

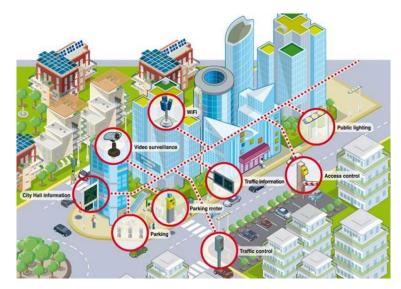
GAUSSIAN MODEL TREES FOR TRAFFIC IMPUTATION

Sebastian Buschjäger, Thomas Liebig and Katharina Morik

TU Dortmund University - Artifical Intelligence Group

February 20, 2019

Motivation: Smart Cities



Motivation: Smart Cities

Idea Distribute small devices across the entire city to monitor specific locations

Artificial Intelligence Group

Motivation: Smart Cities

Idea Distribute small devices across the entire city to monitor specific locations

Design requirements

- 1. Sensing devices should be as small and as energy efficient as possible to minimize costs
- 2. Sensing devices should be low-priced to minimize initial investment costs
- 3. Data should not be processed globally to minimize communication and maximize privacy
- 4. Prediction models should be small, but accurate enough to be used on the sensing devices
- 5. The system should report possible sensor locations with respect to its accuracy.

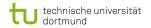
Our focus here Count the number of vehicles at a given coordinate (latitude / longitude) **Formally** Imputation problem, where we impute missing sensor values

Our focus here Count the number of vehicles at a given coordinate (latitude / longitude) **Formally** Imputation problem, where we impute missing sensor values **Popular method** Gaussian Processes

 $p(y|\mathcal{D}, \vec{x}) \sim \mathcal{N}(f(\vec{x}), \cdot)$

with

 $f(\vec{x}) = \langle K(\vec{x},\mathcal{D}) K(\mathcal{D})^{-1}, \vec{y} \rangle$



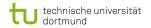
Our focus here Count the number of vehicles at a given coordinate (latitude / longitude) **Formally** Imputation problem, where we impute missing sensor values **Popular method** Gaussian Processes

 $p(y|\mathcal{D},\vec{x}) \sim \mathcal{N}(f(\vec{x}),\cdot)$

with

Kernel vector
$$[k(x, x_1), \dots, k(x, x_N)]^T$$

 $f(\vec{x}) = \langle K(\vec{x}, \mathcal{D})K(\mathcal{D})^{-1}, \vec{y} \rangle$
 \uparrow
Kernel matrix including noise $[k(x_i, x_i)]_{i,j} + \sigma_n I$



Our focus here Count the number of vehicles at a given coordinate (latitude / longitude) **Formally** Imputation problem, where we impute missing sensor values **Popular method** Gaussian Processes

 $p(y|\mathcal{D},\vec{x}) \sim \mathcal{N}(f(\vec{x}),\cdot)$

with

Kernel vector
$$[k(x, x_1), \dots, k(x, x_N)]^T$$

 $f(\vec{x}) = \langle K(\vec{x}, \mathcal{D})K(\mathcal{D})^{-1}, \vec{y} \rangle$
 $f(\vec{x}) = [k(x_i, x_i)]_{i,i} + \sigma_n I$

Challenges

- GPs do not scale well, due to matrix inversion (runtime $O(N^3)$)
- GPs do not have a traffic-flow model, e.g. by using map data

State of the art GPs

Scaleable GPs Well-studied problem with solutions utilizing subset of data points, sparse kernels, sparse approximation, implicit and explicit block structures, . . .

Important for us Each local sensing device should execute one small expert model

Deisenroth 2015 Distributed Gaussian Processes (DGP) **Idea** Factorize global likelihood into product of *m* individual likelihoods

$$p(y|\mathcal{D}) \approx \prod_{k=1}^{m} \beta_k p_k(y|\mathcal{D}_k)$$

State of the art GPs

Scaleable GPs Well-studied problem with solutions utilizing subset of data points, sparse kernels, sparse approximation, implicit and explicit block structures, . . .

Important for us Each local sensing device should execute one small expert model

Deisenroth 2015 Distributed Gaussian Processes (DGP) **Idea** Factorize global likelihood into product of *m* individual likelihoods

$$p(y|\mathcal{D}) \approx \prod_{k=1}^{m} \frac{\beta_k p_k(y|\mathcal{D}_k)}{f}$$

Expert weight Small GP with samples $\mathcal{D}_k \subset \mathcal{D}$

State of the art GPs

Scaleable GPs Well-studied problem with solutions utilizing subset of data points, sparse kernels, sparse approximation, implicit and explicit block structures, . . .

Important for us Each local sensing device should execute one small expert model

Deisenroth 2015 Distributed Gaussian Processes (DGP) **Idea** Factorize global likelihood into product of *m* individual likelihoods

$$p(y|\mathcal{D}) \approx \prod_{k=1}^{m} \frac{\beta_k p_k(y|\mathcal{D}_k)}{1}$$

Expert weight Small GP with samples $\mathcal{D}_k \subset \mathcal{D}$

Nice

- + $p_k(y|\mathcal{D}_k)$ are independent from each other
- + \mathcal{D}_k can potentially be small

Problematic

- All experts need to be evaluated to compute $p(y|\mathcal{D})$
- $-\mathcal{D}_k$ is randomly sampled

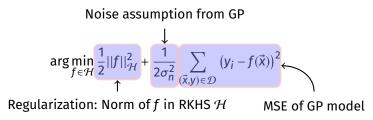
Gaussian Model Trees: Key questions

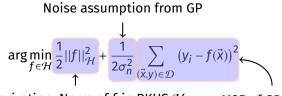
So far DGPs offer small expert models, which only require communication of local predictions

But 1 Is there a better way to sample \mathcal{D}_k ?

But 2 Can we get away without any communication at all?

$$\arg\min_{f\in\mathcal{H}}\frac{1}{2}||f||_{\mathcal{H}}^{2}+\frac{1}{2\sigma_{n}^{2}}\sum_{(\vec{x},y)\in\mathcal{D}}(y_{i}-f(\vec{x}))^{2}$$





Regularization: Norm of f in RKHS \mathcal{H} MSE of GP model

Goal Decompose optimization problem into two independent problems.

- Let $\mathcal{A} \subseteq \mathcal{D}$ denote a set of c inducing points. Let $\mathcal{B} = \mathcal{D} \setminus \mathcal{A}$
- ► Assume $k(\vec{x}_i, \vec{x}_j) \approx 0$ for $\vec{x}_i \in \mathcal{A}$ and $\vec{x}_j \in \mathcal{B}$

Noise assumption from GP

$$\arg\min_{f\in\mathcal{H}}\frac{1}{2}||f||_{\mathcal{H}}^{2} + \frac{1}{2\sigma_{n}^{2}}\sum_{(\vec{x},y)\in\mathcal{D}}(y_{i}-f(\vec{x}))^{2}$$

Regularization: Norm of f in RKHS \mathcal{H} MSE of GP model

Goal Decompose optimization problem into two independent problems.

- ▶ Let $\mathcal{A} \subseteq \mathcal{D}$ denote a set of *c* inducing points. Let $\mathcal{B} = \mathcal{D} \setminus \mathcal{A}$
- ► Assume $k(\vec{x}_i, \vec{x}_j) \approx 0$ for $\vec{x}_i \in \mathcal{A}$ and $\vec{x}_j \in \mathcal{B}$

Then we can split the optimization problem into two problems

$$\arg\min_{f_{\mathcal{A}}\in\mathcal{H},f_{\mathcal{B}}\in\mathcal{H}}\frac{1}{2}||f_{\mathcal{A}}||_{\mathcal{H}}^{2} + \frac{1}{2\sigma_{n}^{2}}\sum_{(\vec{x},y)\in\mathcal{A}}\left(y - f_{\mathcal{A}}(\vec{x})\right)^{2} + \frac{1}{2}||f_{\mathcal{B}}||_{\mathcal{H}}^{2} + \frac{1}{2\sigma_{n}^{2}}\sum_{(\vec{x},y)\in\mathcal{B}}\left(y - f_{\mathcal{B}}(\vec{x})\right)^{2}$$

Noise assumption from GP $\arg\min_{f \in \mathcal{H}} \frac{1}{2} ||f||_{\mathcal{H}}^2 + \frac{1}{2\sigma_n^2} \sum_{(\vec{x}, y) \in \mathcal{D}} (y_i - f(\vec{x}))^2$

Regularization: Norm of f in RKHS \mathcal{H} MSE of GP model

Goal Decompose optimization problem into two independent problems.

- Let $\mathcal{A} \subseteq \mathcal{D}$ denote a set of c inducing points. Let $\mathcal{B} = \mathcal{D} \setminus \mathcal{A}$
- Assume $k(\vec{x}_i, \vec{x}_i) \approx 0$ for $\vec{x}_i \in \mathcal{A}$ and $\vec{x}_i \in \mathcal{B}$

Then we can split the optimization problem into two problems

$$\arg\min_{f_{\mathcal{A}}\in\mathcal{H}f_{\mathcal{B}}\in\mathcal{H}} \frac{1}{2} ||f_{\mathcal{A}}||_{\mathcal{H}}^{2} + \frac{1}{2\sigma_{n}^{2}} \sum_{(\vec{x}, y)\in\mathcal{A}} (y - f_{\mathcal{A}}(\vec{x}))^{2} + f(\vec{x}) = \langle K(\vec{x}, \mathcal{A})K(\mathcal{A})^{-1}, \vec{y} \rangle$$

$$\frac{1}{2} ||f_{\mathcal{B}}||_{\mathcal{H}}^{2} + \frac{1}{2\sigma_{n}^{2}} \sum_{(\vec{x}, y)\in\mathcal{B}} (y - f_{\mathcal{B}}(\vec{x}))^{2} + f(\vec{x}) = \langle K(\vec{x}, \mathcal{B})K(\mathcal{B})^{-1}, \vec{y} \rangle$$

$$7/17$$

Question How to find sets \mathcal{A} and \mathcal{B} ?

Artificial Intelligence Group

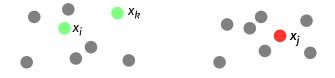
Subset selection (1)

Question How to find sets \mathcal{A} and \mathcal{B} ?

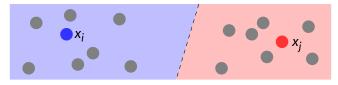
Artificial Intelligence Group

Subset selection (1)

Question How to find sets \mathcal{A} and \mathcal{B} ?



Question How to find sets \mathcal{A} and \mathcal{B} ?



Observation If kernel is stationary, then $k(\vec{x}_i, \vec{x}_j) \approx 0 \Rightarrow k(\vec{x}_i, \vec{x}_k) \approx 0$ for $k(\vec{x}_j, \vec{x}_k) \approx 1$.

Thus Points \vec{x}_i and \vec{x}_k that are similar to each other, will have similar dissimilarity with \vec{x}_i

Thus It is enough to store a reference point for each set \mathcal{A} and \mathcal{B} .

Conclusion We need to find reference points which are maximally dissimilar to each other

Thus It is enough to store a reference point for each set \mathcal{A} and \mathcal{B} .

Conclusion We need to find reference points which are maximally dissimilar to each other **Idea** Formulate another maximization problem

$$\frac{1}{2}\log\det\begin{pmatrix}k_{11} & k_{12}\\ k_{21} & k_{22}\end{pmatrix} = \frac{1}{2}\log(k_{11}\cdot k_{22} - k_{12}\cdot k_{21}) \to \max \text{ if } k_{12} = k_{21} \approx 0$$

Thus It is enough to store a reference point for each set \mathcal{A} and \mathcal{B} .

Conclusion We need to find reference points which are maximally dissimilar to each other **Idea** Formulate another maximization problem

$$\frac{1}{2}\log\det\begin{pmatrix}k_{11} & k_{12}\\ k_{21} & k_{22}\end{pmatrix} = \frac{1}{2}\log(k_{11}\cdot k_{22} - k_{12}\cdot k_{21}) \to \max \text{ if } k_{12} = k_{21} \approx 0$$

More formally

$$\arg \max_{\mathcal{A} \subset \mathcal{D}, |\mathcal{A}| = c} \frac{1}{2} \log \det(I + aK(\mathcal{A}))$$

Thus It is enough to store a reference point for each set \mathcal{A} and \mathcal{B} .

Conclusion We need to find reference points which are maximally dissimilar to each other **Idea** Formulate another maximization problem

$$\frac{1}{2}\log\det\begin{pmatrix}k_{11} & k_{12}\\k_{21} & k_{22}\end{pmatrix} = \frac{1}{2}\log(k_{11}\cdot k_{22} - k_{12}\cdot k_{21}) \to \max \text{ if } k_{12} = k_{21} \approx 0$$

More formally

$$\arg\max_{\mathcal{A}\subset\mathcal{D},|\mathcal{A}|=c}\frac{1}{2}\log\det(I+aK(\mathcal{A}))$$

Still This is a very difficult problem, since we need to check all possible subsets of $\mathcal{A} \subset \mathcal{D}$ **Lawrence 2003** $\frac{1}{2} \log \det(\mathcal{I} + a\mathcal{K}(\mathcal{A}))$ is sub-modular

Thus It is enough to store a reference point for each set \mathcal{A} and \mathcal{B} .

Conclusion We need to find reference points which are maximally dissimilar to each other **Idea** Formulate another maximization problem

$$\frac{1}{2}\log\det\begin{pmatrix}k_{11} & k_{12}\\k_{21} & k_{22}\end{pmatrix} = \frac{1}{2}\log(k_{11}\cdot k_{22} - k_{12}\cdot k_{21}) \to \max \text{ if } k_{12} = k_{21} \approx 0$$

More formally

$$\arg\max_{\mathcal{A}\subset\mathcal{D},|\mathcal{A}|=c}\frac{1}{2}\log\det(I+aK(\mathcal{A}))$$

Still This is a very difficult problem, since we need to check all possible subsets of $\mathcal{A} \subset \mathcal{D}$ **Lawrence 2003** $\frac{1}{2} \log \det(\mathcal{I} + a\mathcal{K}(\mathcal{A}))$ is sub-modular **Why submodularity?** It offers a simple algorithm with guaranteed performance **Nemhaus 1978** SimpleGreedy has a guaranteed performance of $\geq 1 - (1/e) \approx 63\%$

- Select c 'most dissimilar' samples
- View each sample as 'region'
- ▶ Repeat until only *M* points or less are present in a region. Train a full GP on those regions.

- Select c 'most dissimilar' samples
- View each sample as 'region'
- ▶ Repeat until only *M* points or less are present in a region. Train a full GP on those regions.

- Select c 'most dissimilar' samples
- View each sample as 'region'
- ▶ Repeat until only *M* points or less are present in a region. Train a full GP on those regions.

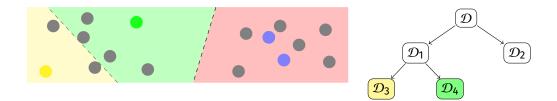
- Select c 'most dissimilar' samples
- View each sample as 'region'
- ▶ Repeat until only *M* points or less are present in a region. Train a full GP on those regions.

- Select c 'most dissimilar' samples
- View each sample as 'region'
- ▶ Repeat until only *M* points or less are present in a region. Train a full GP on those regions.

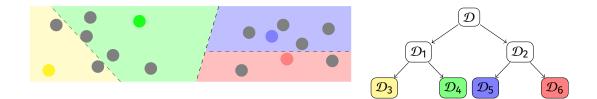
- Select c 'most dissimilar' samples
- View each sample as 'region'
- ▶ Repeat until only *M* points or less are present in a region. Train a full GP on those regions.



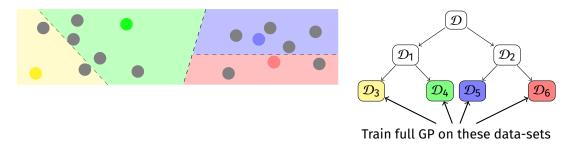
- Select c 'most dissimilar' samples
- View each sample as 'region'
- ▶ Repeat until only *M* points or less are present in a region. Train a full GP on those regions.



- Select c 'most dissimilar' samples
- View each sample as 'region'
- ▶ Repeat until only *M* points or less are present in a region. Train a full GP on those regions.



- Select c 'most dissimilar' samples
- View each sample as 'region'
- ▶ Repeat until only *M* points or less are present in a region. Train a full GP on those regions.



Algorithm 2 Gaussian Model Tree (GMT).	
1:	function TRAINGMT(\mathcal{D}, c, τ)
2:	if $ \mathcal{D} \geq au$ then
3:	$\mathcal{A} = SimpleGreedy(\mathcal{D}, \mathbf{c})$
4:	for $(x, y) \in \mathcal{D}$ do
5:	$r = \arg \max\{k(x, e) e \in \mathcal{A}\}$
6:	$\mathcal{D}_r = \mathcal{D}_r \cup \{x\}$
7:	for <i>i</i> = 1, , <i>c</i> do
8:	trainGMT(\mathcal{D}_i, c, τ)
9:	else
10:	trainFullGP(D)

Parameters

- D: Training data
- c: Number of regions
 (→ Number of children per inner node)
- τ: Minimum number of data points
 (→ size of experts in the end)

Note We can parallelise over *c*. The expected runtime is $O(log_c(n) \cdot n \cdot c^2 + n \cdot \tau^3)$

Experimental setup

Question 1 What is the accuracy of the proposed method?

Question 2 How much memory is required per node?

Experimental setup

Question 1 What is the accuracy of the proposed method?

Question 2 How much memory is required per node?

Approach Use traffic simulator SUMO to generate data with sufficient ground truth

- 24h simulation for the City of Luxembourg
- 3523 simulated sensor available
- We simulated 131357 vehicle counts per sensor from 7:00 till 11:00

Goal predict average number of vehicles per sensor node (given as its coordinates)

Results on Luxembourg data set

Error measure Standardized mean-squared error

$$SMSE = \frac{1}{var(\mathcal{D}_{Test}) |\mathcal{D}_{Test}|} \sum_{(\vec{x}, y) \in \mathcal{D}_{Test}} (f(\vec{x}) - y)^2$$

Observation The average prediction $f(\vec{x}) = 1/N \sum_i y_i$ has a SMSE of roughly 1

Results on Luxembourg data set

Error measure Standardized mean-squared error

$$SMSE = \frac{1}{var(\mathcal{D}_{Test}) | \mathcal{D}_{Test}|} \sum_{(\vec{x}, y) \in \mathcal{D}_{Test}} (f(\vec{x}) - y)^2$$

Observation The average prediction $f(\vec{x}) = 1/N \sum_i y_i$ has a SMSE of roughly 1

Experiments Compare 576 different hyperparameter combinations with a 5-fold cross validation.

Method and Parameters	Kernel	SMSE	Avg. Size
Full GP, <i>c</i> = 1000	0.5/0.5	0.767	1000
Informative Vector Machine, <i>c</i> = 500	2.0/2.0	0.866	500
Distributed GPs, $c = 2800, m = 50$	0.5/0.5	0.733	2800
Gaussian Model Trees, $c = 50, \tau = 1000$	1.0/2.0	0.583	56.80

Table: Parameter configuration with smallest SMSE per algorithm.

Results on Luxembourg data set

Error measure Standardized mean-squared error

$$SMSE = \frac{1}{var(\mathcal{D}_{Test}) | \mathcal{D}_{Test}|} \sum_{(\vec{x}, y) \in \mathcal{D}_{Test}} (f(\vec{x}) - y)^2$$

Observation The average prediction $f(\vec{x}) = 1/N \sum_i y_i$ has a SMSE of roughly 1

Experiments Compare 576 different hyperparameter combinations with a 5-fold cross validation.

Method and Parameters	Kernel	SMSE	Avg. Size
Full GP, <i>c</i> = 1000	0.5/0.5	0.767	1000
Informative Vector Machine, <i>c</i> = 500	2.0/2.0	0.866	500
Distributed GPs, $c = 2800, m = 50$	0.5/0.5	0.733	2800
Gaussian Model Trees, $c = 50, \tau = 1000$	1.0/2.0	0.583	56.80

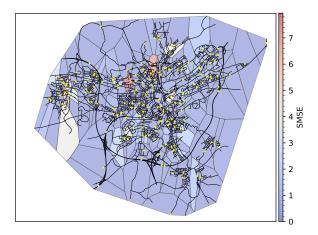
Table: Parameter configuration with smallest SMSE per algorithm. **Observation 1** GMT compares favorably to FPG and DGP.

Observation 2 GMT requires 17 – 58 times fewer resources per node than FGP and DGP!

Artificial Intelligence Group

Results on Luxembourg data set (2)

Nice bonus We can visualize the regions where GMT fails



Recap: Gaussian Model Trees

Goal Distribute small sensor devices in the city each with a small, locale ML model

- View GP induction as optimization problem
- Decompose optimization problem into independent sub-problems
- View decomposition as sample selection with guaranteed performance by submodularity
- Built a tree-structured classifier by recursively partition data into smaller sub-problems

Recap: Gaussian Model Trees

Goal Distribute small sensor devices in the city each with a small, locale ML model

- View GP induction as optimization problem
- Decompose optimization problem into independent sub-problems
- View decomposition as sample selection with guaranteed performance by submodularity
- Built a tree-structured classifier by recursively partition data into smaller sub-problems

So far Very promising results on data in the context of Smart Cities

Recap: Gaussian Model Trees

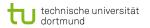
Goal Distribute small sensor devices in the city each with a small, locale ML model

- View GP induction as optimization problem
- Decompose optimization problem into independent sub-problems
- View decomposition as sample selection with guaranteed performance by submodularity
- Built a tree-structured classifier by recursively partition data into smaller sub-problems

So far Very promising results on data in the context of Smart Cities

Outlook

- Use different kernel hyperparameters per node
- Gaussian assumption often violated \rightarrow Use other prediction methods in leaf-node.
- Borrow ideas from Decision Trees for post- and pre-pruning



More experiments

Note Full GP is still manageable with N = 3523. What about bigger data-sets?

More experiments

Note Full GP is still manageable with N = 3523. What about bigger data-sets? **First follow-up experiment** UK-traffic imputation data from 2017

Same as Luxembourg task, but in the UK with N = 18149 sensors

Second follow-up experiment 'Rate' an area in the city, e.g. by quality of life. **Problem** No good data available. Thus we used a (arguably bad) proxy data set

- Predict the apartment price given its coordinates in the UK from 2015
- In total N = 64431
- No further information given on the apartments

Results on UK data sets

Again Compare 576 different hyperparameter configurations with a 5-fold cross validation.

Method and Parameters	Kernel	SMSE	Avg. Size
FGP, c = 500	0.5/2.0	0.967	500
IVM, <i>c</i> = 300	2.0/5.0	0.972	300
DGP, c = 1000, m = 100	0.5/0.5	0.951	1000
GMT, $c = 300, \tau = 500$	2.0/5.0	0.865	49.69

Table: Parameter configuration with smallest SMSE per algorithm on UK traffic data.

Method and Parameters	Kernel	SMSE	Avg. Size
FGP, c = 500	1.0/0.5	0.934	500
IVM, c = 300	0.5/2.0	0.947	300
DGP, $c = 500, m = 200$	1.0/0.5	0.92	500
GMT, $c = 100, \tau = 500$	0.5/1.0	0.553	177.317

Table: Parameter configuration with smallest SMSE per algorithm on UK apartment-price data.