MINING MART: Combining Case-Based-Reasoning and Multistrategy
Learning into A Framework for Reusing KDD-Applications

Jorg-Uwe Kietzt

t Swiss Life
IT Research & Development
CH-8022 Zurich, Switzerland
{Uwe.Kietz,Regina.Zuecker }@swisslife.ch

Abstract

One of the most time consuming steps for the process
of knowledge discovery in databases (KDD) consists in
preparing the source data. On the one hand, problems
are raised by the large amounts of heterogeneous data
of doubtful quality to be processed. On the other hand,
since no universal tool is nowadays available to deal with
all the various analysis tasks required by a real appli-
cation, many different types of data mining algorithms
and tools have to be employed. Typically, they have very
strict and specialized input requirements. In this paper,
we propose a case-based-reasoning (CBR) framework for
the pre-processing step of the KDD-process. The aim is
less to entirely automatize pre-processing and mining tool
selection, but mainly to support the reusing of work done
for one KDD-task to similar ones. As a side effect, the in-
tegration of pre-processing operations supported by mul-
tiple machine learning (or data minig) will make the case
adaption at least partially automatic.

1 Introduction

The entire (information) society is in a somewhat paradox
situation: we are starving for knowledge while drowning in
data. Traditional approaches fail to release the knowledge
from the masses of available data. Two technologies are
emerging to reduce the gap:

1. data warehousing and on-line analytical processing
(OLAP) of data for the verification of hypotheses and

2. knowledge discovery in databases (KDD) for discov-
ering new hypotheses.

Regina Ziickert

Anca Vaduvat

t University of Zurich
Department of Information Technology
CH-8057 Zurich, Switzerland
vaduva@ifi.unizh.ch

Practical experience with these techniques have proven
their value. However, it is also apparent that using a
data warehouse for decision support or applying tools
for knowledge discovery are difficult and time-consuming
tasks. Therefore, it is currently still quite difficult to get
a high return of investment from using them. Definitely,
their main drawback is the pre-processing of data. If we
inspect real-world applications of knowledge discovery, we
realize that 50 - 80% of the efforts are spent on finding an
appropriate transformation of the given data, finding ap-
propriate sampling of the data, and specifying the proper
target of data mining, etc. Furthermore, pre-processing
is not only time-consuming, but also requires profound
data mining and database know-how. As a result, pre-
processing cannot be done by the common business peo-
ple, but only by a few highly skilled power users.

A further problem is the mass of data to be pre-processed.
Even if existing KDD-tools offer facilities to pre-process
data so far, they fail in achieving this task for real ap-
plications because they cannot deal with large amounts
of data. The reason is that data has to be first loaded
from databases into the KDD-environment and then in-
ternally processed by making use of extensive temporary
storage which becomes costly or even impossible for large
amounts of data.

To overcome the shortcomings of the currently existing
support for KDD, this paper addresses the following ob-
jectives:

1. Create a user-friendly KDD support environment
(KDDSE) for the non-expert user. In particular, the
focus lies on extending the already existing tools for
data mining with a user-friendly environment for data
pre-processing.

2. Provide reusable components for the expert-user
within the pre-processing environment. These com-
ponents may be either easily configured or effortlessly
extended for implementing new data mining applica-
tions.

3. Avoid the limitations imposed by todays tools where
the whole amount of data that has to be loaded, kept
and internally handled within the pre-processing en-
vironment.

4. Speed up the discovery process by reducing the
number and the complexity of trial and error pre-
processing and analysis cycles.

In order to reach these objectives, we propose an applica-
tion development framework called Mining Mart integrat-
ing techniques of CBR and multistrategy learning. The
framework provides a collection of cases which may be
either directly used and executed or reused for develop-
ing new ones. A case consists of the specification of a
business problem, the data to be analyzed and a chain
of pre-processing operators that are based on clever mul-
tistrategy learning. This framework may be used both,
by experts and non-experts: the end-user retrieves one
of the prepared cases, makes some simple adaption if re-
quired (e.g., the selection of another target segment) and
initiates the case execution.

In contrast, the highly skilled data mining power-user
uses the framework for creating new cases. The cases
already available provide useful building blocks and anal-
ysis chains for reusing, which should speed-up the cre-
ation of new business cases. One of the particularities of
our approach is the realization of the framework: unlike
in other KDDSE, we let the data to be stored further
on in databases and implement the pre-processing frame-
work beyond the database management system(DBMS).
In this way, we can make use of the inherent mechanisms
provided by DBMS in handling large amounts of data.
That means, the specification of the business problem and
the pre-processing operators belonging to a case are (in-
tensionally) stored in the form of metadata [Staudt et
al., 1999b; Staudt et al., 1999a). In particular, transfor-
mation specifications, database structures, configuration
parameters and statistical information are stored with an
appropriate granularity and in accordance with a suit-
able metadata schema in a repository. At runtime, the
specifications are read, interpreted, merged into an op-
eration chain and finally executed. The advantages are
the reusability of metadata and the handling of large
amounts of data: cases may be either directly used or
eagily edited and re-applied and - most importantly to

Time | Imp.
Business understanding 20% | 80%
a) Exploring the problem 10% | 15%
b) Exploring the solution 9% | 14%
¢) Implementation specification | 1% 51%
Data preparation & mining 80% | 20%
a) Data preparation 60% | 15%
b) Data surveying 15% | 3%
¢) Modeling (data mining) 5% | 2%

Table 1: Steps of a KDD-project with time to complete
and importance to success

tackle objective 3 - they may make use of the facilities of-
fered by DBMS to execute the data transformations at
runtime. In this case, the system is called metadata-
driven and is based on a similar principle as the mod-
ern Extract/Transform/Load-tools like PowerMart (Infor-
matica, http://www.informatica.com) or Datastage (Ar-
dent, http://www.ardentsoftware.com).

The remainder of the paper is structured as follows: Sec-
tion 2 generally discusses aspects related to business cases,
KDD-processes and their relation to data warehousing. In
Section 3 we present our approach for data pre-processing.
Section 4 presents related work while Section 5 concludes
the paper.

2 Business Cases, KDD-projects
and Data Warehousing

Ideally, a KDD-project starts with a business case, which
could be solved or optimized by analyzing available data.
The typical steps of such a project are given in table 1
from [Pyle, 1999]. First of all, it should be noted that
the specification of how to use the expected mining results
plays a decisive role for the success of a project and should
be established in accordance with the company manage-
ment at the very beginning; the best mining results are
worth nothing, if they are not used. Furthermore, con-
sidering that the most time-consuming step is the prepa-
ration of data for mining (see table 1), both problems
could be solved in a related manner. The management
support for the use of the mining results as well as the
justification of the high data preparation costs are both
most easily reached if the KDD-project is integrated into
a strategic and repeatedly occurring business case which
may then reuse the pre-processing efforts each time it is
executed.

For Swiss Life, a leading life insurance company of

Tr%ngf: 8 Q

Sample +

Response ﬁ

O

est %

Persons
Budget ﬁ
A
0% @ 20% Sample
Addresses

Figure 1: The Business Case Mailing Action

Switzerland, there are several application areas where cen-
tral business cases could be supported by data mining
[Staudt et al., 1998], especially:

e Marketing
e Product development and controlling

e Business reporting

In this paper we will use the optimization of responses
to mailing actions in direct marketing as an illustrating
and well known example of such a problem. The aim is
to perform mailing actions to those addresses with the
highest probable rate of return. This business case! is
illustrated in Figure 1. On a more technical level it may
be described by the following steps:

0. Use an existing data warehouse (DWH) as base for
extracting the needed data.

1. Construct a household view on this DWH, which pro-
vides all relevant information in a form, that allows

the next step to be done by an end-user.

2. Select the target segment, e.g. households,

1Ling and Li [1998] describe another problem and solution anal-
ysis of this business case. However their analysis is based on the
assumption that existing customers have been acquired by mailings,
(i.e., they all are persons answering to mailings), which is not the
case in our setting, where most contracts are still sold by insurance-
agents and not by mailing-actions.

10.

11.

12.

13.

(a) which have a child with an age below 2 and
which are not mailed since the birthday of this
child, or

(b) which have already bought a single-premium in-
surance, but this is more than two years ago, or

(€) ...

Select a random-sample from the target segment for
training and test, let’s say with size proportional to
20% of the budget. That means, if the budget is
X and a single letter cost Y a total of X/Y letters
may be sent. Spending 20% of the budget to get the
training/test data means selecting X/Y*0.2 house-
hold records from the target segment.

Export the addresses of this sample, do the first mail-
ing, and store the responses, i.e. label the sample.

Split the sample into training and test set.

Select/construct the relevant attributes for the cur-
rent response prediction task.

Train the selected mining-tool, which output could
be used to order (not just classify) the data.

Apply the data transformations done in step 6 to the
test data (as the mined pattern relies on these data
transformations)

Test the mined pattern on the test set, i.e get an
estimated response rate for the mined pattern.

Apply the pre-processing done in step 6 to the tar-
get segment; the mined pattern relies on this pre-
processing.

Select the best records (i.e., ordered by the mined re-
ponse pattern) from the target segment of step 2. In
accordance with the assumption in step 3, the selec-
tion set should be proportional to 80% of the budget.

Export the addresses of this selection and do the real
mailing.

Compute a final evaluation, and store all the mailing-
information (date, (non-) responses, segment, prod-
uct, mined pattern, data-transformations, evalua-
tion, ...) in the metadata repository, such that it
could be used as background knowledge for further
actions.

Considering the standard KDD-process [Brachman and
Anand, 1996] in Figure 2 consisting of five phases, step
0 corresponds to the end of second phase. The building

Data Warehousing

(Data Mining
e D /
- / /
Selection & m | / /
Cullecllcn ‘ ’ ;
\ \

\
! /
L |
\ \ 1 m/'ﬂﬂ O
! P 4 4

Data Mining

Knowledge

\

‘\\ Ly
- T Cloone bt
4 1
| 1
| 1
| 1
1 |

Structured
Data

Collected Data

Distributed
Data

Figure 2: The KDD Process

of a data warehouse (DWH) covers the first two phases
(selection & collection and integration & cleaning). Our
approach relies on an already built DWH, which is, in
fact, an ideal first step in setting up a KDD-process [In-
mon, 1996]. The interplay between data warehousing and
KDD is depicted in Figure 3. The data warehouse is
build by extracting, transforming, integrating, cleaning,
and finally loading the data from the operative systems.
In the figure, these data sources are labeled as OLTP
(on-line transaction processing) systems. While DWH is
still a relational, normalized and a mostly general-purpose
database, a data mart? contains application-specific and
aggregated data for an OLAP(on-line analytical process-
ing) application. Thus, data marts are not very useful for
data mining, since they usually do not contain the data
at the necessary level of detail needed for mining. For
example, the typical data mart for the monthly product
sales (number, value, ...) stored by region, product and
time, could not be used to analyze customer behaviour
with mining methods, as it does not contain any refer-
ence to specific customers, even if it is an aggregation of
customers buying behav1our As a consequence, a data
mining workspace has to be built on top of the data ware-
house, independently of the other data marts. Note in
Figure 3 that metadata of both data warehouse system
and data mining environment have to be integrated into
a (logically) central enterprise repository in order to man-
age the whole meta-information in a unified and consistent
way. The repository stores the connections between the
data warehouse and the data mining environment through
corresponding links between metadata elements.

2Note that no agreement exists regarding the distinction between
DWH and data mart in the DWH-literature.

3However, the hierarchical dimensions, e.g. for product, time and
region, of the data mart could be very useful background knowledge
for mining.

OLA Fro (end L

Data Warehouse }‘ Data Mining

System \‘

Data
Marl

Environment Association Rules

OLTP DB 1 }
\
\ v
OLTP DB 2 Dala Data
Mart Mart Decision Trees

Classification

Clustering

Visualisation

iéiéii

Figure 3: Architecture of a Data Warehousing and KDD
Environment

As far as relevant for this business case, the basic structure
of our data warehouse is shown in Figure 4*.

When we start the pre-processing phase on top of such a
DWH, we are faced with

e a normalized, multi-relational database as data
source, whereas most existing data mining algorithms
are single-table based,

e many features and tables which are only partially rel-
evant for the current business case,

e a data representation optimized for maintenance and
not for optimal use within a specific data mining tool
for a specific task (e.g., the DWH stores the birthdate
but for data mining the age is required).

For our mailing-case, this means that the mapping be-
tween DWH data representation and the specification of a
customer segment (step 2) is far from being trivial. So the
first step (1) has to generate a more application-oriented
view on top of the DWH schema. Inherently, it strongly
depends on the business case to solve. Since we are inter-
ested in households in our business case, the correspond-
ing view will reflect this. In contrast, the base-level for
product development would not be households, but insur-
ance contracts.

The construction of the view already specifies the first
group of pre-processing steps to be handled (i.e., stored,
retrieved and adapted) by our case-based-reasoning sys-
tem. The other group is the one described in step 6. For

4Further information on this data warehouse, in particular a data
extract, are available on our Web for further experiments. It can be
obtained from http://research.swisslife.ch/kdd-sisyphus/.

_ lfe- business- Legend:
product insurance- partner-role household
) <) < 3 | partner |)
prod.pdid pollcy.d parrol.prid partner.ptid hhold.hhid Table content
vvert.vvi TableName.KeyName
A A $
| l | Aid &—| Bid |
A4
tariff P tarif- P tariff-role address tel./fax _ ,
. < component < . Table A contains a column with
Ivtarf.tfid ttkomn tkid tfrol.trid padr eadr the key of B as a foreign key, i.e.
P Aand B are related N:1

Figure 4: Schema excerpt from our DWH

the same business case, step 1 does not need much adap-
tion for reuse since the same schema may be applied to
another target segment (i.e. to 2.b instead of 2.a). How-
ever, this is not true for step 6 as different target segments
may have very different properties, resulting in different
attributes relevant for predicting behaviour: as a general
rule it could be stated, e.g., that most households ad-
dressed by 2.a are not ensured so far, whereas for seg-
ment 2.b., the past insurance behaviour is very likely to
be important for predicting future behaviour.

3 A Case-Based-Reasoning Sys-
tem for Pre-Processing

This section discusses our approach 3 for supporting pre-
processing and implicitly data mining. As already men-
tioned, our aim is to build a system that supports the
design, storage and management of business cases that
may be directly used by end-users when solving a spe-
cific mining task. In addition, support for power-users is
needed to describe and store new mining tasks.

Figure 5 illustrates the use of the CBR-system. An end-
user comes up with a specific business task he wants to
solve with data mining (e.g., doing the mailing action as
described in the last section) and asks the system, if there
exists a case for this task. If one of the cases fits user’s
intention, he can apply it, otherwise he has to contact a
power-user to set up a new case.

To meet these requirements, a case must have two associ-
ated parts:

a) a business-case description for retrieval

5The work is embedded in the Mining Mart project. Information
may be found at http://www-ai.cs.uni-dortmund.de/
FORSCHUNG/PROJEKTE/MININGMART /index.eng.html

=85
I\ e

= s &

Check, if a case
exists in the case
base which could
be used for this
task.

yes X

Take Case A and Create a new case
change within the Case
parameters that it Base.

fits for Task X. Apply new Case
Apply modified on data.

Case on data.

@

MM Case base

Figure 5: The CBR Approach

b) a re-usable technical specification/implementation of
the KDD-process for this business case (e.g., the
machine-processable representation of the steps 1-12
of the mailing-case)

Since case-retrieval is not an issue of this paper, we assume
that a case is manually picked from a given list®, presented
to the user by name or by a graphic like the one in Figure
1. In the following, we will limit our focus on the repre-
sentation and re-use of the preprocessing operations for
data transformations, i.e. the pre-processing steps 1, 2, 3,
5 and 6, and the related data transformation operations
8 and 10 of the mailing-case. We will neither cover the
data mining (modeling) step itself (step 7 in the mailing-
case) nor post-processing (testing/evaluation/use, steps
9 and 11) in this paper. However, at least clustering,
classification learning and regression could be formalized
as pre-processing operations constructing new attributes,
i.e., the new class, the predicted class and the predicted
value (see sec. 3.1.2) within our framework.

6As long as we are limited to the mining business cases for the
DWH of a single company or business unit this will probably be
sufficient. For the whole Mining Mart project there will be a work-
package concerned with business case description for retrieval.

e no ‘unknown’ (NULL) values are allowed for specific at-
tributes

e scalar and ordinal attributes have to be numeric

e nominal attributes must have character values or be rep-
resented as sets of boolean values

e no numeric or no non-numeric attributes are admissible

e not more than N different values are allowed for nominal
attributes

e always the same scale for numeric attributes is required
e no key attributes are respected

e input data must consist of a single flat table

Figure 6: Input restrictions of data mining tools
To start with, the goals of pre-processing are:

1. to provide the most relevant data for a certain task,

2. to provide the data in a form most suitable for min-
ing,

3. to fulfill the input restrictions of data mining tools
(Figure 6 lists some typical restrictions), and

4. to generate useful and necessary background knowl-
edge to be used for future tasks

Inherently, pre-processing is embedded in a certain case.
Important is, however, that the selection of the data min-
ing tool is part of the case as well. This frees the end-
user from the difficult task of selecting a data mining tool
(see Section 4.2) and ensures at the same time that pre-
processing exactly matches the input restrictions imposed
by the tool (see Figure 6). That means, the tool is selected
and integrated into a case when the case is designed. The
use of the tool during case execution is transparent for the
end-user.

In the following, we discuss how to adapt a case to reuse it
successfully on the new data. As we already showed, even
just the selection of another target segment from the same
DWH possibly requires different relevant attributes to be
considered. In our framework design, we integrate the ap-
proach of multistrategy learning (MSL) [Michalski, 1991;
Michalski and Kaufman, 1998] to solve this problem of
case-adaption to new data. In particular, we will com-
bine constructive induction [Mehra et al., 1989], with fea-
ture selection [Liu and Motoda, 1998b; Liu and Motoda,
1998a). Additionally, several base feature construction op-
erations are based on learning methods, e.g. discovering
optimal discretizations and groupings.

At a first sight, MSL seems to be a very promising ap-
proach to total automation, as it does not need large

amounts of currently unknown knowledge, but relies on
systematic or heuristic exploration on the space of pos-
sible data transformations. However, pre-processing and
mining real-world data using solely this approach is not
practicable; even heuristic MSL approaches will possibly
get lost in the huge search space of possible data transfor-
mations, and the advantage of not needing domain knowl-
edge becomes the disadvantage of not being able to use
such domain knowledge to restrict the search space to
a manageable size. Our case-based approach to integrate
pre-processing and data mining can be seen as an attempt
to set up an environment where available knowledge can
be used to specify some transformations and especially the
structure of the case manually, and where multistrategy
learning can be successfully used:

e to automatically solve manageable sub-problems
where corresponding knowledge is not available, and

e to locally optimize the adaptation of the case to new
data.

3.1 Atomic Operations of Pre-Processing
The base-operations of pre-processing investigated in this
paper are sampling and segmentation, feature construc-
tion within a table and over related tables, and feature se-
lection”. In our approach, feature construction and drop-
ping of base-features are separated, as features may be
needed for more than one feature construction operation
(e.g. the date of birth of a person is needed to construct
the age of the person, the entry-age into a contract, and
the end-age of a contract).

3.1.1 Sampling & Segmentation

Sampling and segmentation are used to reduce the number
of data records within the training data. The underlying
goals of these operations are the following:

e Improve speed and reduce memory requirements of
the mining tool

e Focus on rare or special cases

Rebalance the class distribution

e Specify a target group

e Use only clean data

"In [Morik, 2000] the pre-processing of time data is investigated,
which will be part of the future Mining Mart, too.

These operations leave the number of attributes and the
data records unchanged, however the statistical properties
of the population may change dramatically. Sampling can
only be applied to one data table.

Examples

e Random sampling or splitting
Extracts data records out of the set of training data
by random generation.
Parameters: number of records to extract.

e Sampling based on typical cases / atypical cases
Extracts data records which fulfill the (a)typical case
within the training data.

Parameters: Condition of the (a)typical case.

e Segmentation
Extracts data records
segmentation-pattern.
Parameters: Segmentation condition (e.g. 2.a and
2.b).

which fulfill a special

e Data quality-motivated sampling
Extracts only data records with values having a cer-
tain degree of quality.
Parameters: Quality-condition (e.g. all records which
have less than 2 unknown values).

¢ Rebalancing
Noise-tolerant mining tools cannot be used to build a
classification for very unbalanced class distributions
(e.g. 95% — 5%, with 5% being an optimistic estimate
for responses of a mailing.), a sampling favoring the
members of the minority class has to be applied first.
Parameters: class distribution (e.g. 55% — 45%) after
rebalancing.

3.1.2 Attribute Construction within a Relation

Simple attribute construction creates a new attribute
within one data table or view. The new attribute is based
on one or more base attributes and groups their values into
a more general form. The total number of data records
is the same as before the operation. However, if base at-
tributes are replaced with newly created ones, the number
of distinguishable data records is possibly reduced (excep-
tion make relativation and rescaling).

Goals

e Improve data-coding relative to the capabilities of the
mining tool

o Create a new attribute which can be better used for
the mining task

Examples

e Discretization
Is applied to attribute(s) of the type ordinal or scalar
and creates a new attribute of the type nominal or-
dered
(ordinal/scalar — nominal ordered).
Parameters: base attribute(s), output attribute,
number of created intervals for the output attribute
(e.g. values of the income-attribute(s) are grouped
into i0, il..., i10).

e Grouping
Is applied to attribute(s) of the type nominal which
has/have no hierarchy and creates a new nominal un-
ordered attribute.
(nominal unordered — nominal unordered).
Parameters: base attribute(s), output attribute,
number of created groups, number of data records in
one group (e.g. profession descriptions are grouped
into groups of professions).

e Abstraction
Is applied to attribute(s) of the type nominal or scalar
and creates a new attribute of the type nominal or-
dered.(nominal, scalar — nominal ordered).
Parameters: base attribute(s), output attribute, hi-
erarchy, output of hierarchy level (e.g. looking at the
household level instead of person level).

o Relativation

Puts one attribute in relation to another attribute.
This works only on numeric or date attributes
and doesn’t change the number of different data
records.(numeric, date — numeric ordered).
Parameters: base attributes, output attribute, oper-
ation between the base attributes (e.g. calculating
the age from Sysdate and birthdate, calculating the
quotient of income and premium sum).

o (Cleaning
Eliminates rare values of data records by creating a
new attribute.(any type — any type).
Parameters: base attributes, output attribute, which
value of the base attribute shall be replaced by which
new value (e.g. replacing the entry age of a person
smaller than one by one).

¢ Unknown elimination
Replaces unknown values with a specified new
value.(any type — any type).

Parameters: base attributes, output attribute, speci-
fied replacing value (e.g. replacing the unknown val-
ues of attribute age by the mean value or most fre-
quent value).

e Scaling

For all distance-based mining tools (e.g. clustering
and instance based learning) the scale of the numeric
attributes is very important, i.e. attributes with
larger values are more influential on the result. To
avoid this usually unintended weighting of attributes,
all attributes have to be rescaled, e.g. to a fixed stan-
dard deviation or interval. (scalar— scalar).
Parameters: standard deviation or interval

3.1.3 Multi-Relational Attribute Construction

Joins and aggregations are used to put information from
several related tables into one base table. To avoid un-
wanted changes of the target population distribution, the
object identity within the base table has to remain un-
changed (the number of different data records is still the
same after the operations). To avoid the loss of base-table
record-joins, outer-joins should generally be used, and to
avoid the duplication of base-table records, simple joins
must not be used for 1:N or N:M related tables (as this
would duplicate records in the base table; e.g., it is not
a good idea, to send duplicated mail to a household, for
every person and contract involved). Instead the aggre-
gation operations of this section have to be used®.

Goals
e Fit the single table requirement of most DM-tools
e Reduce the complexity for ILP-DM-tools

e Avoid unwanted changes of the population distribu-
tion.

Examples

8The design of these operations is in a way inspired by theo-
retical results in Inductive Logic Programming (ILP) on how to
translate determinate hornclauses into propositional logic [DZeroski
et al., 1992; Kietz and Dzeroski, 1994], which are also used in the
ILP-system DINUS [Lavra¢ and Dzeroski, 1994] for propositionali-
sation. Newer and more general propositionalisation approaches like
[Alphonse and Rouveirol, 1999] are not used, as they are based on
duplications of records in the base-table, which does not seem to
be adequate in this context. Instead, we use operations inspired by
Description Logics (DL) [Brachman and Schmolze, 1985] and the
constructive induction operations of the DL-learning system KLUS-
TER [Kietz and Morik, 1994] to generate determinate features from
indeterminate relations. These relations will also be further investi-
gated in a future Mining Mart workpackage.

e Sum
Creates a scalar attribute, e.g. premium sum of a
product, income of a household.

e Min, Max
Creates a scalar ordered attribute, e.g. smallest,
highest premium sum of a product, smallest age of
a member of the household.

e Count different
Creates a numeric attribute, e.g. how many persons
a household has, how many insurance contracts a
household has.

e Count X =V
Creates a numeric attribute, e.g. how many children
has a household, how many different values has an
attribute.

e Exist X =Y
Creates a binary attribute, e.g. exists an insurance
contract of type 3a for one household.

e AIX=Y
Creates a binary attribute, e.g. are all insurance con-
tracts of a household of type 3a, are all persons of a
household adults.

3.1.4 Attribute Selection

Attribute selection drops attributes which should not be
in the mining input and/or result, since they are, e.g.,
clearly uninteresting, not usable or difficult or expensive
to measure for new data. The number of different data
records and also the number of the total data records re-
mains the same.

Goals

Drop attributes which do not fit the input require-
ments of a data mining tool

Drop attributes which are strongly dependent on or
the base of attribute construction for other attributes

e Improve processing speed

Guide the build-in attribute selection process of the
data mining tool

Examples
o Feature / attribute selection

Only the important attributes are chosen as input for
the data mining tool. Selecting the attributes can be

done manually, through input-restrictions associated
with the mining tool or by feature selection methods
[Liu and Motoda, 1998b; Liu and Motoda, 1998a].

3.2 Construction of Pre-Processing Cases

The development process of pre-processing cases is per-
formed on training data. Each case has to be represented
by a chain of several pre-processing operations having spe-
cific parameters and a defined order of their execution. An
operation is either user-defined (so-called manual opera-
tion) or supported by an existing MSL tool. In order to
develop an optimal pre-processing chain, the power-user
has to execute several iterations to find the best fitting
(global optimized) chain of pre-processing operations and
MSL tools; the integrated MSL tools help him to auto-
matically find a locally optimized solution. After all iter-
ations are completed, several pre-processing chains with
mining results exist. The chain with the best result has
to be chosen as the best fitting one?. Then, this chain
is executed on the test and application data as well (e.g.,
steps 8 and 10 of the mailing case).

A single iteration on the training data consists of the fol-
lowing steps:

1. Chain specification. MSL tools are selected and man-
ual operations are either newly defined!? or existing
ones are reused. Operations have to be linked to build
the chain: each takes as input the result of the pre-
vious operation and passes the output to the next
operation.

2. SQL generation. Manual pre-processing operations
are generated as SQL statements.

3. Chain execution. The execution of SQL statements is
interwoven with calls of MSL tools which are stand-
alone executables. The whole chain performs the re-
quired data transformations; at the end of execution,
the data is ready to be loaded by the mining tool.

3.2.1 Handling Manual Operations

In Figure 7, the three steps are depicted for manual opera-
tions. During specification (1), the operation descriptions
(PP) are read, decomposed and mapped into reusable

9For future versions the other ones could be stored as variants
in the case base which help the adaption of a case to a new target
segment.

10For supporting operator specification, a visual programming en-
vironment is planed in the Mining Mart project. At present, SQL
is used.

Specification
(1)

MetaCase |«—| MetaView

read SQL-
> Generator

Compilation/
Storage (2)
read view F
definitions |:: >
Execution u
data

Repository
Schema

MetaTable

D Original Tables D View Definitions

Metadata Repository

SQL-
Processor

Figure 7: Development and execution of manual opera-
tions

SQL code parts (i.e., metadata elements) which are stored
in a repository according to a suitable metadata schema.
SQL statements are generated through the execution of
a Java program which takes as input the metadata el-
ements and brings them together in the required order,
with the required syntax. For example, when creating a
view, the metadata to be used includes the view name,
view attributes, transformation functions applied to orig-
inal attributes, constraints, the original tables with their
description elements (name, attributes, primary and for-
eign keys), etc. The SQL generation, also called compila-
tion (2), has as output an SQL statement which is stored
into the repository as well. The execution (3) of the state-
ment creates a view and either writes the definition of the
view into the data dictionary of the training database or
lets the view definition in the repository and only builds
the (net) connection to the database to get the required
data when the view is used (remote access).

Inherently, the repository also contains informations
needed to run the MSL tools (paths, configuration files,
etc). In this way, whole chains are stored into the reposi-
tory; parts of them may be reused. Besides reusability, the
use of the metadata repository for development and execu-
tion provides a better documentation. Operations, chains
and tools may be accompanied by extensive descriptions
of their tasks, executions, required parameters, etc. The
fact that operations and their descriptions are managed
together in an uniform way increases the software qual-
ity and implicitly its maintenance. Additional statisti-
cal information regarding the used data is also available
in the repository, e.g., nominal and cardinal attributes,
response-rate, etc. Furthermore, the repository stores de-
scriptions of the business cases and the links to the op-

Application
data

Figure 8: Chain of pre-processing operations

eration chains implementing them. This information is
needed by the end-user to choose the right business case
for execution.

3.2.2 Integrating MSL Tools into the Chain

Figure 8 shows a complete chain of pre-processing oper-
ations and MSL tools and also how SQL-statements are
generated from that. The chain contains different manual
pre-processing operations (PP) and MSL tool supported
pre-processing operations (MM) in a specific order. The
MSL tools are used to discover the parameters of the asso-
ciated manual pre-processor operations (i.e., of their suc-
cessors in the chain). Manual pre-processing operations
are translated into SQL-code. MSL tools are stand-alone
executables. The result of a SQL-statement is a view in
the database which acts as an intermediate result, i.e. the
view is needed as the input for a following MSL tool. In
turn, the result of a MSL tool is used as input parameters
of the associated SQL-code.

As an example consider the discovery of discretiza-
tion parameters as the task of a MSL tool. For a
given data set (i.e., the training data) and a num-
ber of discrete values (e.g., 2) the MSL tool finds the
best mapping of intervals of the base-attribute (e.g.,
AGE) to nominal values of the new attribute (e.g.,
AGE_CATEGORY). The meaning of the mapping may
be {if AGE < 18 then AGE_CATEGORY = CHILD’,
else AGE_CATEGORY = ADULT’}. That means, the
next operation takes as input the old attribute, AGE, the
automatically found parameter value, in our case 18, and
the two discrete values, ’"CHILD’ and ’ADULT"’ (see Fig-
ure 9) and generates an (intermediate or final) view that
has a new attribute AGE_CATEGORY taking only the

10

CREATE VIEW New_View (name,..., age_category) AS
SELECT name,..., Discretization(age,18,’ADULT’,’CHILD’)
FROM Partner;

FUNCTION Discretization(age IN NUMBER, bound IN
NUMBER, valuel IN VARCHAR, value 2 IN VARCHAR2)
RETURN VARCHAR2 AS decoded VARCHAR2(50) :=NULL;
BEGIN

decoded:= DECODE(SIGN(age - bound), 1, valuel,
-1, value2, valuel);

RETURN (decoded);

END;

Figure 9: View with an attribute on which discretization
has been applied

two discrete values.

After the whole chain is executed on the training data,
the final view and several SQL-statements exist. Since
the results of the MSL tools are now available, they may
be embedded into the SQL statements. These may be
merged and optimized to one statement (see Figure 8).
This statement or the single generated SQL statements
are executed on the test data (step 8 of the mailing case)
or the application data (step 10 of the mailing case).

4 Related Work

Precondition for the success of the Mining Mart frame-
work is the existence of a user-friendly and efficient KDD
environment. We intend to achieve this precondition
through a KDD support environment (KDDSE, [Brach-
man and Anand, 1996]) that advances the state of the
art of current KDDSEs (Section 4.1). Such an advanced
KDDSE will utilize research results for semi-automatic
process planning support as discussed in Section 4.2.

4.1 KDD Support Environments

The KDD-process itself is nicely defined in the CRISP-
DM process model [Reinartz et al., 1998]. The pre-
processing phase is the most time consuming task for
practical applications. Therefore we discuss the support
given by KDDSEs in this process. Data mining environ-
ments that support pre-processing generally only support
internal pre-processing of data already loaded into the
KDDSE. It is problematic, if not impossible, to force the
content of a data warehouse into the KDDSE before ap-
plying the first pre-processing operator. However, with
the announcement, of the SPSS Clementine-Server and the
better integration of DB2 and IBM’s Intelligent Miner this
situation is currently changing. Another problem is, that

the result of a pre-processing operation is often stored ex-
tensionally. This makes the reuse of operations difficult
and furthermore, if a problem compounded of a series of
pre-processing operations is executed, several nearly iden-
tical copies of the original data set must be stored to pre-
vent the loss of the intermediate steps required for further
documentation and re-application purposes.

As an alternative, most KDDSEs allow the use of man-
ually specified SQL expressions. However, specifying
pre-processing operations in SQL is difficult, and the
user is forced to select a sample of the database (via
SQL) to be able to conduct the necessary pre-processing
inside the KDDSE. The pre-processing environment to
be developed in this project introduces support for in-
database pre-processing operations. Particular research
issues address the introduction of operations suited for
multi-relational databases. The importance of support
for multi-relational pre-processing is increasing with the
introduction of commercial KDDSEs supporting multi-
relational analysis (Kepler and Clementine after comple-
tion of the Aladin project). Multi-relational analysis is
the next step in the evolution of KDDSEs towards al-
lowing analysis of complex, large, and most importantly,
relational company data warehouses.

4.2 Semi-automatic
support

process planning

Beginning with the MLT-Consultant [Sleeman et al.,
1989] there was the idea of having a knowledge based
system supporting the selection of a machine learning
method for an application. The MLT-Consultant suc-
ceeded in differentiating the nine MLT learning methods
with respect to specific syntactic properties of the input
and output languages of the methods. However, there was
little success in describing and differentiating the methods
on an application level that went beyond the well known
classification of machine learning systems into classifica-
tion learning, rule learning, clustering, and sloppy model-
ing. Also, the STATLOG ESPRIT-Project [Michie et al.,
1994], which systematically applied classification learning
systems to various domains, did not succeed in establish-
ing criteria for the selection of the best classification learn-
ing system. It was concluded that some systems have gen-
erally acceptable performance; and in order to select the
best system for a certain purpose, they must each be ap-
plied to the task and the best be selected through a test
method such as cross-validation. Theusinger and Lind-
ner [1998] are in the process of re-applying this old idea
of searching for statistical dataset characteristics neces-
sary for the successful applications of DM-tools. An even

11

more demanding approach was started by Engels [1997].
This approach not only attempted to support the selection
of DM-tools, but built a knowledge-based process plan-
ning support for the entire KDD-process. Until today
this work has not led to an usable system [Engels et al.,
1997]. The European project MetaL now aims at learn-
ing how to combine learning algorithms and datasets. We
do not believe that this top-down knowledge-based ap-
proach will lead to an usable environment in the short
run, as it requires a large amount of very application-
specific knowledge. Furthermore, it is widely agreed upon
that even the manual KDD-process cannot be planned
ahead of time in detail. The utility of an operation can
often only be determined after a large number of further
operations is executed. It is apparent that not enough
knowledge is available to propose the correct combina-
tion of pre-processing operations. However, it is possible
to collect knowledge to exclude illegal, meaningless and
unsuccessful combinations of operations. Therefore, we
propose to use case-based semi-automatic process plan-
ning. Our goal is a system which supports a group of
experienced data mining and domain experts in creating
initial cases of the KDD-process for a specific application
(e.g. the mailing action) and a specific type of data (e.g. a
company’s data warehouse). The system then offers these
cases to domain experts, and supports them in repeat-
ing the KDD-process on new data of the same type (e.g.
the same data warehouse, updated with new data, the re-
sult of the last mailing, etc.) for a similar application (the
next mailing action). Hence, only the first use/creation of
a case will require substantial effort and DM-experience,
whereas all further uses of this case will be much quicker
and more inexpensive. Additionally, a larger number of
data mining applications can be executed with a limited
number of available DM-experts. This case-base may even
be useful to acquire knowledge about the KDD-process it-
self, e.g. by the Meta-Level Learning Methods developed
in MetaL. This information could be utilized for more so-
phisticated process-planning support of initial cases for
new applications.

5 Conclusion

The Mining Mart framework described in this paper
builds on the insight that current approaches for achieving
the objectives described above tend to ignore theoretical
results, which have been proven that no algorithm can
claim to be systematically better than any other on every
problem [Wolpert and Macready, 1995, and that nobody
has yet been able to identify reliable rules for predicting,
that one algorithm should be superior to others, i.e. a

total automation of the KDD-process is not possible.

A constraint based graphical user interface based on the
KDDSE Kepler [Wrobel et al., 1996] utilizing metadata
shall guide users through the knowledge discovery task.
The highest possible degree of automation for this pro-
cess will be the aim of this project. However, as reasoned
above, it cannot be expected that the user simply asks a
high level question and selects a data set to be analyzed
and everything else is done automatically. In particular,
the task of proper transformation of the given data into a
format that can be successfully analyzed by the available
algorithms is difficult. As discussed above, testing of all
possible approaches through pure multistrategy learning
is currently not practical because the required computa-
tional power is not accessible for any single user. However,
user that have access to the Mining Mart can search the
case-base for suitable solutions to their task at hand. If
no proper solution is found, the task will be posted as a
new challenge to the knowledge discovery experts.

The main innovation of this project will be the deep inte-
gration of the different research directions currently acces-
sible only to experts into an uniform environment usable
also by data mining non-experts.

Acknowledgements: This work has been partially
found by the Swiss Government under the contract-no
“BBW Nr.99.0158” as part of the European commision
Research Project IST-1999-11993 (Mining Mart). We
thank Celine Rouveirol and Ulrich Reimer for very help-
ful comments on a draft of this paper and all partners
of the mining mart project with whom we had fruitful
discussions about the framework described in this paper.

References

[Alphonse and Rouveirol, 1999] E. Alphonse and C. Rou-
veirol. Selective propositionalization for relational
learning. In Proceedings of the Third European Con-
ference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD’99). Springer Verlag, 1999.

[Brachman and Anand, 1996] R. Brachman and
T. Anand. The process of knowledge discovery

in database. In Advances in Knowledge Discovery and
Data Mining. AAAT Press, 1996.

[Brachman and Schmolze, 1985] R. J. Brachman and
J. G. Schmolze. An overview of the KL-ONE knowl-
edge representation system. Cognitive Science, 9(2):171
— 216, 1985.

12

[Dzeroski et al., 1992] S. Dzeroski, S. H. Muggleton, and
S. Russell. PAC-learnability of determinate logic pro-
grams. In Proc. Fifth ACM Workshop on Compu-
tational Learning theory, pages 128-135. ACM Press,
New York, 1992.

[Engels, 1997] R. Engels. Planning tasks for knowledge
discovery in databases; performing task-oriented user-
guidance. In D. Heckerman, H. Mannila, D. Pregibon,
and R. Uthurusamy, editors, Proceedings of the Third
International Conference on Knowledge Discovery and
Data Mining (KDD-97), page 170. AAAT Press, 1997.

[Engels et al., 1997] R. Engels, G. Lindner, and
R. Studer. A guided tour through the data min-
ing jungle. In D. Heckerman, H. Mannila, D. Pregibon,
and R. Uthurusamy, editors, Proceedings of the Third
International Conference on Knowledge Discovery and
Data Mining (KDD-97), page 163. AAAI Press, 1997.

[Inmon, 1996] W. H. Inmon. The data warehouse and
data mining. Communications of the ACM, 39(11):49—
50, November 1996.

[Kietz and Dzeroski, 1994] J.-U. Kietz and S. Dzeroski.
Inductive logic programming and learnability. SIGART
Bulletin, 5(1), 1994.

[Kietz and Morik, 1994] J.-U. Kietz and K. Morik. A
polynomial approach to the constructive induction of
structural knowledge. Machine Learning, 14(2):193—
217, 1994.

[Lavrat and Dzeroski, 1994] N. Lavra¢ and S. Dzeroski.
Inductive Logic Programming: Techniques and Appli-
cations. Ellis Horwood, Chichester, England, 1994.

[Ling and Li, 1998] C. X. Ling and C. Li. Data min-
ing for direct marketing: Problems and solutions. In
R. Agrawal and P. Stolorz, editors, Proceedings of the
Fourth International Conference on Knowledge Discov-
ery and Data Mining, pages 73-79. AAAT Press, 1998.

[Liu and Motoda, 1998a] H. Liu and H. Motoda. Feature
Extraction Construction and Selection, A Data Mining
Perspective. Kluwer Academic Publishers, 1998.

[Liu and Motoda, 1998b] H. Liu and H. Motoda. Feature
Selection for Knowledge Discovery and Data Mining.
Kluwer Academic Publishers, 1998.

[Mehra et al., 1989] P. Mehra, L. Rendell, and B. Wah.
Principled constructive induction on decision trees. In
Proc. of the Eleventh Int. Joint Conf. on AI (IJCAI-
89), pages 651-656. Morgan Kaufman, Los Altos, Cal-
ifornia, 1989.

[Michalski, 1991] R.S. Michalski. Inferential learning the-
ory as a basis for multistrategy task-adaptive learning.
In Proceedings of the first International Workshop on
Multistrategy Learning, pages 3 — 18. George Mason
University, 1991.

[Michalski and Kaufman, 1998] R. Michalski and
K. Kaufman. Data mining and knowledge dis-
covery: A review of issues and a multistrategy
approach. In R. Michalski, I. Bratko, and M. Kubat,
editors, Machine Learning and Data Mining Meathods
and Applications. John Wiley & Sons LTD, Chichester,
England, 1998.

[Michie et al., 1994] D. Michie, D. Spiegelhalter, and
C. Taylor, editors. Machine Learning, Neural and Sta-
tistical Classification. Ellis Horwood, Chichester, Eng-
land, 1994.

[Morik, 2000] K. Morik. The representation race — pre-
processing for handling time phenomena. In Proc. of
the European Conference on Machine Learning, ECML-
2000. LNAI Springer Verlag, 2000.

[Pyle, 1999] D. Pyle. Data Preparation for Data Mining.
Morgan Kaufmann Publishers, San Francisco, Califor-
nia, 1999.

[Reinartz et al., 1998] T. Reinartz, R. Wirth, R. Clin-
ton, T. Khabaza, J. Hejlesen, and P. Chapman. The
current crisp-dm process model for data mining. In
F. Wysotzki, P. Geibel, and K. Sch”adler, editors,
Beitr”age zum Treffen der GI-Fachgruppe 1.1.3 Ma-
chinelles Lernen (FGML-98). Technical Report 98/11,
Technical University Berlin, 1998.

[Sleeman et al., 1989] D. Sleeman, R. Oehlman, and
R. Davidge. Specification of consultant-0 and a com-
parision of several learning algorithms. Mlt-deliverable
d5.1, Machine Learning Toolbox Esprit Project P2154,
1989.

[Staudt et al., 1998] M. Staudt, J.-U. Kietz, and
U. Reimer. A data mining support environment and
its application on insurance data. In R. Agrawal
and P. Stolorz, editors, Proceedings of the Fourth
International Conference on Knowledge Discovery and
Data Mining, pages 105-111. AAAT Press, 1998.

[Staudt et al., 1999a] M. Staudt, A. Vaduva,
and T. Vetterli. Metadata management and
data warehousing. Technical report, Infor-
mation Systems Research, SwissLife, 1999.

http://research.swisslife.ch/Papers/papers.htm.

13

[Staudt et al., 1999b] M. Staudt, A. Vaduva, and T. Vet-
terli. The role of metadata for data warehousing. Tech-
nical report, Information Systems Research, SwissLife,
1999. http://research.swisslife.ch /Papers/papers.htm.

[Theusinger and Lindner, 1998] C. Theusinger and
G. Lindner. Benutzerunterstiitzung eines kdd-
prozesses anhand von datencharackteristiken. In
F. Wysotzki, P. Geibel, and K. Schédler, editors,
Beitrage zum Treffen der GI-Fachgruppe 1.1.3 Ma-
chinelles Lernen (FGML-98). Technical Report 98/11,
Technical University Berlin, 1998.

[Wolpert and Macready, 1995] D. Wolpert and
W. Macready. No free lunch theorems for search.
Techinal Report SFI-TR-95-02-010, Santa F Institute,
Santa F, CA., 1995.

[Wrobel et al., 1996] S. Wrobel, D. Wettschereck,
E. Sommer, and W. Emde. Extensibility in data
mining systems. In E. Simoudis and J. Han, editors,
Proc. of the 2nd Int. Conf. On Knowledge Discovery
and Data Mining. AAAI Press, Menlo Park, CA, USA,
1996.

