2019

1 / 17

Artificial Intelligence
Group

Motivation: Smart Cities

2 / 17

Artificial Intelligence
Group

Motivation: Smart Cities

Idea Distribute small devices across the entire city to monitor speci�c locations

Design requirements

1. Sensing devices should be as small and as energy e�cient as possible to minimize costs
2. Sensing devices should be low-priced to minimize initial investment costs
3. Data should not be processed globally to minimize communication and maximize privacy
4. Prediction models should be small, but accurate enough to be used on the sensing devices
5. The system should report possible sensor locations with respect to its accuracy.

3 / 17

Artificial Intelligence
Group

Motivation: Smart Cities

Idea Distribute small devices across the entire city to monitor speci�c locations

Design requirements

1. Sensing devices should be as small and as energy e�cient as possible to minimize costs
2. Sensing devices should be low-priced to minimize initial investment costs
3. Data should not be processed globally to minimize communication and maximize privacy
4. Prediction models should be small, but accurate enough to be used on the sensing devices
5. The system should report possible sensor locations with respect to its accuracy.

3 / 17

Artificial Intelligence
Group

Tra�c Imputation

Our focus here Count the number of vehicles at a given coordinate (latitude / longitude)
Formally Imputation problem, where we impute missing sensor values

Popular method Gaussian Processes

p(y |D, ®x) ∼ N(f (®x), ·)
with

f (®x) = 〈K(®x,D)K(D)−1, ®y〉

Kernel matrix including noise [k(xi, xj)]i,j + σnI

Target vector [y1, . . . , yN]NKernel vector [k(x, x1), . . . , k(x, xN)]T

Challenges

I GPs do not scale well, due to matrix inversion (runtime O(N3))
I GPs do not have a tra�c-�ow model, e.g. by using map data

4 / 17

Artificial Intelligence
Group

Tra�c Imputation

Our focus here Count the number of vehicles at a given coordinate (latitude / longitude)
Formally Imputation problem, where we impute missing sensor values
Popular method Gaussian Processes

p(y |D, ®x) ∼ N(f (®x), ·)
with

f (®x) = 〈K(®x,D)K(D)−1, ®y〉

Kernel matrix including noise [k(xi, xj)]i,j + σnI

Target vector [y1, . . . , yN]NKernel vector [k(x, x1), . . . , k(x, xN)]T

Challenges

I GPs do not scale well, due to matrix inversion (runtime O(N3))
I GPs do not have a tra�c-�ow model, e.g. by using map data

4 / 17

Artificial Intelligence
Group

Tra�c Imputation

Our focus here Count the number of vehicles at a given coordinate (latitude / longitude)
Formally Imputation problem, where we impute missing sensor values
Popular method Gaussian Processes

p(y |D, ®x) ∼ N(f (®x), ·)
with

f (®x) = 〈K(®x,D)K(D)−1, ®y〉

Kernel matrix including noise [k(xi, xj)]i,j + σnI

Target vector [y1, . . . , yN]NKernel vector [k(x, x1), . . . , k(x, xN)]T

Challenges

I GPs do not scale well, due to matrix inversion (runtime O(N3))
I GPs do not have a tra�c-�ow model, e.g. by using map data

4 / 17

Artificial Intelligence
Group

Tra�c Imputation

Our focus here Count the number of vehicles at a given coordinate (latitude / longitude)
Formally Imputation problem, where we impute missing sensor values
Popular method Gaussian Processes

p(y |D, ®x) ∼ N(f (®x), ·)
with

f (®x) = 〈K(®x,D)K(D)−1, ®y〉

Kernel matrix including noise [k(xi, xj)]i,j + σnI

Target vector [y1, . . . , yN]NKernel vector [k(x, x1), . . . , k(x, xN)]T

Challenges

I GPs do not scale well, due to matrix inversion (runtime O(N3))
I GPs do not have a tra�c-�ow model, e.g. by using map data

4 / 17

Artificial Intelligence
Group

State of the art GPs

Scaleable GPs Well-studied problem with solutions utilizing subset of data points, sparse
kernels, sparse approximation, implicit and explicit block structures, . . .
Important for us Each local sensing device should execute one small expert model
Deisenroth 2015 Distributed Gaussian Processes (DGP)
Idea Factorize global likelihood into product of m individual likelihoods

p(y |D) ≈
m∏
k=1

βkpk(y |Dk)

Expert weight Small GP with samples Dk ⊂ D

Nice
+ pk(y |Dk) are independent from
each other

+ Dk can potentially be small

Problematic
− All experts need to be evaluated
to compute p(y |D)

− Dk is randomly sampled

5 / 17

Artificial Intelligence
Group

State of the art GPs

Scaleable GPs Well-studied problem with solutions utilizing subset of data points, sparse
kernels, sparse approximation, implicit and explicit block structures, . . .
Important for us Each local sensing device should execute one small expert model
Deisenroth 2015 Distributed Gaussian Processes (DGP)
Idea Factorize global likelihood into product of m individual likelihoods

p(y |D) ≈
m∏
k=1

βkpk(y |Dk)

Expert weight Small GP with samples Dk ⊂ D

Nice
+ pk(y |Dk) are independent from
each other

+ Dk can potentially be small

Problematic
− All experts need to be evaluated
to compute p(y |D)

− Dk is randomly sampled

5 / 17

Artificial Intelligence
Group

State of the art GPs

Scaleable GPs Well-studied problem with solutions utilizing subset of data points, sparse
kernels, sparse approximation, implicit and explicit block structures, . . .
Important for us Each local sensing device should execute one small expert model
Deisenroth 2015 Distributed Gaussian Processes (DGP)
Idea Factorize global likelihood into product of m individual likelihoods

p(y |D) ≈
m∏
k=1

βkpk(y |Dk)

Expert weight Small GP with samples Dk ⊂ D

Nice
+ pk(y |Dk) are independent from
each other

+ Dk can potentially be small

Problematic
− All experts need to be evaluated
to compute p(y |D)

− Dk is randomly sampled
5 / 17

Artificial Intelligence
Group

Gaussian Model Trees: Key questions

So far DGPs o�er small expert models, which only require communication of local predictions

But 1 Is there a better way to sample Dk?

But 2 Can we get away without any communication at all?

6 / 17

Artificial Intelligence
Group

GP induction as loss minimization problem

argmin
f ∈H

1
2
| |f | |2
H

+
1
2σ2n

∑
(®x,y)∈D

(
yi − f (®x)

)2

Regularization: Norm of f in RKHS H

Noise assumption from GP

MSE of GP model
Goal Decompose optimization problem into two independent problems.
I Let A ⊆ D denote a set of c inducing points. Let B = D \ A
I Assume k(®xi, ®xj) ≈ 0 for ®xi ∈ A and ®xj ∈ B

Then we can split the optimization problem into two problems

arg min
fA ∈H,fB ∈H

1
2
| |fA | |2H +

1
2σ2n

∑
(®x,y)∈A

(
y − fA(®x)

)2
+

1
2
| |fB | |2H +

1
2σ2n

∑
(®x,y)∈B

(
y − fB(®x)

)2
f (®x) = 〈K(®x,B)K(B)−1, ®y〉

f (®x) = 〈K(®x,A)K(A)−1, ®y〉

7 / 17

Artificial Intelligence
Group

GP induction as loss minimization problem

argmin
f ∈H

1
2
| |f | |2
H

+
1
2σ2n

∑
(®x,y)∈D

(
yi − f (®x)

)2
Regularization: Norm of f in RKHS H

Noise assumption from GP

MSE of GP model

Goal Decompose optimization problem into two independent problems.
I Let A ⊆ D denote a set of c inducing points. Let B = D \ A
I Assume k(®xi, ®xj) ≈ 0 for ®xi ∈ A and ®xj ∈ B

Then we can split the optimization problem into two problems

arg min
fA ∈H,fB ∈H

1
2
| |fA | |2H +

1
2σ2n

∑
(®x,y)∈A

(
y − fA(®x)

)2
+

1
2
| |fB | |2H +

1
2σ2n

∑
(®x,y)∈B

(
y − fB(®x)

)2
f (®x) = 〈K(®x,B)K(B)−1, ®y〉

f (®x) = 〈K(®x,A)K(A)−1, ®y〉

7 / 17

Artificial Intelligence
Group

GP induction as loss minimization problem

argmin
f ∈H

1
2
| |f | |2
H

+
1
2σ2n

∑
(®x,y)∈D

(
yi − f (®x)

)2
Regularization: Norm of f in RKHS H

Noise assumption from GP

MSE of GP model
Goal Decompose optimization problem into two independent problems.
I Let A ⊆ D denote a set of c inducing points. Let B = D \ A
I Assume k(®xi, ®xj) ≈ 0 for ®xi ∈ A and ®xj ∈ B

Then we can split the optimization problem into two problems

arg min
fA ∈H,fB ∈H

1
2
| |fA | |2H +

1
2σ2n

∑
(®x,y)∈A

(
y − fA(®x)

)2
+

1
2
| |fB | |2H +

1
2σ2n

∑
(®x,y)∈B

(
y − fB(®x)

)2
f (®x) = 〈K(®x,B)K(B)−1, ®y〉

f (®x) = 〈K(®x,A)K(A)−1, ®y〉

7 / 17

Artificial Intelligence
Group

GP induction as loss minimization problem

argmin
f ∈H

1
2
| |f | |2
H

+
1
2σ2n

∑
(®x,y)∈D

(
yi − f (®x)

)2
Regularization: Norm of f in RKHS H

Noise assumption from GP

MSE of GP model
Goal Decompose optimization problem into two independent problems.
I Let A ⊆ D denote a set of c inducing points. Let B = D \ A
I Assume k(®xi, ®xj) ≈ 0 for ®xi ∈ A and ®xj ∈ B

Then we can split the optimization problem into two problems

arg min
fA ∈H,fB ∈H

1
2
| |fA | |2H +

1
2σ2n

∑
(®x,y)∈A

(
y − fA(®x)

)2
+

1
2
| |fB | |2H +

1
2σ2n

∑
(®x,y)∈B

(
y − fB(®x)

)2

f (®x) = 〈K(®x,B)K(B)−1, ®y〉

f (®x) = 〈K(®x,A)K(A)−1, ®y〉

7 / 17

Artificial Intelligence
Group

GP induction as loss minimization problem

argmin
f ∈H

1
2
| |f | |2
H

+
1
2σ2n

∑
(®x,y)∈D

(
yi − f (®x)

)2
Regularization: Norm of f in RKHS H

Noise assumption from GP

MSE of GP model
Goal Decompose optimization problem into two independent problems.
I Let A ⊆ D denote a set of c inducing points. Let B = D \ A
I Assume k(®xi, ®xj) ≈ 0 for ®xi ∈ A and ®xj ∈ B

Then we can split the optimization problem into two problems

arg min
fA ∈H,fB ∈H

1
2
| |fA | |2H +

1
2σ2n

∑
(®x,y)∈A

(
y − fA(®x)

)2
+

1
2
| |fB | |2H +

1
2σ2n

∑
(®x,y)∈B

(
y − fB(®x)

)2
f (®x) = 〈K(®x,B)K(B)−1, ®y〉

f (®x) = 〈K(®x,A)K(A)−1, ®y〉

7 / 17

Artificial Intelligence
Group

Subset selection (1)

Question How to �nd sets A and B?

xi
xk

xi xjxj

Observation If kernel is stationary, then k(®xi, ®xj) ≈ 0⇒ k(®xi, ®xk) ≈ 0 for k(®xj, ®xk) ≈ 1.

Thus Points ®xj and ®xk that are similar to each other, will have similar dissimilarity with ®xi

8 / 17

Artificial Intelligence
Group

Subset selection (1)

Question How to �nd sets A and B?

xi
xk

xi xjxj

Observation If kernel is stationary, then k(®xi, ®xj) ≈ 0⇒ k(®xi, ®xk) ≈ 0 for k(®xj, ®xk) ≈ 1.

Thus Points ®xj and ®xk that are similar to each other, will have similar dissimilarity with ®xi

8 / 17

Artificial Intelligence
Group

Subset selection (1)

Question How to �nd sets A and B?

xi
xk

xi

xjxj

Observation If kernel is stationary, then k(®xi, ®xj) ≈ 0⇒ k(®xi, ®xk) ≈ 0 for k(®xj, ®xk) ≈ 1.

Thus Points ®xj and ®xk that are similar to each other, will have similar dissimilarity with ®xi

8 / 17

Artificial Intelligence
Group

Subset selection (1)

Question How to �nd sets A and B?

xi
xk

xi

xj

xj

Observation If kernel is stationary, then k(®xi, ®xj) ≈ 0⇒ k(®xi, ®xk) ≈ 0 for k(®xj, ®xk) ≈ 1.

Thus Points ®xj and ®xk that are similar to each other, will have similar dissimilarity with ®xi

8 / 17

Artificial Intelligence
Group

Subset selection (2)

Thus It is enough to store a reference point for each set A and B.
Conclusion We need to �nd reference points which are maximally dissimilar to each other

Idea Formulate another maximization problem

1
2
log det

(
k11 k12
k21 k22

)
=
1
2
log (k11 · k22 − k12 · k21) → max if k12 = k21 ≈ 0

More formally
arg max

A⊂D, |A |=c

1
2
log det(I + aK(A))

Still This is a very di�cult problem, since we need to check all possible subsets of A ⊂ D
Lawrence 2003 1

2 log det(I + aK(A)) is sub-modular
Why submodularity? It o�ers a simple algorithm with guaranteed performance
Nemhaus 1978 SimpleGreedy has a guaranteed performance of ≥ 1 − (1/e) ≈ 63%

9 / 17

Artificial Intelligence
Group

Subset selection (2)

Thus It is enough to store a reference point for each set A and B.
Conclusion We need to �nd reference points which are maximally dissimilar to each other
Idea Formulate another maximization problem

1
2
log det

(
k11 k12
k21 k22

)
=
1
2
log (k11 · k22 − k12 · k21) → max if k12 = k21 ≈ 0

More formally
arg max

A⊂D, |A |=c

1
2
log det(I + aK(A))

Still This is a very di�cult problem, since we need to check all possible subsets of A ⊂ D
Lawrence 2003 1

2 log det(I + aK(A)) is sub-modular
Why submodularity? It o�ers a simple algorithm with guaranteed performance
Nemhaus 1978 SimpleGreedy has a guaranteed performance of ≥ 1 − (1/e) ≈ 63%

9 / 17

Artificial Intelligence
Group

Subset selection (2)

Thus It is enough to store a reference point for each set A and B.
Conclusion We need to �nd reference points which are maximally dissimilar to each other
Idea Formulate another maximization problem

1
2
log det

(
k11 k12
k21 k22

)
=
1
2
log (k11 · k22 − k12 · k21) → max if k12 = k21 ≈ 0

More formally
arg max

A⊂D, |A |=c

1
2
log det(I + aK(A))

Still This is a very di�cult problem, since we need to check all possible subsets of A ⊂ D
Lawrence 2003 1

2 log det(I + aK(A)) is sub-modular
Why submodularity? It o�ers a simple algorithm with guaranteed performance
Nemhaus 1978 SimpleGreedy has a guaranteed performance of ≥ 1 − (1/e) ≈ 63%

9 / 17

Artificial Intelligence
Group

Subset selection (2)

Thus It is enough to store a reference point for each set A and B.
Conclusion We need to �nd reference points which are maximally dissimilar to each other
Idea Formulate another maximization problem

1
2
log det

(
k11 k12
k21 k22

)
=
1
2
log (k11 · k22 − k12 · k21) → max if k12 = k21 ≈ 0

More formally
arg max

A⊂D, |A |=c

1
2
log det(I + aK(A))

Still This is a very di�cult problem, since we need to check all possible subsets of A ⊂ D
Lawrence 2003 1

2 log det(I + aK(A)) is sub-modular

Why submodularity? It o�ers a simple algorithm with guaranteed performance
Nemhaus 1978 SimpleGreedy has a guaranteed performance of ≥ 1 − (1/e) ≈ 63%

9 / 17

Artificial Intelligence
Group

Subset selection (2)

Thus It is enough to store a reference point for each set A and B.
Conclusion We need to �nd reference points which are maximally dissimilar to each other
Idea Formulate another maximization problem

1
2
log det

(
k11 k12
k21 k22

)
=
1
2
log (k11 · k22 − k12 · k21) → max if k12 = k21 ≈ 0

More formally
arg max

A⊂D, |A |=c

1
2
log det(I + aK(A))

Still This is a very di�cult problem, since we need to check all possible subsets of A ⊂ D
Lawrence 2003 1

2 log det(I + aK(A)) is sub-modular
Why submodularity? It o�ers a simple algorithm with guaranteed performance
Nemhaus 1978 SimpleGreedy has a guaranteed performance of ≥ 1 − (1/e) ≈ 63%

9 / 17

Artificial Intelligence
Group

Putting it all together (1)

Overall approach Greedy Top-Down algorithm

I Select c ‘most dissimilar’ samples
I View each sample as ‘region’
I Repeat until only M points or less are present in a region. Train a full GP on those regions.

D

D1 D2D1 D2

D3 D4 D5 D6

Train full GP on these data-sets

10 / 17

Artificial Intelligence
Group

Putting it all together (1)

Overall approach Greedy Top-Down algorithm

I Select c ‘most dissimilar’ samples
I View each sample as ‘region’
I Repeat until only M points or less are present in a region. Train a full GP on those regions.

D

D1 D2D1 D2

D3 D4 D5 D6

Train full GP on these data-sets

10 / 17

Artificial Intelligence
Group

Putting it all together (1)

Overall approach Greedy Top-Down algorithm

I Select c ‘most dissimilar’ samples
I View each sample as ‘region’
I Repeat until only M points or less are present in a region. Train a full GP on those regions.

D

D1 D2D1 D2

D3 D4 D5 D6

Train full GP on these data-sets

10 / 17

Artificial Intelligence
Group

Putting it all together (1)

Overall approach Greedy Top-Down algorithm

I Select c ‘most dissimilar’ samples
I View each sample as ‘region’
I Repeat until only M points or less are present in a region. Train a full GP on those regions.

D

D1 D2

D1 D2

D3 D4 D5 D6

Train full GP on these data-sets

10 / 17

Artificial Intelligence
Group

Putting it all together (1)

Overall approach Greedy Top-Down algorithm

I Select c ‘most dissimilar’ samples
I View each sample as ‘region’
I Repeat until only M points or less are present in a region. Train a full GP on those regions.

D

D1 D2

D1 D2

D3 D4 D5 D6

Train full GP on these data-sets

10 / 17

Artificial Intelligence
Group

Putting it all together (1)

Overall approach Greedy Top-Down algorithm

I Select c ‘most dissimilar’ samples
I View each sample as ‘region’
I Repeat until only M points or less are present in a region. Train a full GP on those regions.

D

D1 D2

D1 D2

D3 D4

D5 D6

Train full GP on these data-sets

10 / 17

Artificial Intelligence
Group

Putting it all together (1)

Overall approach Greedy Top-Down algorithm

I Select c ‘most dissimilar’ samples
I View each sample as ‘region’
I Repeat until only M points or less are present in a region. Train a full GP on those regions.

D

D1 D2

D1 D2

D3 D4

D5 D6

Train full GP on these data-sets

10 / 17

Artificial Intelligence
Group

Putting it all together (1)

Overall approach Greedy Top-Down algorithm

I Select c ‘most dissimilar’ samples
I View each sample as ‘region’
I Repeat until only M points or less are present in a region. Train a full GP on those regions.

D

D1 D2

D1 D2

D3 D4 D5 D6

Train full GP on these data-sets

10 / 17

Artificial Intelligence
Group

Putting it all together (1)

Overall approach Greedy Top-Down algorithm

I Select c ‘most dissimilar’ samples
I View each sample as ‘region’
I Repeat until only M points or less are present in a region. Train a full GP on those regions.

D

D1 D2

D1 D2

D3 D4 D5 D6

Train full GP on these data-sets

10 / 17

Artificial Intelligence
Group

Putting it all together (2)

Algorithm 2 Gaussian Model Tree (GMT).
1: function trainGMT(D, c, τ)
2: if |D| ≥ τ then
3: A = SimpleGreedy(D, c)
4: for (x, y) ∈ D do
5: r = argmax{k(x, e)|e ∈ A}
6: Dr = Dr ∪ {x}
7: for i = 1, . . . , c do
8: trainGMT(Di, c, τ)
9: else
10: trainFullGP(D)

Parameters
I D: Training data

I c: Number of regions
(→ Number of children per inner node)

I τ : Minimum number of data points
(→ size of experts in the end)

Note We can parallelise over c. The expected runtime is O(logc(n) · n · c2 + n · τ3)

11 / 17

Artificial Intelligence
Group

Experimental setup

Question 1 What is the accuracy of the proposed method?
Question 2 How much memory is required per node?

Approach Use tra�c simulator SUMO to generate data with su�cient ground truth

I 24h simulation for the City of Luxembourg

I 3523 simulated sensor available

I We simulated 131357 vehicle counts per sensor
from 7:00 till 11:00

Goal predict average number of vehicles per sensor node (given as its coordinates)

12 / 17

Artificial Intelligence
Group

Experimental setup

Question 1 What is the accuracy of the proposed method?
Question 2 How much memory is required per node?
Approach Use tra�c simulator SUMO to generate data with su�cient ground truth

I 24h simulation for the City of Luxembourg

I 3523 simulated sensor available

I We simulated 131357 vehicle counts per sensor
from 7:00 till 11:00

Goal predict average number of vehicles per sensor node (given as its coordinates)

12 / 17

Artificial Intelligence
Group

Results on Luxembourg data set

Error measure Standardized mean-squared error

SMSE =
1

var (DTest) |DTest |
∑

(®x,y)∈DTest

(f (®x) − y)2

Observation The average prediction f (®x) = 1/N
∑
i yi has a SMSE of roughly 1

Experiments Compare 576 di�erent hyperparameter combinations with a 5-fold cross validation.
Method and Parameters Kernel SMSE Avg. Size
Full GP, c = 1000 0.5/0.5 0.767 1000
Informative Vector Machine, c = 500 2.0/2.0 0.866 500
Distributed GPs, c = 2800,m = 50 0.5/0.5 0.733 2800
Gaussian Model Trees, c = 50, τ = 1000 1.0/2.0 0.583 56.80

Table: Parameter con�guration with smallest SMSE per algorithm.
Observation 1 GMT compares favorably to FPG and DGP.
Observation 2 GMT requires 17 − 58 times fewer resources per node than FGP and DGP!

13 / 17

Artificial Intelligence
Group

Results on Luxembourg data set

Error measure Standardized mean-squared error

SMSE =
1

var (DTest) |DTest |
∑

(®x,y)∈DTest

(f (®x) − y)2

Observation The average prediction f (®x) = 1/N
∑
i yi has a SMSE of roughly 1

Experiments Compare 576 di�erent hyperparameter combinations with a 5-fold cross validation.
Method and Parameters Kernel SMSE Avg. Size
Full GP, c = 1000 0.5/0.5 0.767 1000
Informative Vector Machine, c = 500 2.0/2.0 0.866 500
Distributed GPs, c = 2800,m = 50 0.5/0.5 0.733 2800
Gaussian Model Trees, c = 50, τ = 1000 1.0/2.0 0.583 56.80

Table: Parameter con�guration with smallest SMSE per algorithm.

Observation 1 GMT compares favorably to FPG and DGP.
Observation 2 GMT requires 17 − 58 times fewer resources per node than FGP and DGP!

13 / 17

Artificial Intelligence
Group

Results on Luxembourg data set

Error measure Standardized mean-squared error

SMSE =
1

var (DTest) |DTest |
∑

(®x,y)∈DTest

(f (®x) − y)2

Observation The average prediction f (®x) = 1/N
∑
i yi has a SMSE of roughly 1

Experiments Compare 576 di�erent hyperparameter combinations with a 5-fold cross validation.
Method and Parameters Kernel SMSE Avg. Size
Full GP, c = 1000 0.5/0.5 0.767 1000
Informative Vector Machine, c = 500 2.0/2.0 0.866 500
Distributed GPs, c = 2800,m = 50 0.5/0.5 0.733 2800
Gaussian Model Trees, c = 50, τ = 1000 1.0/2.0 0.583 56.80

Table: Parameter con�guration with smallest SMSE per algorithm.
Observation 1 GMT compares favorably to FPG and DGP.
Observation 2 GMT requires 17 − 58 times fewer resources per node than FGP and DGP!

13 / 17

Artificial Intelligence
Group

Results on Luxembourg data set (2)

Nice bonus We can visualize the regions where GMT fails

0

1

2

3

4

5

6

7

SM
SE

14 / 17

Artificial Intelligence
Group

Recap: Gaussian Model Trees

Goal Distribute small sensor devices in the city each with a small, locale ML model

I View GP induction as optimization problem
I Decompose optimization problem into independent sub-problems
I View decomposition as sample selection with guaranteed performance by submodularity
I Built a tree-structured classi�er by recursively partition data into smaller sub-problems

So far Very promising results on data in the context of Smart Cities

Outlook

I Use di�erent kernel hyperparameters per node
I Gaussian assumption often violated→ Use other prediction methods in leaf-node.
I Borrow ideas from Decision Trees for post- and pre-pruning

https://bitbucket.org/sbuschjaeger/ensembles/src

15 / 17

https://bitbucket.org/sbuschjaeger/ensembles/src

Artificial Intelligence
Group

Recap: Gaussian Model Trees

Goal Distribute small sensor devices in the city each with a small, locale ML model

I View GP induction as optimization problem
I Decompose optimization problem into independent sub-problems
I View decomposition as sample selection with guaranteed performance by submodularity
I Built a tree-structured classi�er by recursively partition data into smaller sub-problems

So far Very promising results on data in the context of Smart Cities

Outlook

I Use di�erent kernel hyperparameters per node
I Gaussian assumption often violated→ Use other prediction methods in leaf-node.
I Borrow ideas from Decision Trees for post- and pre-pruning

https://bitbucket.org/sbuschjaeger/ensembles/src

15 / 17

https://bitbucket.org/sbuschjaeger/ensembles/src

Artificial Intelligence
Group

Recap: Gaussian Model Trees

Goal Distribute small sensor devices in the city each with a small, locale ML model

I View GP induction as optimization problem
I Decompose optimization problem into independent sub-problems
I View decomposition as sample selection with guaranteed performance by submodularity
I Built a tree-structured classi�er by recursively partition data into smaller sub-problems

So far Very promising results on data in the context of Smart Cities

Outlook

I Use di�erent kernel hyperparameters per node
I Gaussian assumption often violated→ Use other prediction methods in leaf-node.
I Borrow ideas from Decision Trees for post- and pre-pruning

https://bitbucket.org/sbuschjaeger/ensembles/src

15 / 17

https://bitbucket.org/sbuschjaeger/ensembles/src

Artificial Intelligence
Group

More experiments

Note Full GP is still manageable with N = 3523. What about bigger data-sets?

First follow-up experiment UK-tra�c imputation data from 2017

I Same as Luxembourg task, but in the UK with N = 18149 sensors

Second follow-up experiment ‘Rate’ an area in the city, e.g. by quality of life.

Problem No good data available. Thus we used a (arguably bad) proxy data set

I Predict the apartment price given its coordinates in the UK from 2015
I In total N = 64431
I No further information given on the apartments

16 / 17

Artificial Intelligence
Group

More experiments

Note Full GP is still manageable with N = 3523. What about bigger data-sets?

First follow-up experiment UK-tra�c imputation data from 2017

I Same as Luxembourg task, but in the UK with N = 18149 sensors

Second follow-up experiment ‘Rate’ an area in the city, e.g. by quality of life.

Problem No good data available. Thus we used a (arguably bad) proxy data set

I Predict the apartment price given its coordinates in the UK from 2015
I In total N = 64431
I No further information given on the apartments

16 / 17

Artificial Intelligence
Group

Results on UK data sets

Again Compare 576 di�erent hyperparameter con�gurations with a 5-fold cross validation.
Method and Parameters Kernel SMSE Avg. Size
FGP, c = 500 0.5/2.0 0.967 500
IVM, c = 300 2.0/5.0 0.972 300
DGP, c = 1000,m = 100 0.5/0.5 0.951 1000
GMT, c = 300, τ = 500 2.0/5.0 0.865 49.69

Table: Parameter con�guration with smallest SMSE per algorithm on UK tra�c data.

Method and Parameters Kernel SMSE Avg. Size
FGP, c = 500 1.0/0.5 0.934 500
IVM, c = 300 0.5/2.0 0.947 300
DGP, c = 500,m = 200 1.0/0.5 0.92 500
GMT, c = 100, τ = 500 0.5/1.0 0.553 177.317

Table: Parameter con�guration with smallest SMSE per algorithm on UK apartment-price data.

Bottom-Line GMT outperforms all other methods, while o�ering the smallest memory
consumption per node.

17 / 17

