Monitoring the Data Tsunami

Johannes Gehrke
Cornell University

SFB 876; January 20, 2011.
An Abundance of Data

- Supermarket scanners
- Credit card transactions
- Call center records
- ATM machines
- Web server logs
- Customer web site trails
- Podcasts
- Blogs
- Closed caption

- Scientific experiments
- Sensors
- Cameras
- Interactions in social networks
- Facebook, Myspace
- Twitter
- Speech-to-text translation
- Email

- Print, film, optical, and magnetic storage: 5 Exabytes (EB) of new information in 2002, doubled in the last three years
 [How much Information 2003, UC Berkeley]
Driving Factors: A LARGE Hardware Revolution

[Image: A graph illustrating Moore's Law with Intel processors marked along the timeline.]
A small Hardware Revolution

Moore’s Law
- In 1965, Intel Corp. cofounder Gordon Moore predicted that the density of transistors in an integrated circuit would double every year.
- Later changed to reflect 18 months progress.
Driving Factors: A small Hardware Revolution

- Experts on ants estimate that there are 10^{16} to 10^{17} ants on earth. In the year 1997, we produced one transistor per ant. [Gordon Moore]
Driving Factors: Connectivity and Bandwidth

- Metcalf’s law (network usefulness increases squared with the number of users)

- Gilder’s law (bandwidth doubles every 6 months)
Definition

Data mining is the exploration and analysis of large quantities of data in order to discover valid, novel, potentially useful, and ultimately understandable patterns in data.

Example pattern (Census Bureau Data):
If (relationship = husband), then (gender = male). 99.6%
WHY?

WE HAVE A GIGANTIC DATABASE FULL OF CUSTOMER BEHAVIOR INFORMATION.

EXCELLENT. WE CAN USE NON-LINEAR MATH AND DATA MINING TECHNOLOGY TO OPTIMIZE OUR RETAIL CHANNELS!

IF THAT'S THE SAME THING AS SPAM, WE'RE HAVING A GOOD MEETING HERE.

Copyright © 2000 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited
Why? Three Examples

• Sensor networks
• BIG Science Data
• Photos and videos
A small Hardware Revolution

http://www.snm.ethz.ch/Projects/MicaZ

http://lecs.cs.ucla.edu/Resources/testbed/testbed-overview.html

http://www.snm.ethz.ch/Projects/TmoteSky

http://www.snm.ethz.ch/Projects/Telos

http://www.snm.ethz.ch/Projects/Mica2Dot
Flexible Decision Support

Traditional
Procedural addressing of individual sensor nodes; user specifies how task executes, data is processed centrally.

Today
Complex declarative querying and tasking. User isolated from “how the network works”, in-network distributed processing.

http://www.cs.cornell.edu/bigreddata/cougar/
Querying: Model

- Time | Value
- 12 | 82
- 13 | 83
- 13 | 82
- 15 | 83
- 14 | 79
- 15 | 83
- 13 | 82
- 15 | 83
- 16 | 83
Example Queries

• Snapshot queries:
 – What is the concentration of chemical X in the northeast quadrant?
 SELECT AVG(R.sensor.concentration)
 FROM Relation R
 WHERE R.sensor.loc in (50,50,100,100)
 – In which area is the concentration of chemical X higher than the average concentration?
 SELECT AVG(R.sensor.concentration)
 FROM Relation R
 GROUP BY R.area
 HAVING AVG(R.sensor.concentration) >
 (SELECT AVG(R.sensor.concentration)
 FROM Relation R
 GROUP BY R.area)
Example Queries (Contd.)

- Long-running queries
 - Notify me over the next hour whenever the concentration of chemical X in an area is higher than my security threshold.
    ```sql
    SELECT R.sensor.area, AVG(R.sensor.concentration) 
    FROM Relation R 
    WHERE R.sensor.loc in rectangle 
    GROUP BY R.sensor.area 
    DURATION (now,now+3600)
    ```

- Archival queries
 - Periodic data collection for offline analysis
Goals

• Declarative, high-level tasking
• User is shielded from network characteristics
 – Changes in network conditions
 – Changes in power availability
 – Node movement
• System optimizes resources
 – High-level optimization of multiple queries
 – Trade accuracy versus resource usage versus timeliness of query answer
Challenges

Technical:
• Scale of the system
• Constraints
 – Power, communication, computation
• Constant change, uncertainty from sensor measurements
• Distribution and decentralization

Application:
• Traffic monitoring
• Health Care
• Care for the elderly

And of course the resulting data tsunami!

http://www.fatvat.co.uk/2010/07/stop-traffic.html
Three Examples

• Sensor networks
• BIG Science Data
• Photos and videos
Pulsars

• Pulsars are rotating stars
• Of interest are
 – Millisecond pulsars
 – Compact binaries
• Example:
 – Hulse-Taylor binary
 – Used to infer gravitational waves in support of Einstein’s General Theory of Relativity
 – Nobel price in physics in 1993

http://en.wikipedia.org/wiki/Pulsar
Pulsar Surveys

• Most demanding of the ALFA surveys
 • ~ 100 MB/s to disk
 • ~ 1 PB for entire survey (3-5 yr @ 6-10% duty cycle)

• Requires coarsely parallel processing of raw data in discrete, local data chunks
 • processing time ~ 50-200x data acquisition time on single processor
 (Intel 2.5 GHz 512k cached with 1GB ram)
 • depends on data set details, algorithms, code
 • Distributed initial processing (Cornell + 5 sites)

• Requires meta-analysis of data products of the initial analysis
 – Database and data mining research problems
Project Requirements

• Data
 – 14 TB every 2 weeks
 – Shipped on USB-2 disk drives
 – Need to archive raw data 5+ years
 – Need to make data products to the astronomy research community

• Processing
 – Extremely processor intensive
 • Currently just exhaustive search over a large parameter space
 (periodicity, dispersion, time)
 – Find new pulsars --- and other interesting phenomena

• More information:
 http://arecibo.tc.cornell.edu/hiarchive/
Three Examples

• Sensor networks
• BIG Science Data
• Photos and videos
The Need for Large-Scale Image Processing

Photos:
- **5 billion** – Photos hosted by Flickr
- **3000+** – Photos uploaded per minute to Flickr.
- **130 million** – At the above rate, the number of photos uploaded per month
- **3+ billion** – Photos uploaded per month to Facebook.

Video:
- **2 billion** – The number of videos watched per day on YouTube.
- **35** – Hours of video uploaded to YouTube every minute.
- **186** – The number of online videos the average Internet user watches in a month (USA).
- **2+ billion** – The number of videos watched per month on Facebook.
- **20 million** – Videos uploaded to Facebook per month.
The Power of a Data-Rich Environment

- Current System:
 150,000 photos take 1 day on 500 cores
- Goal: Billions in days

Pictures courtesy of Noah Snavely
http://www.cs.cornell.edu/~snavely/
Statue of Liberty

7834 images registered (322 in skeletal set)

Picture courtesy of Noah Snavely
http://www.cs.cornell.edu/~snavely/
Summary: Why

- Sensor networks
- BIG Science Data
- Photos and videos

- Many others:
 - Cloud
 - Multi-core
 - Handheld devices
Talk Outline

• Introduction
• Techniques for data stream processing
• Data privacy
• Conclusions
Talk Outline

• Introduction
• Techniques for data stream processing
• Data privacy
• Conclusions
YOU TWO WILL BE MY TELEMARKETERS. HERE'S A LIST OF KNOWN IDIOTS TO CALL.

I'LL GO FIRST, BOB. LET'S SEE... I DIAL THE NUMBER. AND WAIT FOR AN IDIOT TO ANSWER...

C'MON, YOU LOSER. PICK UP THE PHONE.
Talk Outline

• Introduction
• Techniques for data stream processing
 – Stream summaries
 – Complex event processing
• Data privacy
• Conclusions
Talk Outline

• Introduction
• Techniques for data stream processing
 – Stream summaries
 – Complex event processing
• Data privacy
• Conclusions
Processing Network Data Streams

- Data-stream processing arises naturally in Network Management
 - Data tuples arrive continuously from different parts of the network
 - Archival storage is often off-site (expensive access)
 - Queries can only look at the tuples *once, in the fixed order of arrival* and with *limited available memory*

```
DATA-STREAM JOIN QUERY:
SELECT COUNT(*)
FROM R1, R2, R3
```

Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi: Querying and mining data streams: you only get one look a tutorial.
SIGMOD Conference 2002: 635
Data Stream Processing Model

- Approximate query answers often suffice (e.g., trend/pattern analyses):
 - High-level analysis, then (expensive) retrieval and deep analysis of relevant data

Approach:
- Build small synopses of the data streams online
- Use synopses to provide (good-quality) approximate answers
Data Stream Processing Model

- Requirements for stream synopses
 - Single pass: Each tuple is examined at most once, in fixed (arrival) order
 - Bounded storage: Log or poly-log in data stream size
 - Real-time: Per-record processing time (to maintain synopsis) must be low
Sketches

- Summary structure which can be constructed in one pass
- Incrementally maintainable
- Provable performance guarantees

- Example: AMS sketches [N. Alon, Y. Matias and M. Szegedy, The space complexity of approximating the frequency moments, STOC 1996]
Estimating Self-join Sizes

• Example scenario
 – Stream R: a b a c c a
 – Compute: SJ(R)
 • SJ(R) = COUNT(R \(\Join_A R \)) = \(\sum f(i)^2 \)
 – SJ(R) = \(\sum f(i)^2 = 3^2 + 1^2 + 2^2 = 14 \)

• Any deterministic algorithm to approximate SJ(R) needs at least \(\Omega(|\text{Dom}(A)|) \) memory [AMS96]
AMS Sketches

• Main features
 – Randomized technique
 – Summarize information in the stream with a single number ⇒ atomic sketch
Estimating Self-Join Size

• Method for estimating SJ(R):
 – Select a family of independent \{+1,-1\} random variables
 • \{\xi_i: i=1..|\text{dom}(A)|\} with \(P[\xi_i=+1]=P[\xi_i=-1]=\frac{1}{2}\)
 • \(E[\xi_i]=0\)
 – Compute atomic sketch: \(X=\sum_{i \in \text{Dom}(A)} f(i) \xi_i\)
 • Stream R: a b a c c a
 • \(X = \xi_a + \xi_b + \xi_a + \xi_c + \xi_c + \xi_a\)
 – Claim: \(X^2\) approximates SJ(R)
AMS Sketches: Analysis

- Compute: \(X = \sum_i f(i) \xi_i \)

 Want: \(SJ(R) = \sum_i f(i)^2 \)

- \(X^2 = \sum_i f(i)^2 \xi_i^2 + \sum_{i \neq j} f(i)f(j) \xi_i \xi_j \)

 \[= \sum_i f(i)^2 + \sum_{i \neq j} f(i)f(j) \xi_i \xi_j \]

- \(E[X^2] = \sum_i f(i)^2 + \sum_{i \neq j} f(i)f(j) E[\xi_i \xi_j] \)

 \[= SJ(R) + 0 \]
Atomic Sketch Computation

Crucial point:

\(\xi_i \) values need not be fully independent. Pairwise independence suffices.

\(\Rightarrow \xi_i \)'s can be generated efficiently from small seeds [ABI86].

\(\Rightarrow \xi \) vector is not stored. Required elements generated on the fly from seed of size \(O(\log|\text{Dom}(A)|) \).
Example

Stream R: a

PRNG:

- seed
- ξ_i
- -1
- $X = 0$
Example

Stream R: a

PRNG:

\[\Xi_i \]

\[-1\]

\[\Sigma: X = -1 \]
Example

Stream R: \(a \ b \)

PRNG:

\[\xi_i \]

\[1 \]

\[X = -1 \]
Example

Stream R: a b

PRNG:

\[\xi_i \]

\[\sum: X = 0 \]
Example

Stream R: a b a

PRNG:

seed

\(\xi_i \)

\(\Sigma: X = 0 \)
Example

Stream R: a b a

PRNG:

\[\xi_i \]

\[X = -1 \]

\[\Sigma: \]

\[\text{seed} \]
Example

Stream R: a b a c

PRNG:
 \[\xi_i \]

\[\sum: X = -2 \]
Example

Stream R: a b a c c

PRNG:

seed

\[\xi_i \]

-1

\[\Sigma: X = -3 \]
Example

Stream R: a b a c c a

PRNG:

seed

ξ_i

Σ: $X = -4$
Example

Stream R: a b a c c a

PRNG:

\[
\begin{array}{c}
\text{seed} \\
\xi_i \\
\end{array}
\]

\[\Sigma: \quad X = -4\]

\[Z = X^2\]

Estimator \(Z = 16\) \(SJ(R) = 14\)
Boosting

- Boosting: \((\varepsilon, \delta)\) guarantees

Using \(O(\text{Var}[Z] \log (1/\delta) / (\varepsilon^2 \text{E}^2[Z]))\) i.i.d. copies of \(Z\), the computed estimate \(Z^*\) approximates \(\text{E}[Z]\) within \((\varepsilon, \delta)\)

\[- P(|Z^* - \text{E}[Z]| > \varepsilon \text{E}[Z]) \leq \delta\]
Boosting

- Boosting: (ε, δ) guarantees

Using $O(\text{Var}[Z] \log (1/\delta) / (\varepsilon^2 \text{E}^2[Z]))$ i.i.d. copies of Z, the computed estimate Z^* approximates $\text{E}[Z]$ within (ε, δ)

- $P(|Z^* - \text{E}[Z]| > \varepsilon \text{E}[Z]) \leq \delta$

- Need ξ_i's to be 4-wise independent to get low variance
Performance: An Example

From: Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi: Procesing complex aggregate queries over data streams. SIGMOD Conference 2002: 61-72
Example: Two-Dimensional Join

From: Alin Dobra, Minos N. Garofalakis, Johannes Gehrke, Rajeev Rastogi:
Processing complex aggregate queries over data streams. SIGMOD Conference 2002: 61-72
Talk Outline

• Introduction
• Techniques for data stream processing
 – Stream summaries
 – Complex event processing
• Data privacy
• Conclusions
Standard Pub/Sub

- Publishers generate data
 - Events, publications
- Subscribers describe interests in publications
 - Queries, subscriptions
- Asynchronous communication
 - Decoupling of publishers and subscribers
- Example: Tibco, Twitter

Source: JMS tutorial

Limitation of Standard Pub/Sub

- Scalable implementations have very simple query languages
 - Simple predicates, comparing message attributes to constants
 - E.g., topic='politics' AND author='J. Doe'
- Many monitoring applications need sequence patterns

http://www.ccs.neu.edu/home/amislove/twittermood/, www.jodange.com
Examples

• Stock monitoring
 – Notify me when the price of IBM is above $83, and the first MSFT price afterwards is below $27.
 – Notify me when the price of any stock increases monotonically for ≥30 min.
Examples

• RSS feed monitoring
 – Once CNN.com posts an article on Technology, send me the first post referencing (i.e., containing a link to) this article from the blogs to which I subscribe
Examples

• System event log monitoring
 – In the past 60 seconds, has the number of failed logins (security logs) increased by more than 5? (break-in attempt)
 – Have there been any failed connections in the past 15 minutes? If yes, is the rate increasing?
Solutions?

• Traditional pub/sub
 – Scalable, but not expressive enough
• Database Management System (DBMS)
 – Static datasets, one-shot queries
• Data Stream Management Systems (DSMS)
 – Limited MQO work
• Active databases (triggers), event processing systems
 – None had all desired features: expressiveness, precise formal semantics, system implementation with scalability in event rate and number of queries
The Main Goal of Cayuga

• Language
 – Expressiveness
 • Filter, project, aggregate, join (correlate) events from multiple streams
 – Precise, formal semantics
 • Fully composable operators with formal semantics

• System
 – Scalability in event rate and number of queries

http://www.cs.cornell.edu/bigreddata/cayuga/
Cayuga Stream Algebra

- Compositional: operators produce new streams from existing ones

- Translation to generalized Nondeterministic Finite Automata
 - Edge transitions on input events
 - Automaton instances carry relevant data from matched events
Approach: Compose Queries Through Operators

- Relational operators (on non-temporal attributes)
 - Selection \[\sigma_{\theta} \]
 - Projection \[\pi_X \]
 - Renaming \[\rho_f \]
 - Union \[\bigcup \]
- Together these give standard pub/sub
Example Query Q1

- Q1: Find me all RSS items published by Google News

```
SELECT * FROM 
  FILTER {feed_url='http://news.google.com/'}(webfeeds) 
PUBLISH google_news_items
```

feed_url='http://news.google.com/'

webfeeds

google_news_items
Sequence Operator

- *Sequence operator* $S_1; \theta S_2$
- After an event from S_1 is detected, match the first event from S_2 that satisfies the condition
Sequence Operator (Contd.)

- Sequencing is a weak join on timestamps
 - Can join an event with one later in future...
 - Or with the immediate successor
 - Can be useful for queries about causal relationships

Automaton for $\rho_f \circ \sigma_{\theta_2}(\mathcal{E}_1 ; \theta_1 \ S)$

- $\cdots \ E_1 \rightarrow q_1 \rightarrow \ L \rightarrow \ q_2$
Example Query Q2

- **Q2**: Find me all news items that are published by some site, followed by an item from Google referring to it within 1 day.

```
SELECT $2.summary, $1.item_url FROM
  webfeeds
  NEXT {contains($2.item url,$1.item_url)=1 AND DUR<1 DAY}
  google_news_items
PUBLISH reffed_by_google_news

!(contains($2.item url,$1.item_url)=1
  AND DUR<1 DAY)
```

Diagram:

- True
- webfeeds
- contains($2.item url,$1.item_url)=1 AND DUR<1 DAY
- google_news_items
- reffed_by_google_news

Cornell University
Example Query Q3

• Q3: Notify me when the word iPod has been mentioned by at least 10 articles in the last 1 day

```
SELECT * FROM
FILTER {cnt >= 10}(  
  (SELECT *, 1 AS cnt FROM FILTER{contains(summary,'iPod')=1}(webfeeds))
  FOLD {, $.cnt<10 AND DUR<1 DAY, $.cnt+1 AS cnt}
  (SELECT * FROM FILTER {contains(summary,'iPod')=1}(webfeeds))
)
PUBLISH ipod_popularity
```
Automata for Q3

contains(summary,'iPod')=1, 1 AS cnt

!(contains(summary,'iPod')=1)

contains(summary,'iPod')=1 AND $.cnt<10 AND DUR<1 DAY, $.cnt+1 AS cnt

contains(summary,'iPod')=1 AND $.cnt<10 AND DUR<1 DAY, $.cnt+1 AS cnt

cnt >= 10 tmp

ipod_popularity
Other Techniques

- We saw: Selection, sequencing, iteration
- Algebra:
 - Aggregation
 - Re-subscription
- Implementation:
 - Automata merging for similar queries
 - Automatic indexing
- Extensions:
 - XML streams
 - Distribution
Sample Performance

More information: http://www.cs.cornell.edu/bigreddata/cayuga/
Talk Outline

• Introduction

• Techniques for data stream processing
 – Stream summaries
 – Complex event processing

• Data privacy

• Conclusions
Data Collection Agencies Publish Sensitive Information to Facilitate Research.

Publish information that:

• Discloses as much statistical information as possible.

• Preserves the privacy of the individuals contributing the data.

Johannes Gehrke, Daniel Kifer, Ashwin Machanavajjhala: Privacy in data publishing. ICDE 2010: 1213
Estimated User Data Generated Per Day:

- 8-10 GB public content
- ~4 TB* private content
 - Emails
 - Instant messages
 - Tags/Page Views/Annotations
 - Browsing and Shopping histories
 - Social Networks ...

Cornell University
Improving Web Experience by Exploiting User Generated Content

Example 1: Social Advertising

Generate ads based on shopping histories of “friends” in the social network.

- Nikon
- HP
- Nike

- Armani
- Gucci
- Prada

Alice

Betty

Cornell University
Example 2: User Targeted Subscriptions

Recommend papers to Johannes based on the papers read by Andrew (and his collaborators/peers).
Valuable Information Can be Learned by Sharing Personal Data.

Data Publishing

Publish properties of \(\{r_1, r_2, ..., r_N\}\)

Social Advertising

- Nikon
- HP
- Nike

User Targeted Subscriptions

- Armani
- Gucci
- Prada
What about Privacy?

“... Last week AOL did another stupid thing ...
... but, at least it was in the name of science...”

Alternet, August 2006
AOL Data Release ...

AOL “anonymously” released a list of 21 million web search queries.

UserIDs were replaced by random numbers ...

<table>
<thead>
<tr>
<th>UserID</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6574A222</td>
<td>Uefa cup</td>
</tr>
<tr>
<td>A6574A222</td>
<td>Uefa champions league</td>
</tr>
<tr>
<td>A6574A222</td>
<td>Champions league</td>
</tr>
<tr>
<td>A6574A222</td>
<td>Champions league final</td>
</tr>
<tr>
<td>D362A2909</td>
<td>exchangeability</td>
</tr>
<tr>
<td>D362A2909</td>
<td>Proof of deFinitti’s theorem</td>
</tr>
<tr>
<td>D92765234</td>
<td>Zombie games</td>
</tr>
<tr>
<td>D92765234</td>
<td>Warcraft</td>
</tr>
<tr>
<td>D92765234</td>
<td>Beatles anthology</td>
</tr>
<tr>
<td>D92765234</td>
<td>Ubuntu breeze</td>
</tr>
<tr>
<td>A6574A222</td>
<td>Grammy nominees</td>
</tr>
<tr>
<td>A6574A222</td>
<td>Amy Winehouse rehab</td>
</tr>
</tbody>
</table>
No. 4417749 conducted hundreds of searches over a three-month period on topics ranging from “numb fingers” to “60 single men” to “dog that urinates on everything.”

And search by search, click by click, the identity of AOL user No. 4417749 became easier to discern. There are queries for “landscapers in Lilburn, Ga,” several people with the last name Arnold and “homes sold in shadow lake subdivision gwinnett county georgia.”

It did not take much investigating to follow that data trail to Thelma Arnold, a 62-year-old widow who lives in Lilburn, Ga., frequently researches her friends’ medical ailments and loves her three dogs. “Those are my searches,” she said, after a reporter read part of the list to her.
Ms. Arnold says she loves online research, but the disclosure of her searches has left her disillusioned. “We all have a right to privacy,” she said. “Nobody should have found this all out.”

[In response, she plans to drop her AOL subscription.]
What is Privacy?

• “The claim of individuals, groups, or institutions to determine for themselves when, how and to what extent information about them is communicated to others”

 Westin, Privacy and Freedom, 1967

• But we need quantifiable notions of privacy ...
What is Privacy?

... nothing about an individual should be learnable from the database that cannot be learned without access to the database ...

T. Dalenius, 1977
The Setup

Server

Customer 1

Customer 2

Customer 3

Customer N

D_B

r_1

r_2

r_3

\ldots

r_N
Model I: Untrusted Data Collector

Find aggregate properties of \(\{r_1, r_2, \ldots, r_N\} \)

Company

\(D_B \)

Customer 1

\(r_1 \)

Customer 2

\(r_2 \)

Customer 3

\(r_3 \)

\(\cdots \)

Customer \(N \)

\(r_N \)
Minimal Information Sharing

- Ideally, we want an algorithm that discloses only the query result, and only to the requesting party. (In practice, we need some extra disclosure.)

- How do we design algorithms that compute queries while preserving data privacy?

- How do we measure privacy (this extra disclosure)?
Model II: Trusted Data Collector

Publish properties of \(\{r_1, r_2, \ldots, r_N\} \)
Disclosure Limitations

• Ideally, we want a solution that discloses as much statistical information as possible while preserving privacy of the individuals who contributed data.

• How do we design algorithms that allow the “largest” set of queries that can be disclosed while preserving data privacy?

• How do we measure disclosure?
Untrusted Data Collector

Build a data mining model over \(\{t_1, t_2, ..., t_N\} \)
The Model

Alice

J.S. Bach, painting, nasa.gov, ...

Bob

B. Spears, baseball, cnn.com, ...

Chris

B. Marley, camping, linux.org, ...

Server
The Model (Contd.)

Alice

J.S. Bach, painting, nasa.gov, ...

Bob

B. Spears, baseball, cnn.com, ...

Chris

B. Marley, camping, linux.org, ...

Server

Data Mining Model

Usage
Problem

How to randomize the data such that

• We can build a good data mining model (utility)
 – Very simple model: Frequent itemsets (commonly occurring preferences)

• While preserving privacy at the record level (privacy)
 – What does privacy mean?
Motivation: A Social Survey

• Measures opinions, attitudes, behavior

• Problem: Questions of a sensitive nature
 – Examples: sexuality, incriminating questions, embarrassing questions, threatening questions, controversial issues, etc.
 – The “non-cooperative” group leads to errors in surveys and inaccurate data
 – Even though privacy is guaranteed, skepticism prevails
The Model

\[y = R(x) \]

Original (private) data

Randomized data

Assumptions:
- Described by a random variable \(X \).
- Each individual client is independent.
The Randomized Response Model

[Stanley Warner; JASA 1965]

• Respondents are given:
 1. A source of randomness (a biased coin)
 2. A statement: I am a member of the XYZ party.

• The procedure:
 – Flip the coin, associate Head with Yes, Tail with No
 – Answer YES if coin gives correct answer, answer NO otherwise
Randomized Response (Contd.)

• The procedure:
 – Flip the coin, associate Head with Yes, Tail with No
 – Answer YES if coin gives correct answer, Answer NO otherwise

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head (Yes)</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Tail (No)</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Another View: Two Questions

• Respondents are given:
 1. A coin
 2. Two logically opposite statements:
 • S1: I am a member of the XYZ party.
 • S2: I am **not** a member of the XYZ party.

• The procedure:
 – Flip the coin
 – Answer either statement S1 or S2.
Randomized Response (Contd.)

• Version 1
 – Flip the coin, associate Head with Yes, Tail with No
 – Answer YES if coin gives correct answer, answer NO otherwise

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head (Yes)</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Tail (No)</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>

• Version 2
 – Two logically opposite statements
 – Answers either statement S1 or S2.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head (S1)</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Tail (S2)</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Analysis

$\pi = $ the true probability of property S in the population.
$p = $ the probability that the coin says YES.

$Y_i = \begin{cases}
1 & \text{if the } i^{th} \text{ respondent says ‘yes’}. \\
0 & \text{if the } i^{th} \text{ respondent reports ‘no’}.
\end{cases}$

- $P(Y_i=1) = \pi p + (1-\pi)(1-p) = p_{\text{YES}}$
- $P(Y_i=0) = (1-\pi)p + \pi(1-p) = p_{\text{NO}}$

<table>
<thead>
<tr>
<th></th>
<th>Head</th>
<th>Tail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>No</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Analysis (Contd.)

• Assume a sample with n records
 – n_1 say YES, $(n-n_1)$ say NO

• Likelihood of this sample:
 – $L = p_{YES}^{n_1} p_{NO}^{(n-n_1)}$
 (Note: L is a function of π, p, n, n_1)
 – This gives a maximum likelihood estimate for π of
 $\pi^{\text{hat}} = (p-1)/(2p-1) + n_1/n(2p-1)$

• Easy to show:
 – $E(\pi^{\text{hat}}) = \pi$
 – $\text{Var}(\pi^{\text{hat}}) = \pi(1-\pi)/n + [1/[16(p-0.5)^2]-0.25]/n$

 Variance = Sampling + Coin Flips

• But what type of “privacy guarantees” does randomized response provide?
Untrusted Data Collector

Build a data mining model over \{t_1, t_2, ..., t_N\}
The Model

Alice
J.S. Bach, painting, nasa.gov, ...

Bob
B. Spears, baseball, cnn.com, ...

Chris
B. Marley, camping, linux.org, ...

Server
The Model

Alice
- J.S. Bach, painting, nasa.gov, ...

Bob
- B. Spears, baseball, cnn.com, ...

Chris
- B. Marley, camping, linux.org, ...

Server
The Model (Contd.)

Alice
- J.S. Bach, painting, nasa.gov, ...

Bob
- B. Spears, baseball, cnn.com, ...

Chris
- B. Marley, camping, linux.org, ...

Server
- J.S. Bach, painting, nasa.gov, ...
- B. Spears, baseball, cnn.com, ...
- B. Marley, camping, linux.org, ...

Data Mining Model

Usage
The Model (Contd.)

Alice
J.S. Bach, painting, nasa.gov, ...

Metallica, painting, nasa.gov, ...

Server

Statistics Recovery

Data Mining Model

Bob
B. Spears, soccer, bbc.co.uk, ...

Chris
B. Marley, camping, microsoft.com ...

Usage

B. Marley, camping, linux.org, ...

B. Spears, baseball, cnn.com, ...
Randomized Response Revisited

Return to our recommendation service. A “randomized response”-style algorithm:

Given a set of preferences:
• Keep (preference) item with 20% probability,
• Replace with a new random item with 80% probability.
Example: \{a, b, c\}

10 M transactions of size 10 with 10 K items:

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1% have {a, b, c}</td>
<td>5% have {a, b}, {a, c}, or {b, c} only</td>
<td>94% have one or zero items of {a, b, c}</td>
</tr>
</tbody>
</table>
```
Example: \{a, b, c\}

10 M transactions of size 10 with 10 K items:

- 1% have \{a, b, c\}
- 5% have \{a, b\}, \{a, c\}, or \{b, c\} only
- 94% have one or zero items of \{a, b, c\}

After randomization: How many have \{a, b, c\}?
Example: \{a, b, c\}

10 M transactions of size 10 with 10 K items:

- 1% have \{a, b, c\}
- 5% have \{a, b\}, \{a, c\}, or \{b, c\} only
- 94% have one or zero items of \{a, b, c\}

\[
\begin{align*}
\text{10}^3 & \cdot 0.2^3 \\
\text{10}^2 & \cdot 0.2 \cdot 8 \cdot 0.8/10,000 \\
\text{at most} & \cdot 0.2 \cdot (9 \cdot 0.8/10,000)^2
\end{align*}
\]

- 0.008% 800 ts.
- 0.000128% 13 trans.
- less than 0.00002% 2 transactions

After randomization: How many have \{a, b, c\}?
Example: \{a, b, c\}

10 M transactions of size 10 with 10 K items:

- 1% have \{a, b, c\}
- 5% have \{a, b\}, \{a, c\}, or \{b, c\} only
- 94% have one or zero items of \{a, b, c\}

After randomization: How many have \{a, b, c\}?

\[
\begin{align*}
0.2^3 & \quad \cdot 0.2^2 \cdot 8 \cdot 0.8/10,000 \\
0.008\% & \quad 0.000128\% \\
800 \text{ ts.} & \quad 13 \text{ trans.} \\
98.2\% & \quad 1.6\% \\
0.008\% & \quad 0.000128\% \\
800 \text{ ts.} & \quad 13 \text{ trans.} \\
98.2\% & \quad 1.6\% \\
0.008\% & \quad 0.000128\% \\
800 \text{ ts.} & \quad 13 \text{ trans.} \\
98.2\% & \quad 1.6\% \\
\end{align*}
\]
Example: \{a, b, c\}

- A-priori, we only know with 1% probability that \{a, b, c\} occurs in the original transaction.

- Given \{a, b, c\} in the randomized transaction, we have about 98% certainty that \{a, b, c\} occurred in the original transaction.

- This is called a privacy breach.

- The example randomization preserves privacy “on average,” but not “in the worst case.”
α-to-β Privacy Breach

Let $P(x)$ be any property of client’s private data; let $0 < \alpha < \beta < 1$ be two probability thresholds.

Example:

$P(x) = \text{“transaction } x \text{ contains } \{a, b, c\}''$

$\alpha = 1\%$ and $\beta = 50\%$
α-to-β Privacy Breach

Let $P(x)$ be any property of client’s private data;
Let $0 < \alpha < \beta < 1$ be two probability thresholds.

Client

\[X = x \]

SERVER

\[
\text{Prob } [P(X)] \leq \alpha
\]

0%
100%

Cornell University
\(\alpha \)-to-\(\beta \) Privacy Breach

Let \(P(x) \) be any property of client’s private data;
Let \(0 < \alpha < \beta < 1 \) be two probability thresholds.
Let $P(x)$ be any property of client’s private data; Let $0 < \alpha < \beta < 1$ be two probability thresholds.

Client

\[X = x \]

\[y = R(x) \]

SERVER

\[
\begin{align*}
\text{Prob } [P(X)] \leq \alpha & \quad \text{0%} \\
\text{Prob } [P(X) | Y=y] \geq \beta & \quad \text{100%}
\end{align*}
\]

Disclosure of y causes an α-to-β privacy breach w.r.t. property $P(x)$.
\(\alpha \)-to-\(\beta \) Privacy Breach

Checking for \(\alpha \)-to-\(\beta \) privacy breaches:

- There are exponentially many properties \(P(x) \);
- We have to know the data distribution in advance in order to check whether
 \[\text{Prob} [P(X)] \leq \alpha \quad \text{and} \quad \text{Prob} [P(X) \mid Y = y] \geq \beta \]

Is there a simple property of randomization operator \(R \) that limits privacy breaches?
Amplification Condition

\[R(x) = y \]
Amplification Condition

$p[x \rightarrow y]$ are transition probabilities
Amplification Condition

$x_1 = \begin{align*}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10
\end{align*}$

$x_2 = \begin{align*}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10
\end{align*}$

$p [2 \rightarrow y]$

$p [8 \rightarrow y]$
Amplification Condition

Worst discrepancy

\[
\frac{p \left[2 \rightarrow y \right]}{p \left[8 \rightarrow y \right]} \leq 8
\]
Amplification: Summary

• An α-to-β privacy breach w.r.t. property $P(x)$ occurs when
 - $\text{Prob} [P \text{ is true}] \leq \alpha$
 - $\text{Prob} [P \text{ is true} | Y = y] \geq \beta$.

• Amplification methodology limits privacy breaches by just looking at transitional probabilities of randomization.
 - Does not use data distribution; only check:

$$\max_{x_1, x_2} \max_y \frac{p[x_1 \rightarrow y]}{p[x_2 \rightarrow y]} \leq \gamma$$
Privacy: The Floodgates are Open

- **Formal notions of privacy**: L-Diversity, t-closeness, differential privacy, zero-knowledge privacy
- ** Attacks**: DeFinetti attack, re-identification attacks in graphs [Netflix]
- **Applications**: Privacy in social networks, location privacy
Summary

• Motivation: Large data
 – Many modalities
 – Many applications
 – Resource constraints are everywhere!

• Techniques:
 – Sketches
 – Automata-based complex event processing

• Data privacy as an emerging concern
CS and the Knowledge Economy

• Data and its connection to the real world motivate students to study computer science

• Programmers are creative!

http://scratch.mit.edu/
http://mindhacks.org/category/creativity/

Cornell University
Questions?

johannes@cs.cornell.edu
http://www.cs.cornell.edu/johannes

This talk discusses joint work with Rakesh Agrawal (Microsoft), Manuel Calimlim (Cornell), Alan Demers (Cornell), Abhinandan Das (Google), Alin Dobra (University of Florida), Alexandre Evfimievski (IBM), Minos Garofalakis (University of Crete), Mingsheng Hong (Vertica), Daniel Kifer (PSU), Ashwin Machanavajjhala (Yahoo!), Rajeev Rastogi (Yahoo!), Mirek Riedewald (Northeastern), Ramakrishnan Srikant (Google), Niki Trigoni (Oxford), Walker White, and Yong Yao (Google).

Picture from: http://diyblogger.net/is-it-the-business-of-creativity-or-creativity-of-business