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Abstract
Isolation forest (IF) is a popular outlier detection algorithm that isolates outlier observations from regular observations by
building multiple random isolation trees. The average number of comparisons required to isolate a given observation can then
be used as a measure of its outlierness. Multiple extensions of this approach have been proposed in the literature including
the extended isolation forest (EIF) as well as the SCiForest. However, we find a lack of theoretical explanation on why IF,
EIF, and SCiForest offer such good practical performance. In this paper, we present a theoretical framework that views these
approaches from a distributional viewpoint. Using this viewpoint, we show that isolation-based approaches first accurately
approximate the data distribution and then secondly approximate the coefficients of mixture components using the average
path length. Using this framework, we derive the generalized isolation forest (GIF) that also trains random isolation trees, but
combining themmoves beyond using the average path length. That is, GIF splits the data into multiple sub-spaces by sampling
random splits as do the original IF variants do and directly estimates the mixture coefficients of a mixture distribution to score
the outlierness on entire regions of data. In an extensive evaluation, we compare GIF with 18 state-of-the-art outlier detection
methods on 14 different datasets. We show that GIF outperforms three competing tree-based methods and has a competitive
performance to other nearest-neighbor approaches while having a lower runtime. Last, we highlight a use-case study that uses
GIF to detect transaction fraud in financial data.

Keywords Outlier detection · Isolation forest · Density estimation · Ensemble · Tree

1 Introduction

Outlier detection is an important data mining task and often
one of the first stepswhen acquiring new data. In the financial
sector, it is used to detect transactional fraud [24], money
laundering [12,13], and to solvemany other related problems
[4].

Due to its simplicity and speed, isolation forest (IF) is
one of the most popular outlier detection algorithms [16]. It
operates on the key observation that decision trees tend to
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isolate outlier examples relatively early in the tree. Thus, the
path length of an example when sorted into a tree gives a
(somewhat crude) indication of the outlierness of the obser-
vation. IF leverages this empirical insight into an ensemble
algorithm that trains multiple isolation trees on bootstrap
samples and scores observations based on their average path
length. Due to its popularity, multiple variations of IF have
been proposed. SCiForest proposes to select the split/feature
combination more carefully by introducing a split criterion
in [17], whereas the extended isolation forest (EIF) uses arbi-
trary random slopes instead of axis-aligned splits for splitting
to improve its performance [14].

While a decent body of the literature exists on IF, there
seems to be a gap in the theoretical understanding of it. More
specifically, there seems to be no direct connection between
the performance of IF and its variations and the assump-
tions we may have on the underlying data distribution. In
this paper, we investigate this connection more carefully and
analyze IF-based approaches from a distributional point of
view. We show that all IF-based approaches approximate
the underlying probability distribution and that the average
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path length can be considered an approximation of mixture
weights if the data were generated by a mixture distribution.
To leverage these insights, we propose the generalized iso-
lation forest (GIF) algorithm. We show that GIF has better
outlier detection performance than the IF, EIF, and SCiForest
with comparable or better runtime.Additionally, we compare
GIF against 9 nearest-neighbor outlier detection algorithms
and show that GIF delivers state-of-the-art performance. Our
contributions are as follows:

– We theoretically show that tree-based methods approx-
imate the underlying probability distribution and give a
lower bound for the approximation error of fully grown
trees.

– We show that the average path length can be viewed as a
(crude) approximation of the mixture weights of a mix-
ture distribution thereby explaining some success of the
IF and EIF algorithm.

– We formalize our theoretical analysis into the generalized
isolation forest (GIF) algorithm. It uses randomly sam-
pled representatives as splits and tries to directly estimate
the mixture coefficients without relying on the average
path length.

– In our experimental evaluation,we comparedGIFwith 18
state-of-the-art outlier detection methods on 14 different
datasets with over 350, 000 hyper-parameter combina-
tions. We show that the novel algorithm outperforms
three existing state-of-the-art tree-based outlier detec-
tion algorithms and has comparable performance with
nearest-neighbor-based approaches while have a lower
runtime. Moreover, we link these results with existing
practical studies showing that GIF offers the best perfor-
mance on some datasets.

This paper is organized as follows. Section 2 surveys
related work and discusses the preliminaries. Section 3
presents our theoretical analysis. Section 4 presents the gen-
eralized isolation forest algorithm which is then evaluated in
Sect. 5. In Sect. 6, we highlight a use-case study of GIF for
detecting fraudulent transactions in financial data. The last
section concludes the paper.

2 Preliminaries and related work

We focus on unsupervised outlier detection where we have
given a dataset containing outliers, and our goal is to find
these outliers. We assume that we have given a sample
S = {x1, . . . , xN } of N observations xi ∈ R

d ⊆ X from
an unknown distribution D. The goal is to assign a score to
each observation in S which measures its outlierness. In this
paper, we focus on the intersection between density-based

and isolation-based approaches and show that they can be
understood in the same framework when they utilize trees.

2.1 Density-based approaches

Density-based approaches assume that observations are
drawn from a mixture distribution where at least one of the
mixtures is ‘rare’ [11]. Density-based approaches require a
two-step procedure with both steps being often intertwined.
First, we need tomodel the underlying distribution as good as
possible, and thenwe decide which of the observationsmight
be outliers. A common example of this approach is a Gaus-
sian mixture model [20] that assume a mixture of Gaussian
to be fitted with an EM-style algorithm [1].

Tree-based density estimation techniques have been pro-
posed as a faster, assumption-free alternative [1,9,23,26].
These approaches rely on variations of decision trees to accu-
rately approximate the underlying distribution and formulate
some post-fitting rules to detect outliers with the help of the
trees. It is well-known that most variations of decision trees
can approximate any distributionwith sufficient accuracy and
even randomly fitted trees converge against the true underly-
ing distribution, given enough training data[26]. In general,
training (random) trees is fast, since they only require to
sample a set of different splits and sort the data accordingly.
Moreover, trees can be combined into an ensemble to stabi-
lize their performance which can be parallelized easily, thus
retaining the performance advantages of trees [2].

2.2 Isolation-based approaches

Isolation-based approaches assume that some observations
can be easily isolated from the remaining ones and are there-
fore outliers. Arguably, the most used popular method in
this family is isolation forest (IF) [16]. Isolation forest uti-
lizes an ensemble of randomly constructed trees to estimate
the outlierness of each observation by measuring its average
path length. More formally, consider a binary decision tree
in which each node performs a comparison xi ≤ t where
i ∈ N is a randomly chosen feature index and t is a randomly
chosen threshold from the available feature values in S. For
each observation, we count the number of comparisons h(x)
required to traverse the tree starting with its root node. We
refer to this as the path length of x and let E[h(x)] denote the
average path length across the ensemble of trees. Liu et al.
empirically observed in [16] that outlier observations tend to
be isolated earlier during tree traversal which indicates that
trees tend to isolate outlier observations. More formally, they
propose to use

score(x) = 2−E[h(x)]
C(N )
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as the scoring rule where C(N ) is the harmonic number
depending on the size of the dataset N . The original publica-
tion of isolation forest justified this scoring rule by empirical
observations, but the authors later gave a more mathemati-
cal intuition [18]. They argue that the average path length of
observations in randomlyfitted trees on uniformly distributed
observations from the interval [l, u] is smaller for points near
the fringe of the interval u and l. They then show that in this
case, the distribution of average path length is given by a
Catalan number, which in turn can be approximated with the
original ranking score used by IF.

IF constructs trees using a randomcombinationof split and
feature value. Thus, a natural extension of this approach is
to select the split/feature combination more carefully using
a split criterion. Liu et al. proposed in [17] the SCiForest
algorithm which uses utilizes the dispersion of the sample to
rate each split. Let S = Sl ∪ Sr be the dataset split into to
disjunct sets Sl and Sr , then they propose to use that split
which maximizes

dgain(S) = σ(S) − 0.5 · (σ (Sl) + σ(Sr ))
σ (S)

where σ(·) denotes the dispersion.
Recently, an extension to IF was proposed by Hariri et

al. in [14] called extended isolation forest (EIF). The EIF
algorithm improves on the split strategy of the original IF
formulation by considering the selection of a random slope
rather than a randomvariable and value. The authorsmotivate
this split strategy by the restriction of IF that only considers
horizontal and vertical branch cuts leading to artifacts in the
resulting anomaly scores.

2.3 Proximity-based approaches

Proximity-based approaches assume that similar objects
behave similarly. Thus, rare outliers might only have a few
similar objects nearby. Proximity-based approaches usually
introduce a distance metric (or similarity function) to quan-
tify the differences in observations. This is arguably the
largest class of outlier detection methods. We will not look at
this family theoretically, but compare them against isolation-
based approaches in a principled manner. This algorithm
family mainly consists of two different lines of work. K-
nearest-neighbor methods can be seen as global methods
that base their scoring on the neighborhood of k ∈ N points
for a given observation. For example, KNN [27] uses the
largest distance in the k neighborhood as a scoring rule,
whereas KNNW uses the sum of distances in the neighbor-
hood [5]. Local methods on the other hand usually use a
reachability neighborhood which includes all points in the
ε-ball around a given observation. This way, they use the
density of points in the neighborhood to score observations.

For example, local outlier factors (LOF) [7] uses the inverse,
normalized reachability to score observations, whereas Sim-
plifiedLOF [30] simplifies the reachability computation. A
more detailed discussion and comparisons between global
and local proximity-based methods can be found in [8]. The
authors kindly made their source code for a variety of meth-
ods and experiments available1 on which we will base our
experimental analysis. However, we note that this work does
not include recent advances in the ensembling of proximity-
based approaches. As suggested by multiple authors, the
ensembling of proximity-based methods such as KNN using
bootstrap samples can improve the overall results. There-
fore, we also include these into our experimental analysis
and thereby enhancing the analysis by Campos et al. in [8].
More specifically, for evaluation, we also use aNNE [31],
LeSiNN [21], and iNNE [6].

3 Isolation-based approaches as density
estimation

Before we present our method, we want to formalize outlier
detection more precisely. Dixon proposed in [11] to write
outlier detection as a mixture of distributions, where at least
one distribution is ‘rare.’ More formally, we assume that D
is a mixture of K distributions where neither K nor the indi-
vidual distributions are known:

pD(x) =
K∑

i=1

wi pi (xi ) (1)

Here, w = (w1, . . . , wK ) is the probability vector of a cat-
egorical distribution. For outlier detection, we assume that
at least one mixture distribution has a probability near zero,
that is wi ≈ 0. Our goal is to characterize the corresponding
distribution with small mixture weights and therefore distin-
guish it from the remaining mixtures. To do so, we employ
a two-step procedure: First, we approximate pD as good as
possible using the sample S we have given. Then, we use
this characterization to find ‘rare’ events in the data which
are potential outliers.

3.1 Approximating themixture distribution

Let us tackle the first challenge now. To approximate pD, we
wish to find a function f ∗ ∈ F from some set of functions
F which matches the true distribution as close as possible:

1 https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI/.
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f ∗ = arg min
f ∈F

∫

X
( f (x) − pD(x))2dx

= arg min
f ∈F

∫

X
( f (x))2 − 2 f (x)pD(x) + (pD(x))2dx

= arg min
f ∈F

∫

X
( f (x))2 − 2 f (x)pD(x)dx

where the second line is due to the binomial formula and the
third line is because (pD(x))2 has no impact on the mini-
mization over f . As usually done in machine learning, we
may approximate the true distribution pD with Monte Carlo
approximation using the given sample S:

f ∗ = arg min
f ∈F

∫

X
( f (x))2dx − 2

N∑

i=1

f (xi )
1

N
(2)

This approximation is justified by the law of large num-
bers and becomesmore andmore exact the larger N becomes.
Ram and Gray showed that for N → ∞ this minimizer is
exact and consistent [26]. It is still difficult to solve this prob-
lemwithout any assumptions onF since we need to integrate
over X . To efficiently find a minimizer for this function, we
assume that the f breaks the spaceX into L non-overlapping
regions R0, . . . ,RL where the points in each region follow
a uniform distribution. More formally:

f (x) =
L∑

i=1

1{x ∈ Ri }
N∑

j=1

1{x j ∈ Ri }
N

=
L∑

i=1

1{x ∈ Ri }gi

(3)

A common example of this type of function would be a his-
togram. Substituting f (x) in Eq. 2 with Eq. 3 leads to

f ∗ = arg min
f ∈F

∫

X
( f (x))2dx − 2

N∑

i=1

f (xi )
1

N

= arg min
f ∈F

∫

X

⎛

⎝
L∑

j=1

1{x ∈ R j }g j

⎞

⎠
2

dx

2
N∑

i=1

L∑

j=1

1{xi ∈ R j }g j
1

N

= arg min
f ∈F

L∑

i=1

(gi )
2 V (Ri ) − 2

L∑

j=1

(g j )
2

= arg min
f ∈F

L∑

i=1

g2i (V (Ri ) − 2)

where V (Ri ) denotes the volume of the i-th region and the
third line is due to the fact that all except one summand is 0.
Now consider the equivalent maximization problem:

f ∗ = argmax
f ∈F

L∑

i=1

(2 − V (Ri ))g
2
i (4)

Informally, to maximize Eq. 4, we need to find small, dense
regions so that V (Ri ) is small, but gi is large. Note that the
number of regions L is part of ourmodel function and as such
can be chosen tomaximizeEq. 4.Also note that ifwe isolate a
single point in a region, we have V (Ri ) → 0 and gi → 1/N .
It follows that any tree-based algorithm which fully isolates
single points with fully grown trees (where L = N ) solves
problem 4 to some extent by providing the following lower
bound:

L∑

i=1

(2 − V (Ri ))g
2
i =

N∑

i=1

2

N 2 = 2

N

In other words, any tree-based algorithm which has suffi-
ciently many fine-grained splits guarantees some approxi-
mation quality of the underlying probability distribution.

3.2 Finding outlier mixtures

Now, consider the second challenge: How do we find outlier
distributions given an approximation of pD? By the previous
discussion, we assume a tree-based model with sufficient
approximation quality. Hence:

pD(x) =
K∑

i=1

wi pi (x) ≈
L∑

i=1

gi1{x ∈ Ri }

For L = K , we may view pi (x) ≈ 1{x ∈ Ri } and wi ≈ gi .
Recall that per definition, the outlier distributions are char-
acterized by a very small mixture weightwi ≈ 0, so our goal
is to find small gi . Most directly, we can present the regions
to an expert who could examine all points in a regionRi and
estimate the mixture weight of wi given her expert belief. In
this case, we can directly identify outlier regions.

However, what can we do when no such expert is avail-
able? For L = K , we can directly check the mixture weights
gi and use these as outlier scores since there is a one-to-
one correspondence between both. Interestingly, for L > K ,
we find a similar relationship. Let L = n · K with n ∈ N.
The intuition is that we wish to match the L leaf nodes of
the tree with the number of unknown mixtures. To do so,
we now introduce artificial mixtures that use the same den-
sity pi but only a fraction of the original mixture weight wi .
Let, without loss of generality, the mixtures be sorted so that
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w1 ≥ w2 ≥ · · · ≥ wK . We copy each mixture n times and
rescale the probability accordingly:

pD(x) =
K∑

i=1

wi pi (x) =
n∑

j=1

K∑

i=1

1

n
wi pi (x) =

L∑

i=1

1

n
wi pi (x)

=
L∑

i=1

K

L
wi pi (x) =

L∑

i=1

w̃i pi (x)

where the second line is due to n = L
K . Note that if L is not

a multiple of K , we copy the mixtures � K
L � times and then

rescale the remaining L mod K mixtures according to their
sorting, starting with the largest one. This scaling preserves
the relative mixture order w̃1 ≥ w̃2 ≥ · · · ≥ w̃L . It follows
that we can use the estimated mixture weights gi to rate the
outlierness of regions if L ≥ K .

3.3 Relationship to isolation forest and its siblings

Before we present our algorithm, we want to discuss the
isolation forest algorithm and its siblings extended isolation
forest and SCiForest within the context of our theoretical
framework. As presented in the previous section, any tree-
based algorithm can be used to approximate pD to some
degree, hence including IF,EIF andSCiForest.Now, consider
the scoring rule used by these methods

score(x) = 2−E[h(x)]
C(N )

Let R(x) denote the region in which the observation x
belongs to and let |R(x)| denote the amount of training data
that falls into that region. Recall that we are interested in
giving an ordering of outlierness for each observation and
therefore we may use any scoring rule as long as it preserves
the original outlier ordering. We assume that regions that
imply a longer decision path generally contain fewer exam-
ples. More formally:

1

|R(x)| ∼ E[h(x)]

This assumption is justified by the fact that a longer (aver-
age) path length means that we are becoming increasingly
selective meaning we have fewer and fewer examples in each
node. Following this assumption, it is straightforward to show
that IF’s scoring rule is a monotone function of the mixture
weight:

1

|R(x)| ∼ E[h(x)]
N

|R(x)| ∼ E[h(x)]
C(N )

log2

(
N

|R(x)|
)

∼ log2

(
E[h(x)]
C(N )

)

log2

( |R(x)|
N

)
∼ − log2

(
E[h(x)]
C(N )

)

where the second line holds since N and C(N ) are non-
negative constants. The third line holds due to the fact that

N
|R(x)| < 1 and thus log2

(
N

|R(x)|
)

< 0. Note that log2(·) is
a monotone function, and therefore it does not change the
original ordering of its arguments. IF and EIF’s scoring rule
ignores the log2 on the right side of the equation which leads
to

log2

( |R(x)|
N

)
⇑ −E[h(x)]

C(N )

|R(x)|
N

⇑ 2−E[h(x)]
C(N )

where ⇑ denotes the fact that if the left side increases, so
does the right side and vice-versa. It follows that IF, EIF and
SCiForest preserve the original ordering of mixture weights
using the average path length as an approximation if longer
decision paths in the tree imply fewer points in the regions.
This assumption is crucial for the algorithm to work well and
justified to some extent as discussed.

4 Generalized isolation forests

The previous section presented a theoretical framework for
outlier detection with isolation trees and elaborated on how
IF,EIF, andSCiForest fit in.Wenote twogeneral propositions
about these three algorithms: First, they indirectly maximize
Eq. 4 for fitting the ensemble and second they estimate the
mixture coefficients using the average path length. In this sec-
tion,we present the generalized isolation forest (GIF)method
which utilizes these statements by taking Eq. 4 into account
and by directly using the mixture coefficients.

GIF represents a bagging style ensemble of Generalized
Isolation Trees (GTr). GTr partitions the observation space
X into increasingly smaller regions and uses independent
probability estimates for each region. Formally, we repre-
sent a tree as a directed graph with a root node where
each node has up to K child nodes. Each node in the tree
belongs to a sub-region R ⊆ X and all children of each
node recursively partition the region of their parent node into
K non-overlapping smaller regions. The root node belongs
to the entire observation space R0 = X . Each node uses
up to K split functions S = {sR : X → {0, 1}}, where
sR(x) = 1 indicate that x belongs to the corresponding
region R and sR(x) = 0 indicates that it does not. Note
that during split construction, we need to enforce that splits
partition the observation space into non-overlapping regions,
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so that exactly one split is ‘1’ and the remaining ones are ‘0’.
Most commonly, we find binary DTs which split the space
into 2 subspaces at each node, sometimes called the ‘left’ and
‘right’ split. Once the observation space is sufficiently parti-
tioned, a density function g ∈ G = {g : X → [0, 1]} is used
for density estimation. As discussed previously, we may use
the frequency gi (x) = 1

N

∑
x j∈S 1{x j ∈ Ri } = |Si |

N where
Si is the portion of the training sample belonging to region
Ri .

For training a GTr, we use a greedy algorithm similar to
classic decision trees. Suppose we have already trained aGTr
with n nodes andwant to divide the regionRi by another split
hypothesis. Let Si be that part of the training data which falls
into regionRi , and then we randomly sample K points from
S〉 so that each point induces a sub-region. More formally,
we define a split function with

si (x) =
{
1 if i = argmax{k(x, x j )| j = 1, . . . , K }
0 otherwise

where x j ∈ Si are the selected representatives and k :
Ri × Ri → [0, 1] is a kernel function. Once we have par-
titioned the observation space into enough regions, we stop
tree induction. Recall that we aim to maximize

argmax
L∑

i=1

(2 − V (Ri ))g
2
i

which is maximized if gi → 1 and V (Ri ) → 0. Informally,
we seek small dense areas that containmanypoints.However,
we are becomingmore andmore selective themore nodes we
add to the tree, so that gi becomes smaller, the smaller V (Ri )

gets. Thus, we propose to use a threshold τ , and whenever
τ ≥ (2 − V (Ri ))g2, we stop tree induction. Now, the com-
putation of V (Ri ) can be complex for high-dimensional data
and irregular-shaped regions. To overcome this, we propose
to use the average inner kernel distance in each region. Given
the representatives of each region, we compute the average
kernel similarity of all points in that region with the respec-
tive representative. Intuitively, this has the same meaning as
before, because we stop tree induction once we find small,
dense regions.

Algorithm 1 summarizes the training of DTr, where
samplePoints(D, K) randomly samples up to K points
from D if available. If not, all points are selected. Algorithm
2 displays the application of GTr once trained.

Randomly constructed trees have large variations in their
density estimations, so thatwemayhaveverydifferent results
between individual trees. To counter this behavior, we com-
bine multiple GTr into a bagging style algorithm similar to
IF and EIF. Bagging samples different subsets of the data and
/ or features to introduce diversity into the ensemble. In the

Algorithm 1 Generalized Isolation Tree induction.
1: function fit(S, node)
2: g = estimateDensity(S)
3: j ← argmax{node.s[ j](x) | j = 1, . . . , K }
4: if |S|−1 ∑

∀x∈S K (x j , x) ≤ τ then
5: node.children = null
6: node.leaf = true
7: else
8: node.s = samplePoints(Si , K )
9: for j = 1, . . . , K do
10: S j = {x ∈ S | s j (x) = 1}
11: for j = 1, . . . , K do
12: node.children[j] = fit(Si )

Algorithm 2 Generalized Isolation Tree application.
1: function density(node, x)
2: while !node.leaf do
3: j ← argmax{node.s[k](x) | k = 1, . . . , K }
4: node ← node.children[ j]
5: return node.g

case of GTr, we can also vary the similarity function k as well
as theminimum lower bound τ . Algorithm 3 summarizes this
approach.

Algorithm 3 Outlier Detection with GIFs.
Require: Dataset D, subset size ψ , number of trees t
1: function GIF(D, ψ, t)
2: for all i ∈ [1, t] do
3: Ti ← fit(samplePoints(D, ψ))
4: ρ ← new array of size |D|
5: for all xi ∈ D do
6: for all T ∈ {T1, . . . , Tt } do
7: node ← T
8: while !node.leaf do
9: k ← argmax{node.s[k](xi ) | k = 1, . . . , K }
10: node ← node.children[k]
11: ρi ← ρi + t−1node.g

return ρ

5 Evaluation

With our empirical evaluation, we want to answer several
questions: (1) Does GIF offer better predictive performance
than its tree-based siblings IF and EIF? (2) How does GIF
perform if we compare it beyond tree-based algorithms, such
as k-NN or local outlier factor (LOF)? (3) How does the
runtime suffer from considering generalized trees, instead of
binary isolation trees? (4) How sensitive is GIF regarding its
hyper-parameters?

To evaluate our method, we consider 14 different datasets
in total, which demand the detection of outliers for different
real-world applications (cf. Table 1). For the first experi-
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Table 1 Datasets used for the evaluation of our method

Dataset N N−1 d D Task

Annthyroid 7200 534 21 6.43 Hypothyroidism detection

Cardiotoco. 2126 471 21 5.22 Heart rate classification

Creditfraud 284,807 492 28 8.23 Fraud detection

Forestcover 286,048 2747 10 8.71 Forest classification

KDDCup99 60,632 246 38 8.60 Intrusion detection

Mammography 11,183 260 6 6.40 Breast anomaly detection

PageBlocks 5473 560 10 4.00 Document analysis

PenDigits 9868 20 16 8.19 Image classification

Pima 768 268 8 6.10 Diabetes detection

Satellite 6435 2036 36 1.98 Image classification

Shuttle 1013 13 9 6.55 Control Theory

SpamBase 4601 1813 57 5.96 Spam classification

Waveform 3443 100 21 6.85 Synthetic data

Wilt 4839 261 5 7.74 Deseased tree detection

N indicates the dataset size, N−1 the number of outliers, and d the dimensionality of the dataset. Additionally, we report a difficulty metric D,
which has been introduced in [8]. D indicates how difficult it is, to identify outliers in the respective dataset and ranges from 0 (not difficult) to 10
(very difficult). Unless otherwise stated, the datasets are courtesy of Campos et al. [8], whereby the normalized version with an outlier ratio of 2%
has been used. As the data are provided in splits, we report the metric average over different splits. Creditfraud has been provided by [25], Satellite
by [29], Forestcover and Mammography by [16]. The input features of the aforementioned datasets were normalized to [0, 1], while no splitting
has been considered

ment, we compare GIF to other tree-based outlier detectors,
namely the original IF method implemented in scikit-learn
[22], the EIF algorithm implemented by the original authors,
and theSCiForest (SCiF) algorithm.2 Ourmethod is currently
implemented in C++ and provides an easy-to-use python
interface. We intended to publish our code after submission.
To compare methods adequately, we perform a grid search of
hyper-parameters. In all cases, we choose the number of trees
to be t = 128. The accompanying subset size ψ is chosen to
be max(0.25 · N , 256) where N is the size of the dataset. For
the GIF, we vary the kernel function using the RBF-kernel
and three different versions of the Matern kernel [28]:

kRBF(xi , x j ) = exp

(
− 1

2σ 2 · p
)

k1/2(xi , x j ) = l2 exp
(
− p

σ

)

k3/2(xi , x j ) = l2
(
1 +

√
3p

σ

)
exp

(
−

√
3p

σ

)

k5/2(xi , x j ) = l2
(
1 +

√
5p

σ
+ 5p2

3σ

)
exp

(
−

√
5p

σ

)

where p = ||xi − x j ||22 is the Euclidean distance between
xi and x j . The accompanying scaling parameters are cho-
sen using S = {0.01, 0.5, 0.75, 1, 2, 5, 7.5, 10, 12.5, 15} as

2 Implemented in https://github.com/david-cortes/isotree.

σ =
{
s
√
d

−1 | s ∈ S
}
with d being the dimension of the

respective dataset. The similarity threshold τ is chosen by
selecting five equidistant values from the interval [0.0, 0.2].

For the second experiment,wewill compare the tree-based
outlier detectors to nearest-neighbor-based methods. To do
so, we consider the aNNE [31] and LeSiNN [21] algorithms,
which we have implemented on our own, and the iNNE
algorithm [6], which has been implemented by the authors.
These three methods employ a bagging style ensemble of
nearest-neighbor-based estimators. Hence, they also require
the specification of t and ψ , which we will vary in the same
fashion, as we did with the tree-based methods in the first
experiment. These and all tree-based experiments are con-
ducted on an Intel Xeon CPU E5-2690 CPU with 56 cores
and 504GBRAM. From the number of methods we used and
the employed grid parameter optimization it follows, that we
conducted 351,690 experiments in total.

Additionally, we will reuse the results provided by Cam-
pos et al. [8] in their large-scale study of outlier detection
algorithms. The authors of this study focused among others
on the questions, how outlier detection methods differ prac-
tically, how parameter choices affect the detection quality,
and which inherent difficulty can be accounted to vari-
ous real-world and synthetic datasets. To do so, the study
focuses on a large group of detection algorithms, namely
neighborhood-based approaches (like LOF or k-NN) and
especially discusses the choice of the neighborhood parame-
terization (i.e., ”k”). In a series of experiments, Campos et al.
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evaluated 12 different methods on 23 datasets with different
hyper-parameters leading to a total of 1,300,758 experiments.
Please note, however, that we selected 10 real-world datasets
from this study and ignored artificial datasets. Also note that
we found that Campos et al. focused on smaller datasets, so
use also includes four larger ones into our experimental anal-
ysis. To provide a more meaningful characterization of the
used datasets, we also adapt the Difficulty metric established
in [8]. Thismetric ranges from0 (not difficult) to 10 (very dif-
ficult) and indicates, how difficult it is, to identify outlying
observations in different datasets correctly, given some set
of methods (nearest-neighbor methods, in this case). For this
discussion, we evaluated the difficulty metric on our own by
running the reproduction package provided by Campos et al.
[8]. The resulting difficulty for every dataset is given in Table
1. In summary, we considered 115,215 experimental results
from [8], which leads to a grand total of 466,905 processed
results in this paper.

5.1 Comparison of tree-basedmethods

In this experiment, we want to compare GIF with its three
tree-based siblings. We measure the predictive performance
of these algorithms by theROCAUCscore and report the best
score for every dataset and hyper-parameter combination.We
also report aΔIso value, indicating the difference between the
ROC AUC score achieved by GIF and the best sibling. The
results are presented in Table 2. Note that we focus on the
GIF, EIF, IF, SCiF, and ΔIso column for our evaluation.

The results show that GIF exhibits the best predictive per-
formance in 9 of 14 cases when compared to EIF, IF, and
SCiF. From a relative point of view, the improvement in
terms of ROC AUC score is quite small for some datasets
(e.g., PageBlocks, ForestCover, andPenDigits havingΔIso <

0.05), while it is quite large for other datasets (e.g., car-
diotocography, satellite and waveform having ΔIso > 0.1).
Interestingly, in those cases, in which GIF exhibited infe-
rior performance, the degradation of the ROC AUC score is
mostly rather low with delta values ranging from−0.0078 to
−0.0708. Only for the Shuttle dataset, we observe a large
degradation with ΔIso = −0.1251, which results from a
superior performance by the SCiF algorithm. The results
nevertheless indicate that GIF can improve the predictive
performance of IF, respectively, EIF and SCiF in a meaning-
ful way, while remaining competitive to the other algorithms
in those cases, in which our method did not show a better
performance.

Regarding the absolute ROC AUC scores, it can be
observed that especially the outlier analysis of the Wilt
dataset seems to be troublesome for tree-based outlier detec-
tors. While GIF provides a notable improvement w.r.t. the
ROC AUC score and exposed the best results in this group
of algorithms, the predictive performance never exceeds

approx. 0.57. This dataset motivates further comparison with
other methods to investigate, whether there is a system-
atic problem among this group of algorithms or whether
this dataset in particular is hard to analyze for outliers. The
difficulty metric, however, at least from the perspective of
nearest-neighbor methods already suggests that this dataset
is quite hard to analyze correctly (D = 7.74).

5.2 Comparison to neighborhood-based outlier
detectors

From the previous section, it becomes clear, that the GIF
improves the predictive performance in a meaningful way
when compared to other tree-based outlier detectors. In this
section, we want to compare GIF to other outlier detection
methods. The goal of this comparison is not to show that GIF
is the best method for all problems but to critically evaluate
tree-based outlier detection methods when compared against
proximity-based approaches. In addition to aNNe, iNNE, and
LeSiNN, Campos et al. provided in [8] an extensive study of
these approaches for outlier detection which we will use as
an additional baseline here. Please note that the Creditfraud,
Forestcover, Satellite, and Mammography datasets are not
part of the original study by Campos et al. but are listed as
such in Table 2. We have applied their experimental routines
on the mentioned datasets and report it under the [8] column.
Again we present the relative performance differences by
covering theΔNN column, indicating the difference between
all neighborhood based-methods and GIF.

From Table 2, it can be seen that nearest-neighbor-based
approaches exhibit best results in 9 of 14 cases when com-
pared to every other method. However, the ΔNN column
indicates that the performance degradation of GIF is quite
small (|ΔNN| < 0.05) in six of these nine cases resulting
in a competitive performance. Conversely, the delta is larger
(ΔNN > 0.1) in two of these nine cases, which we will dis-
cuss here shortly. The first case is given by theWilt dataset for
which the difference is especially large with ΔNN ≈ 0.21.
It seems that this particular dataset is hard to analyze for
outliers using tree-based methods, with GIF still being the
best choice in this group of algorithms. The second case is
given by the Annthyroid dataset, which exhibits a large per-
formance degradation with ΔNN ≈ 0.12 where IF performs
better with a ROC AUC of 0.708. Hence, we conclude that
in the majority of cases neighborhood-based and tree-based
approaches deliver similar performances, with some notable
outliers in which GIF generally seems to be the best choice
among tree-based methods.

From Table 2, we can also observe that GIF outper-
forms nearest-neighbor methods in five cases, which is
extremely meaningful since we compare against 15 differ-
ent algorithms. Additionally, it can be seen that GIF for
cardiotocography,waveform, and satellite shows an improve-
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(a) Comparison between tree-based outlier detectors, namely
Generalized Isolation Forest (GIF), Extended Isolation Forest
(EIF), SciForest (SciF), and the regular Isolation Forest (IF).

(b) Comparison between all methods, that have been both
considered in our experiments and in [8].

Fig. 1 Critical difference diagrams depicting the pairwise statistical
difference between different sets of methods

ment w.r.t. to ROC AUC by a large margin with ΔNN > 0.1
and also providing better performance than EIF and IF.
Regarding the Pima and Mammography dataset, we can still
observe an improvement in ROCAUCwithΔNN ≈ 0.06 and
ΔNN ≈ 0.028, respectively, which is not as large as for the
other datasets but still meaningful, keeping in mind that GIF
is outperforming 15 different nearest-neighbor-based outlier
detection methods and all tree-based methods, i.e., EIF, IF
and SCiF.

Finally, we show critical difference (CD) diagrams in Fig.
1,which leverageWilcoxon–Holmanalysis to assess the pair-
wise statistical difference between differentmethods [15].As
expected, Fig. 1b shows that the ROC AUC scores from [8]
generally seem to be the best given that we compare the best
configuration of 12 different methods with GIF. However,
we also see that even this very powerful ensemble of classi-
fiers is not statistically significant better than GIF achieving
second place. From Fig. 1b we can also derive that aNNE,
iNNE, and LeSiNN expose worse ranks than [8], GIF, IF,
and EIF, but still are not worse than these methods in terms
of statistical significance. Last, we see that IF and EIF are
ranked after GIF, where IF is surprisingly ranked before EIF.

5.3 Runtime analysis

After discussing the predictive performance of our algorithm,
we want to take a look at its runtime. We measure the total
time from the setup of the algorithm until the scoring of every
individual observation in the dataset becomes available. The
results in Table 3 correspond to those in Table 2.

GIF has a slower or equal runtime in 7 of 14 cases, when
compared to other tree-based (i.e., EIF, IF, and SCiF) and
nearest-neighbor-based outlier detectors (i.e., aNNe, iNN,

and LeSiNN). The relative runtime improvement of GIF
w.r.t. to non-GIF methods (the Δ-column) is mostly ranging
well-below one second. These lower runtimes are notewor-
thy, especially in those cases in which GIF is not only is
faster but also produces a better predictive performance (e.g.,
waveform, Pima, cardiotocography, etc.). Moreover, a very
interesting case is given by the forestcover dataset. Here, GIF
not only improved the ROCAUCw.r.t. to tree-basedmethods
by ΔIso ≈ 0.017 but also at a much smaller runtime of about
approx. 18 seconds. Comparing GIF to nearest-neighbor-
based methods, we observe a slight degradation in predictive
performance with ΔNN = − 0.016 but a large improvement
in terms of runtime. Conversely, there are cases, in which the
GIF algorithm tends to exhibit larger runtimes than compet-
ing, tree-based algorithms. This is the case for some datasets
like Wilt and PenDigits. However, GIF in these cases also
yields higher predictive performances with ROC AUC gains
being ΔIso ≈ 0.045, hence constituting a viable runtime-
performance trade-off. On the other side, there are datasets
like Annthyroid and Spambase, in which GIF yields inferior
predictive performances and a runtime which is measurably
higher than competing algorithms, which we evaluated in
Table 3.

This is especially visible for the Creditfraud dataset. This
particular dataset is quite large (cf. Table 1) and therefore
naturally increases the runtime of all algorithms because their
time complexity is (also) a function of the subset size, which
we set to 25% of the dataset size. Additionally, the evaluation
of the exit condition for every node becomes more costly
for datasets with larger dimensionality. Nevertheless, we can
observe much higher average runtimes for GIF which are
approx. 12x larger than EIF and 208x larger than IF, while
yielding a relative degradation in predictive performance by
Δ ≈ − 0.01. It is conceivable that GIF in this case heavily
suffers from an inappropriately chosen exit condition which
results in very large trees. This is also a possible explanation,
why we observe much higher runtimes for Creditfraud when
compared to Forestcover, although both datasets do not differ
considerably in size.

5.4 Parameter sensitivity

In the last experiment, we want to evaluate how sensitive
the GIF algorithm is to specific parameter changes w.r.t. run-
time and predictive performance (i.e., the ROC AUC score).
The GIF algorithm requires us to choose the number of child
nodes per node (K ), an appropriate exit threshold value as
well as the kernel function. For a more easy understanding,
we focus on a subset of the 7 datasets and use the RBF kernel
in all experiments. Since the behavior of the exit threshold
τ also depends on the kernel function and its parameters,
we, therefore, use a constant exit threshold of τ = 0.1 in
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Table 3 Mean runtimes for the generalized isolation forest (GIF), the extended isolation forest (EIF), the isolation forest (IF), the SCiForest (SCiF),
and three distinct nearest-neighbor methods, namely aNNe, iNNE, and LeSiNN, w.r.t. different datasets

Method Runtime
Dataset GIF EIF IF SCiF aNNE iNNE LeSiNN Δ1

Annthyroid 10.28 1.59 1.26 0.46 2.07 3.68 9.16 9.82

Cardiotocography 0.2 0.77 0.8 0.58 1.34 1.32 1.04 − 0.38

Creditfraud 5619.75 442.07 27.04 5.74 229.79 113.99 218.22 5614.01

Forestcover 17.65 54.00 69.9 172.92 57.01 91.69 41.89 − 24.24

KDDCup99 11.16 75.21 15.38 16.45 91.13 38.26 88.22 − 4.22

Mammography 0.74 1.72 1.45 0.61 1.10 3.70 0.76 0.13

PageBlocks 0.47 2.18 1.07 0.48 0.69 2.64 0.68 − 0.01

PenDigits 7.62 8.40 2.26 4.56 3.45 4.56 3.99 5.36

Pima 0.06 0.14 0.58 0.14 0.12 0.60 0.08 − 0.02

Satellite 0.84 4.76 1.17 0.56 8.99 2.95 4.96 0.28

Shuttle 0.13 0.29 0.71 0.28 0.16 0.85 0.13 0.00

Spambase 9.88 1.27 1.06 0.27 6.57 2.39 6.43 9.61

Waveform 0.41 1.31 1.18 0.43 4.41 2.36 4.43 − 0.02

Wilt 2.23 1.57 1.18 2.29 0.84 2.57 0.81 1.42

The depicted runtimes are given in seconds and correspond to the predictive performance values in Table 2. Bold entries highlight the lowest
achieved runtime for a dataset among all methods. The ”Δ1” column indicates the difference between the GIF runtime and lowest non-GIF runtime

Fig. 2 Visualization of resulting
runtimes and ROC AUC scores
for the GIF algorithm, different
datasets, and different K values,
which decides how many child
nodes are created for every yet
unpartitioned node
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all experiments but vary the scaling parameter of the RBF
kernel.

First, we want to take a look at the parameter sensitivity
of GIF regarding the K parameter. Here, we used that RBF
scaling parameter σ which was able to maximize the ROC
AUC score. The result of this procedure is shown in Fig. 2.

The plot suggests a rather stable runtime for a large frac-
tion of datasets, as to be expected. The runtime of the GIF
algorithm seems to increase moderately for larger K . Inter-
estingly, the satellite dataset in general also seems to show
increasing runtimes for a larger K but the increase is much
more irregular when compared to the other datasets, while
the dataset characteristics do not seem to be significantly dif-
ferent. The plot shows lower runtimes for K = 3 and K = 6
suggesting that GIF for some specific dataset might be sensi-
tive to the choice of the K parameter and otherwise tends to
build larger, deeper trees, that lead to an unusual increase in
runtime. Nevertheless, it can be stated, that the runtimes of
the GIF algorithm do not seem to be heavily impacted by an

increase in K , albeit there are some datasets which exhibit
irregularities in their runtime behavior.

Regarding the ROC AUC score, we find quite stable pre-
dictive performances for most datasets when varying the K
parameter indicating an insensitiveness of the GIF algorithm
with regard to this parameter. It is indeed interesting to note,
however, that the ROC AUC score seems to (moderately)
decrease with a larger K for datasets like mammography and
waveform. Here, it is conceivable that these specific datasets
do not profit, but suffer from finding more partitions in their
data space. The satellite dataset does not seem to exhibit any
regularity with regard to the K parameter.

Second, we want to investigate how much the scaling
parameter from the RBF kernel influences runtime and pre-
dictive performance. From the definition of the RBF kernel,
we know that smaller scalings lead to more dissimilar obser-
vations. Conversely, larger scalings lead to more similar
observations. As theGTr induction routine seeks to find com-
pact and thus also very similar partitions, the trees potentially
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Fig. 3 Visualization of resulting
runtimes and ROC AUC scores
for the GIF algorithm, different
datasets, and different
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become a lot deeper for smaller σ < 1 which in turn impacts
the runtime negatively. Hence, we expect, that the runtime for
smaller σ values is measurably higher than for larger σ val-
ues. For analysis, we only consider experiments with K = 5.
The results are shown in Fig. 3.

The observed runtime behavior confirms our expectations
across all chosen datasets. However, it is interesting to see
that the runtime not only decreases for increasing kernel
scalings, but the runtimes also seem to reach a plateau for
s ≥ 2.5. It seems that the tree induction routines experi-
ence a saturation effect, in which the runtime is not able to
decrease anymore after the scaling parameter exceeded some
value. A possible explanation for this is that GIF precludes
smaller trees since observations become more similar for
larger kernel scaling values. From the accompanying ROC
AUC plot, we see a clear runtime vs. performance trade-
off in some cases. Datasets like PenDigits, Mammography,
Annthyroid, and Wilt seem to benefit from smaller scalings
which admittedly lead to higher runtime but improves the
predictive performance.

6 Application to financial transaction data

In this section, we highlight the usability of ourmethod in the
context of finding transactional fraud in financial data. Trans-
action fraud is a well-known problem in the financial sector
in which criminals perform unauthorized transactions with
stolen credit card information [3]. Fraud detection algorithms
try to automatically find financial fraud possibly before a
dubious transaction is even been processed while keeping
the regular transactions untouched. This introduces a multi-
tude of challenges for detection algorithms [3,10]

– Transaction fraud data is highly imbalanced since most
transactions are non-fraudulent.

– To provide a higher service of quality and not to interfere
with regular transactions, a small false-positive rate is
desired.

– Detection must be performed on time so that regular
transactions are processed timely.

– The detection algorithms should offer some formof inter-
pretability for the operator.

Unfortunately, there is a lack of publicly available datasets
in financial services and especially transaction fraud data is
limited due to the private nature of these transactions. Thus,
for this use-case study, we use the publicly available PaySim
[19] dataset, which simulates financial transactions modeled
after real-world private datasets. The goal of this experiment
is not to compare our GIF method against other methods (as
done in the previous section), but show a real-world oriented
use-case for financial transaction data. The dataset contains
roughly 24million transactions corresponding to a total time-
frame of 30 days. Due to the size of this dataset, we did not
consider it for the large-scale experiments performed before.
For this experiment, we selected the first 572.500 transac-
tions corresponding to one day of transactions.

The dataset contains five different transaction types
(CASH-IN, CASH-OUT,DEBIT, PAYMENT, TRANSFER)
between two parties (ORIGINAL, DESTINATION) repre-
sented as unique identifiers in the simulation. Each trans-
action is accompanied by the amount (AMOUNT) of the
transaction, as well as the balance before and after the trans-
action for both parties (NEWBALANCE, OLDBALANCE).
Each transaction also contains a weak-label IS-FLAGGED
originated from a simple rule-based system as well as the
true label IS-FRAUD which indicates if the transaction was
fraudulent or not. For our study, we decided to ignore the
unique identifier (ORIGINAL, DESTINATION) as well as
the weak label to not be dependent on external systems.
Also, we added the balance difference after the transaction
for both parties (NEWBALANCE +AMOUNT - OLDBAL-
ANCE) as a feature. It is interesting to note that due to the
simulation, only two of the five transactions (CASH-OUT,
TRANSFER) include fraudulent transactions, whereas the
other three (CASH-IN, DEBIT, PAYMENT) are always non-
fraudulent.

We performed 33.210 experiments using different con-
figurations of GIF. The best solution achieved a ROC-AUC
of 0.82137. However, this solution also tagged 3513 non-
fraudulent transactions as fraudulent. Therefore, we decided
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Table 4 Confusion matrix after applying GIF on the PaySim data

True positive True negative

Predicted positive 572,211 260

Predicted negative 20 9

Positive indicates a non-fraudulent transaction and negative indicates a
fraudulent transaction

to use a configuration which achieves the highest true-
negative detection rate, while keeping the false-positive rate
below 20. The resulting confusion matrix is given in Table
4. As expected, most transactions are non-fraudulent which
are rightfully tagged as such. Moreover, the algorithm is able
to identify nine fraudulent activities without any supervised
knowledge about these. Unfortunately, there are 260 fraudu-
lent activitieswhich are not found, but only 20non-fraudulent
activities which are wrongly identified. During our experi-
ments, we found a clear trade-off between the true-negative
rate and false-negative rate which must be carefully adjusted
for the specific problem at hand. For example, we found con-
figurations with a higher true-negative rate at the expense of
a higher amount of false-negative predictions. Last we note
that the entire day of the transaction was processed in 99.993
seconds, meaning that we processed the entire day in well-
below 2 min. We are therefore confident that this method
could be run in near real time in a real-world banking situa-
tion.

7 Conclusion

Outlier detection is an important data mining problem and
plays a key role in the financial sector. Isolation forest is
one of the most used outlier detection algorithms due to
its excellent practical performance. However, the theoretical
properties of this algorithm are not very well understood.
It is especially unclear under which assumptions IF and
its siblings work well. In this paper, we presented a theo-
retical framework for tree-based outlier detection methods
which builds on the widely accepted assumption that out-
liers are events from rare mixtures in mixture distributions.
We showed that trees are well-suited to approximate the
underlying mixture distribution and that they can be used to
find mixture components with small weights thereby find-
ing potential outliers. Moreover, we showed that IF, EIF,
and SCiForest can be analyzed in this framework. More-
over, we showed that the average path length can be used as
a scoring rule for outliers if longer decision paths in the tree
imply fewer points in the regions. We used these insights to
derive a new algorithm called generalized isolation forest.
GIF constructs trees with K regions at each node to split
the data making it more powerful than traditional isolation

trees.Moreover, we directly estimate themixture coefficients
instead of relying on the average path length. In an extensive
evaluation, we compared GIF with 18 state-of-the-art outlier
detection methods on 14 different datasets with over 350,000
hyper-parameter combinations. We showed that GIF com-
fortably outperforms other tree-based methods such as IF,
EIF, and SCiForest. Additionally, we showed that our algo-
rithm could improve on the state-of-the-art in some many
cases.

Acknowledgements Part of the work on this paper has been supported
by Deutsche Forschungsgemeinschaft (DFG) within the Collabora-
tive Research Center SFB 876 “Providing Information by Resource-
Constrained Analysis”, project A1, http://sfb876.tu-dortmund.de and
by the German Competence Center for Machine Learning Rhine Ruhr
(ML2R, https://www.ml2r.de/), funded by theGermanFederalMinistry
for Education and Research.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aggarwal, C.C.: Outlier analysis. In: Data mining, pp. 237–263.
Springer (2015)

2. Aggarwal, C.C., Sathe, S.: Theoretical foundations and algorithms
for outlier ensembles. ACM Sigkdd Explor. Newsl. 17(1), 24–47
(2015)

3. Ahmed, M., Mahmood, A.N., Islam, M.R.: A survey of anomaly
detection techniques in financial domain. Future Gener. Comput.
Syst. 55, 278–288 (2016)

4. Anandakrishnan, A., Kumar, S., Statnikov, A., Faruquie, T., Xu,
D.: Anomaly detection in finance: editors’ introduction. In: KDD
2017 Workshop on Anomaly Detection in Finance, pp. 1–7 (2018)

5. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional
spaces. In: European Conference on Principles of DataMining and
Knowledge Discovery, pp. 15–27. Springer (2002)

6. Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T.,Wells, J.R.:
Efficient anomaly detection by isolation using nearest neighbour
ensemble. In: 2014 IEEE International Conference onDataMining
Workshop, pp. 698–705 (2014)

7. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identify-
ing density-based local outliers. In: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, pp.
93–104 (2000)

8. Campos, G.O., Zimek, A., Sander, J., Campello, R.J.G.B.,
Micenková, B., Schubert, E., Assent, I., Houle,M.E.: On the evalu-

123

http://sfb876.tu-dortmund.de
https://www.ml2r.de/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


International Journal of Data Science and Analytics

ation of unsupervised outlier detection: measures, datasets, and an
empirical study. Data Min. Knowl. Discov. 30(4), 891–927 (2016).
https://doi.org/10.1007/s10618-015-0444-8

9. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A uni-
fied framework for classification, regression, density estimation,
manifold learning and semi-supervised learning. Found. Trends®
Comput. Graph. Vis. 7(2–3), 81–227 (2012)

10. Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi,
G.: Credit card fraud detection: a realistic modeling and a novel
learning strategy. IEEE Trans. Neural Netw. Learn. Syst. 29(8),
3784–3797 (2017)

11. Dixon, W.J.: Analysis of extreme values. Ann. Math. Stat. 21(4),
488–506 (1950). https://doi.org/10.1214/aoms/1177729747

12. Gao, Z.: Application of cluster-based local outlier factor algorithm
in anti-money laundering. In: 2009 International Conference on
Management and Service Science, pp. 1–4. IEEE (2009)

13. Gao, Z., Ye, M.: A framework for data mining-based anti-money
laundering research. J. Money Laund. Control. 10(2), 170–179
(2007). https://doi.org/10.1108/13685200710746875

14. Hariri, S., Kind, M.C., Brunner, R.J.: Extended isolation forest.
CoRR abs/1811.02141 (2018). http://arxiv.org/abs/1811.02141

15. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller,
P.A.: Deep learning for time series classification: a review. Data
Min. Knowl. Discov. 33(4), 917–963 (2019)

16. Liu, F.T., Ting, K.M., Zhou, Z.: Isolation forest. In: 2008 Eighth
IEEE International Conference on Data Mining, pp. 413–422
(2008). https://doi.org/10.1109/ICDM.2008.17

17. Liu, F.T., Ting, K.M., Zhou, Z.H.: On detecting clustered anoma-
lies using sciforest. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 274–290.
Springer (2010)

18. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detec-
tion. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)

19. Lopez-Rojas, E., Elmir, A., Axelsson, S.: Paysim: A financial
mobile money simulator for fraud detection. In: 28th European
Modeling and Simulation Symposium, EMSS, Larnaca, pp. 249–
255. Dime University of Genoa (2016)

20. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New
York (2004)

21. Pang,G., Ting,K.M.,Albrecht, D.: Lesinn:Detecting anomalies by
identifying least similar nearest neighbours. In: 2015 IEEE Inter-
national Conference on Data Mining Workshop (ICDMW), pp.
623–630 (2015)

22. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel,M., Prettenhofer, P.,Weiss, R., Dubourg, V.,
Vanderplas, J., Passos,A., Cournapeau,D., Brucher,M., Perrot,M.,
Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach.
Learn. Res. 12, 2825–2830 (2011)

23. Peherstorfer,B., Pflüge,D.,Bungartz,H.J.:Density estimationwith
adaptive sparse grids for large data sets. In: Proceedings of the
2014 SIAM International Conference on Data Mining, pp. 443–
451. SIAM (2014)

24. Phua, C., Lee, V., Smith, K., Gayler, R.: A comprehensive sur-
vey of data mining-based fraud detection research. arXiv preprint
arXiv:1009.6119 (2010)

25. Pozzolo, A.D., Caelen, O., Johnson, R.A., Bontempi, G.: Calibrat-
ing probability with undersampling for unbalanced classification.
In: 2015 IEEE Symposium Series on Computational Intelligence,
pp. 159–166 (2015)

26. Ram, P., Gray, A.G.: Density estimation trees. In: Proceedings of
the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 627–635 (2011)

27. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for
mining outliers from large data sets. In: Proceedings of the 2000
ACMSIGMOD International Conference onManagement of Data,
pp. 427–438 (2000)

28. Rasmussen, C., Williams, C.: Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning. MIT
Press, Cambridge (2006)

29. Rayana, S.: ODDS library (2016). http://odds.cs.stonybrook.edu,
Accessed May 2020

30. Schubert, E., Zimek, A., Kriegel, H.P.: Local outlier detection
reconsidered: a generalized view on locality with applications to
spatial, video, and network outlier detection. Data Min. Knowl.
Discov. 28(1), 190–237 (2014)

31. Ting, K.M., Washio, T., Wells, J.R., Aryal, S.: Defying the gravity
of learning curve: a characteristic of nearest neighbour anomaly
detectors. Mach. Learn. 106(1), 55–91 (2017). https://doi.org/10.
1007/s10994-016-5586-4

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s10618-015-0444-8
https://doi.org/10.1214/aoms/1177729747
https://doi.org/10.1108/13685200710746875
http://arxiv.org/abs/1811.02141
https://doi.org/10.1109/ICDM.2008.17
http://arxiv.org/abs/1009.6119
http://odds.cs.stonybrook.edu
https://doi.org/10.1007/s10994-016-5586-4
https://doi.org/10.1007/s10994-016-5586-4

	Randomized outlier detection with trees
	Abstract
	1 Introduction
	2 Preliminaries and related work
	2.1 Density-based approaches
	2.2 Isolation-based approaches
	2.3 Proximity-based approaches

	3 Isolation-based approaches as density estimation
	3.1 Approximating the mixture distribution
	3.2 Finding outlier mixtures
	3.3 Relationship to isolation forest and its siblings

	4 Generalized isolation forests
	5 Evaluation
	5.1 Comparison of tree-based methods
	5.2 Comparison to neighborhood-based outlier detectors
	5.3 Runtime analysis
	5.4 Parameter sensitivity

	6 Application to financial transaction data
	7 Conclusion
	Acknowledgements
	References




