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Abstract—In this paper, we study an interesting problem: continuously monitoring k-means clustering of sensor readings in a large
sensor network. Given a set of sensors whose readings evolve over time, we want to maintain the k-means of the readings
continuously. The optimization goal is to reduce the reporting cost in the network, that is, let as few sensors as possible report their
current readings to the data center in the course of maintenance. To tackle the problem, we propose the reading reporting tree, a
hierarchical data collection, and analysis framework. Moreover, we develop several reporting cost-effective methods using reading
reporting trees in continuous k-means monitoring. First, a uniform sampling method using a reading reporting tree can achieve good
quality approximation of k-means. Second, we propose a reporting threshold method which can guarantee the approximation quality.
Last, we explore a lazy approach which can reduce the intermediate computation substantially. We conduct a systematic simulation
evaluation using synthetic data sets to examine the characteristics of the proposed methods.

Index Terms—Sensor networks, clustering, k-means, low reporting cost.
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1 INTRODUCTION

ECENTLY, more and more large wireless sensor networks

have been used in many applications such as environ-
ment surveillance, manufacturing management, business
asset administration, automation in transportation, and
healthcare industry. Analyzing data collected from numer-
ous sensors is one of the prominent issues in wireless sensor
network applications. While a straightforward approach
can collect data continuously from wireless sensor networks
and conduct analysis in base stations, the power consump-
tion of sensors is the major bottleneck of wireless sensor
network lifetime. Often, once a wireless sensor node is
deployed, it may be hard to recharge or replace its battery.
Once the battery is used up, the sensor dies. With dead
sensors, a wireless sensor network is handicapped. When
many sensors die, the functionality of a sensor network
degrades substantially.

The major power consumption for wireless sensors
comes from sending out messages. Therefore, given a data
analysis task, it is important to collect data from large
wireless sensor networks such that only as few sensors as
possible need to send out their readings, while the data
analysis quality is satisfactorily retained. This motivates the
energy-preserving approaches for data collection and
analysis on large sensor networks.
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The latest sensor network techniques enable a sensor to
sense multiple measures simultaneously. For example, an
environmental surveillance sensor can detect temperature,
humidity, and density of carbon dioxide at the same time.
Therefore, more often than not, multidimensional data
analysis such as clustering is needed for analyzing sensor
network data.

K-means clustering [1], [2] is a popularly employed
method in analyzing multidimensional data. Consider an
l-dimensional space D; x ---x D;. Let dist(p,q) be the
distance between two points p and ¢. Given a set of n points

S ={s1,...,s,} in the space and a positive integer k, the
k-means problem is to find k points (also known as centers)
¢, ..., ¢y, which may or may not be in S, minimizing

n k
Z mi{l{dist(si, ¢}
=1 7=

In other words, each point is assigned to the closest center.
The optimization objective is to minimize the sum of
distances between the points and the closest centers.

Continuously monitoring k-means clustering has many
important applications in data collection and analysis in
large sensor networks.

As a concrete example, in underground structure mon-
itoring, such as a coal mine monitoring system [3], we need
to monitor not only the structure changes of underground
tunnels, but also potential gas or water leaks. Equipped with
gas sensors and accelerometers (sensors measuring accel-
eration and gravity-induced reaction forces), a sensor node
can report different measures simultaneously, which can be
used to detect potential dangers such as collapses. To reduce
false alarms in such a system, data correlation from different
sensor nodes must be carefully investigated. K-means
clustering comes into the right place as a simple yet effective
approach for such a data analysis task. In this case, the
typical status of sensors and the extreme situations such as
collapsing, gas, or water leaking are of interest. We can set
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the number of clusters to a not-too-small value such as 5-10
to capture the diversity of the distribution of sensor
readings. By monitoring how the clusters change over time,
we can monitor the distribution of the underground tunnel
status. Rapid changes of cluster size and/or readings may
indicate incidents that need human interaction. For example,
in case of gas leaking or local collapsing, the sensors
surrounding will form a distinguishing and rapidly growing
cluster due to the fast changing values of gas density and/or
acceleration. The clustering approach can effectively avoid
false alarms since the changes of the cluster in size and
collective readings are more robust.

To save energy, as suggested by the methods to be
developed in this paper, a sensor can take a low frequency
to report its readings when the readings do not change
much, but adaptively more active in reading reporting
when the readings evolve rapidly.

The problem of continuously maintaining k-means
clustering with low reporting cost is a novel and challen-
ging task though there are extensive studies on k-means
clustering before. The existing work mainly improves the
performance of k-means clustering from two aspects:
reducing the number of scans and reducing the number of
points needed to be checked. Those methods reducing the
number of scans may not be applied to our problem since
they still need to read all points at least once, which implies
that all sensors need to report in our application example.

The methods using sampling to reduce the number of
points accessed look promising. However, they do not
address the issue of continuously maintaining the centers.
Moreover, most of them are progressive: Samples have to be
drawn repeatedly until the quality guarantee is satisfied. In
our application example, drawing samples repeatedly in a
sensor network also incurs extra communication cost.

In this paper, we propose interesting and effective
methods to tackle the problem. We make the following
contributions.

First, we propose the reading reporting tree, a hierarch-
ical data collection and analysis framework for continuous
k-means monitoring for a large set of data points. The
framework uses a conceptual tree to aggregate data points
bottom up. We show that we can continuously monitor
k-means effectively with a constant approximation ratio
using a reading reporting tree. Moreover, the reporting cost
can be reduced by a uniform sampling method.

Second, to further reduce the reporting cost, we observe
that substantial changes of centers must be caused by
substantial changes of some data points. Thus, to maintain
k-means, we should pay more attention to those points
whose values change substantially. We propose a reporting
threshold method: only the points whose value changes are
over a threshold should report. By setting the reporting
threshold properly, we can guarantee the approximation
quality of k-means.

Third, to further reduce the reporting cost even within
the reading reporting tree, we explore a lazy method. In
many situations, a user does not want to update the
k-means information if the centers do not change substan-
tially. Accordingly, a point can report only if the change of
its value may affect the centers substantially. Moreover, the
bottom-up clustering analysis may terminate at an inter-
mediate node of the reporting tree if the centers at a higher
level are not affected substantially.
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TABLE 1
Frequently Used Notions

[ Notion | Explanation
S a set of points
s a point in §
s* the value of s at instant ¢
h the height of a reading reporting tree
t the facility factor

dsum() | the sum of distances in a k-means clustering

Last, we conduct a systematic simulation evaluation
using synthetic data sets to examine the characteristics of
the proposed methods.

Table 1 provides a cheat sheet of the notions used
frequently in this paper.

The rest of the paper is organized as follows: In Section 2,
we formally define the problem and briefly review the
related work. In Section 3, we present a reading reporting
tree framework for continuous k-means monitoring. A
uniform sampling method is given in Section 4, and a
reporting threshold method is developed in Section 5. In
Section 6, we explore a lazy method. The simulation
evaluation is reported in Section 7. Section 8 concludes
the paper.

2 PRroBLEM DEFINITION AND RELATED WORK

In this section, we define the problem formally and review
the related work.

2.1 Problem Definition

We consider a set of points S. Ata time instant 4, the value of a
point s € Sis s’ = (v1, ..., ). In other words, a pointin S can
be regarded as a moving object in an /-dimensional space.

In this paper, we are interested in k-means clustering of
the current values of the points at each time instant. At an
instant ¢, let ¢y, . . ., ¢ be k points which may or may not be
in S. The points in S can be partitioned into %k exclusive
subsets Si,...,S; according to their values at instant i: A
point s € S is assigned to cluster S; if

dist(s', ¢;) 11;13_1;1k{dzst(,s . Cj) }s

where dist() is the distance function in question.

Definition 1 (K-means). Points ¢y, . .
if they minimize

., ¢ are the k-means of S

k

ZZdist(si, i)

i=1 s€S;

Some problems highly related to k-means are NP-hard,
including the Minimum Sum-of-Squares Clustering
(MSSC) problem and the Clustering to Minimize Sum of
Diameters (CMSDs) problem. For example, in the MSSC
problem, a set of objects are partitioned into k clusters so
that the sum of squared distances from the objects to the
cluster mean is minimized. Formally, given a set of objects
X ={Xy,...,X,}, where X;=(X;,...,X;)€R’ is a
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vector in euclidean space RS, and an integer k < n, the
MSSC problem is to find a partition of X into % disjoint
subsets C1,...,C}, such that Zle > eec, 17— Zi||* is mini-
mized, where ||.|| denotes the euclidean norm and z; =
ﬁZxECﬂr is the mean of partition C; (1 <i<k). The
MSSC problem is proved NP-complete in [4].

As another example, the CMSD problem aims to
partition the vertices of a complete graph with nonnega-
tive edge weights into k subsets, so that the sum of the
diameters of the subgraph regarding each subset is
minimized. Formally, given a complete graph G(V,E),
where V is a set of vertices and FE is the set of edges in G,
a nonnegative weight w(u,v) for each edge (u,v) € E,
where u,v € V, and an integer k < |V|, the CMSD problem
is to partition V into k subsets Vi,...,V; such that
¥ | Diameter(V;) is minimized, where Diameter(V;) is
the largest weight of the edges in the complete subgraph
of G induced on V. It is shown in [4] that when edge
weights do not satisfy the triangle inequality, the CMSD
problem is NP-complete for any fixed k > 3.

However, no proof of NP-hardness has been achieved
to date [5] for k-means. On the other hand, no polynomial
time algorithm has been found. Therefore, in this paper,
we focus on approximation methods as many previous
studies do.

We are interested in maintaining k centers over time. We
assume that most of the time, the value of a point evolves
mildly over time. Abrupt big changes do happen to points,
but with a low probability. This assumption is realistic for
many applications such as surveillance sensor networks
monitoring environment in forest and glaciers. This
assumption is technically important since it heuristically
allows us to use the clusters at the previous instants as the
base for approximation to the new clusters at a later instant.

Our goal is to reduce the reporting cost of data points as
much as possible, while the quality of the k-means
information is retained.

Definition 2 (Reporting cost). The reporting cost at an
instant ¢ is the number of points whose current values are
reported in order to update the k-means information.

Different from many previous studies on k-means where
the cost measures focus on computation overhead, in this
paper, our focus is on how often a point has to report its
current value. Here, a point can determine whether it
should report based on the changes of its value over time
and the requests from the data center. In other words, we
model an intelligent data collection unit such as a sensor as
a point.

In this paper, we assume that a metric distance is used,
where the triangle inequality holds.

2.2 Related Work

Our study is highly related to the existing work on k-means
clustering on data streams from the clustering theory point
of view. Itis also related to the previous studies on clustering
in sensor networks from the application point of view. We
provide a brief review here and point out the differences.
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2.2.1 k-Means Clustering on Data Streams

Our study is related to data stream clustering. The values of
points evolve over time. Thus, the values of one point over
time can be modeled as a data stream.

A few studies have been conducted to investigate the
problem of data stream clustering, such as [6], [7], [8], [9].
Different from our study where the number of points is
fixed and the interest is on maintaining k-means of the
current snapshot, most of the existing work on stream
clustering assumes that new data points keep arriving. The
task there is to maintain k-means of all data points seen so
far or in a sliding window.

Nevertheless, some critical techniques in stream cluster-
ing can be borrowed to tackle the problem studied in this
paper. Particularly, Guha et al. [7] developed a divide-and-
conquer strategy, called Smaller Space, to cluster data
streams. The Smaller Space method divides a data stream
into chunks such that each chunk can be held in main
memory. It clusters a chunk to obtain a set of cluster centers
that are weighted by the number of points in the clusters. To
obtain the k-means of the whole stream, it clusters the
weighted centers in chunks. Although the nature of the data
streams in [7] and the problem studied here are quite
different, the idea of this strategy can be extended and
applied to tackle the problem in this paper. We will discuss
the details in the next section.

2.2.2 Clustering in Sensor Networks

Since we use data sensor networks as a motivating example
of the problem studied here, our study is also related to
clustering in sensor networks. Most of the previous studies
on sensor network clustering focus on how to cluster
sensors so that sensors having similar readings or behavior
are grouped together. The main advantage of such cluster-
ing is that the sensor readings within a cluster may be
similar and can be aggregated, so that the transmission cost
can be reduced by limiting the number of outgoing
messages (e.g., [10], [11], [12] and Reactive Sensor Networks
(RSNs) http:/ /strange.arl.psu.edu/RSN/).

For example, Banerjee and Khuller [13] defined a sensor
cluster as a set of connected sensors in a sensor network
topology, with certain size constraints. Ideally, each node
should only belong to one cluster. Thus, there is low
overlapping among clusters. In order to find such clusters,
the algorithm first derives a rooted spanning tree of the
sensor network topology, and then, partitions the spanning
tree according to the clustering criteria.

To lower down the communication cost in sensor
networks, Bandyopadhyay and Coyle [14] proposed a
hierarchical clustering structure. A set of sensors are
grouped together and one of them becomes a clusterhead.
In data collection, each sensor in the cluster sends its data to
the clusterhead, and the clusterhead reports the aggregated
data to the processing center. A distributed randomized
algorithm was proposed to cluster the sensors. Each sensor
takes a probability to become a clusterhead and broadcasts
itself to other sensors within certain hops. The sensors that
are not clusterheads join the closest clusterhead. The
optimal parameters of the clustering which minimize the
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communication cost are also derived. A similar data
collection framework is also used in [15].

The above algorithm can be used to build a hierarchical
structure in a sensor network to minimize the communica-
tion cost in data collection. However, as time goes by, the
status of each sensor may change, and thus, the so-built
hierarchical structure may not always be optimal. For
example, some sensors may use more energy to collect data,
so they are dying faster than the others. If we use such
sensors as clusterheads, the lifetime of the whole cluster
decreases. To tackle the problem, Younis and Fahmy [16],
[17] proposed Hybrid Energy-Efficient Distributed clustering,
which periodically recomputes the clusterheads based on
the residual energy of each sensor and its relationship to
other sensors.

Meka and Singh [18] defined a ¢ cluster as a set of
sensors whose communication graph is connected and the
distance of features between any pair of sensors in the
cluster is at most 6. Finding ¢ clustering is proved to be N P-
complete. An efficient distributed algorithm was proposed
to compute high-quality approximate clustering. In the
hierarchical clustering structure of a sensor network, each
cell represents a set of sensors. The sensor closest to the
centroid of a cell is elected as the leader of the cell, and is
called a sentinel node. The algorithm first picks the sentinel
node at the root and lets it expand to form a 6 cluster. Then,
the sentinel nodes at the lower levels grow to form ¢ clusters
recursively. This process terminates when every node in the
sensor network is included in a § cluster.

In [19], a method is proposed to dynamically explore the
spatial and temporal correlation of sensor readings, and
cluster sensors accordingly for energy-preserving data
collection. The clustering algorithm continuously responds
to spatial correlation changes and dynamically forms new
clusters. The clustering criterion in [19], however, is
different from the one in this paper, and the problem of
k-means clustering has not been touched in [19].

Specifically, there are two key differences between our
study and [19]. First, in this paper, we aim to cluster the
sensor readings as the current values of points instead of
sensor nodes in sensor networks. Second, we not only
compute the initial clustering, but also monitor the
clustering structure dynamically. Novel techniques are
developed to improve the efficiency.

Prior to our study, Bash et al. [20] proposed an
approximately uniform random sampling method for data
collection in sensor networks. It tackles a problem different
from ours in this paper: a spatial sample may result in a
nonuniform sample of sensor nodes. To overcome the
problem, the major idea is to use geographic routing,
distributed computation of Voronoi regions, and von
Neumann’s rejection method. Technically, the method
utilizes the topology of the sensor network in question.
Different from [20], the methods developed in this study do
not rely on any network topology information.

Our study is also broadly related to the previous work on
energy saving data collection [21], [22] and query evalua-
tion [23], [24], [25], [26] in sensor networks. The major
challenge is to collect the required data from sensor
networks with high quality and reduce the communication
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Fig. 1. A reading reporting tree.

cost as much as possible. For example, Tulone and Madden
[27] propose an energy-efficient framework SAF to approx-
imate query and cluster nodes in a sensor network. The
major idea is to build models for readings of sensor nodes
and use the models to predict the readings. Moreover,
nodes are clustered according to similarity. Different from
the problem studied here, the clustering algorithm in SAF
clusters sensor nodes according to the models of sensors
stored in the data center.

3 READING REPORTING TREES

Definition 3 (Reading reporting tree). Given a set of points S,
a reading reporting tree, as shown in Fig. 1, is a tree
satisfying the following requirements:

e  The root node of the tree collects data and maintains
the k-means information.

e  Each data point is a leaf node in the tree.

e An internal node is called a data collection node if it
is the parent of some leaf nodes. A data collection node
has a fan-out of t*k, where t is a facility factor.

e  Aninternal node is called an aggregation node if it is
not a data collection node. An aggregation node has a
fan-out of t.

e  The tree is balanced. That is, the paths from the root
node to all leaf nodes have the same length.

Without loss of generality, we assume that the number of
data points is |S| = t"k, where h > 0 is the height of the
reading reporting tree, that is, a path from the root to a leaf
has h nodes inclusively. In other words, the reading
reporting tree is full. In such a situation, h = logt‘%. When
a reading reporting tree is not full, we can easily reduce the
height of the tree by 1 and increase the fan-outs of the data
collection nodes so that each data collection node has a fan-
out of at least t?k. The major results in this paper still hold.

To compute the k-means information, straightforwardly,
we can adopt the hierarchical L-search method [28]. The
method works as follows:

1. Each point reports the current value to the parent
node in the reading report tree, which is a data
collection node.

2. A data collection node runs a k-means algorithm and
clusters the t*k points collected from its children into
t - k centers. Each center carries a weight w which is
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the number of points assigned to it. Virtually, we
treat the center as a set of w points at the identical
location as the approximation of the cluster. The
weights will be used in the next step. The data
collection node reports the centers and the weights
to the parent, which is an aggregation node.

3. An aggregation node runs a k-means algorithm and
clusters the t?k centers collected from its ¢ children
into t-k centers. When the k-means algorithm is
applied, a center ¢ of weight w from a child is treated
as w points at the location of ¢. Again, each center
generated in the aggregation node carries a weight
which is the sum of the weights of the centers from
the children nodes assigned to it. The aggregation
node reports the centers computed and their weights
to its parent.

4. The computation is conducted in a bottom-up way
in the reading reporting tree. The root node
generates k centers from the t*k weighted centers
received from its children.

By extending the ideas in [28], the above hierarchical
L-search algorithm generates a good approximation of the
k-means.

Theorem 1 (Quality-hierarchical L-search). The hierarchical
L-search algorithm has an approximation factor of
Q-search = 2"720""Y, where h is the height of the reading
reporting tree and b is the approximation factor of the k-means
clustering algorithm used in the internal nodes (including the
data collection nodes and the aggregation nodes) of the reading
reporting tree.

The proof of the theorem is provided in Appendix A.
The advantage of the hierarchical L-search method is
that it can be used at anytime, and has a constant

approximation factor (as long as a k-means method with a

constant approximation factor is used in each node in the

reading reporting tree). However, the disadvantage is that
the reporting cost is high: every point has to report its
current value.

Proposition 1 (Cost-hierarchical L-search). The hierarchical
L-search algorithm has the reporting cost of O(|S|), where S is
the set of points.

Can we reduce the reporting cost but still retain the good
quality of k-means clustering? This is the topic of the rest of
this paper.

4 A UNIFORM SAMPLING METHOD

Suppose the initial k-means information is obtained at the
root node by running the hierarchical L-search method once.
After a period, the values of some points may change. Now,
let us consider how to update the k-means information.

To reduce reporting cost, instead of asking each point to
report, an intuitive method is to derive the k-means
information from a uniform sample of all points. With a
large enough uniform sample, we can ensure the quality of
the approximation with a high probability.

Technically, in the uniform sampling method, each point
takes a probability of p to report. Then, the hierarchical
L-search is run on the uniform sample. The k-means
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derived from the sample are used as the approximation of
the k-means on all points.

Let O be a set of points and C be a set of points as the
centers. The sum of distances of O using C' is defined as

dsum(0,C) = Zmln{dzst 0,0)}.

Let X be a uniform sample of the points in S. Let Cs be
the centers of the exact k-means (that is, the optimal centers)
on S and C'x be the centers of the exact k-means on X. In the
uniform sampling method, the hierarchical L-search meth-
od is used to approximate C'x and the approximation of Cx
is used as the approximation of Cs.

To measure the approximation quality, we assign the
points in S into clusters using the centers in Cx. Then, the
sum of distances using Cx is

Z mm{dzst 0,q9)}.

oes !

dsum(S,Cx) =

The sum of distances of the k-means is

Zmln{dzst 0,q)}.

qeC
oes 158

dsum(S, Cy)

We have the following result:

Theorem 2 (Uniform sampling method). For any 6 (0 < 6 <
1) and € (0 < € < 1), in the uniform sampling method, if the
sample size

3111%
|X| >

1= dsum(S, Cg)e? 151

then

dsum(S,Cyx) < 1 + 6dsum(S, Cs), (1)
—€

with a probability at least (1 — 6). Moreover, the uniform
sampling method has a constant approximation factor with a
high probability with respect to the hierarchical L-search method.

The proof of Theorem 2 is given in Appendix B.

Theorem 2 shows that using a reading reporting tree, a
uniform sampling method can achieve good quality
provided that the sample size is large enough. Apparently,

the sampling rate in the uniform sampling method should
3In
dsum(S, Cb €2

sampling method is given in the following proposition.

be at least Thus, the reporting cost of the uniform

Proposition 2. In the uniform sampling method, the expected
number of points reporting at an instant is

3111(S

— S
dsum(S, 05)62‘ :

OOStumfmm mmp =
where S is the set of data points.

One drawback of the uniform sampling method is that,
as shown in Theorem 2, the required sample size depends
on dsum(S,Cs), which is unknown to users. Although a
loose upper bound of dsum(S, Cs) can be easily obtained by
randomly choosing k points in the data space as the centers
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and calculating the sum of distances of the points to the
centers, such an estimation is ineffective in practice. In
implementation, we can choose a sample size based on the
k-means estimation at the last instant due to the assumption
that the data changes are often mild.

5 A REePORTING THRESHOLD METHOD

The uniform sampling method treats each point the same:
each point reports with the same probability. However, if
the values of many points may evolve mildly, their values
may be relatively stable, and thus, may have little effect on
the changes of the centers. Can we take the advantage of
this relative stability to reduce reporting cost?

Here, we propose a simple reporting threshold method
which works as follows: Let A >0 be a change threshold.
Suppose at instant 4, a point s reports the current value si0
(to its parent). At an instant ¢ > iy such that s does not
report at any instant between i, and 4, s reports again if and
only if dist(s',s") > A, where s' is the value of s at instant 4.
In other words, a point reports again only if its value
changes at least A from the value it reports last time. As the
initialization step, we run the hierarchical L-search method
at instant 1 such that every point reports.

At a data collection node, for each point s, a last reported
value 6 is maintained. Apparently, dist(o,6) < A, where o is
the current value of s. Otherwise, the point should update
its value. The reporting threshold method uses 6 to calculate
the k-means as the approximation of the current k-means.
Like the hierarchical L-search method, the data collection
and clustering procedure runs bottom up in the reading
reporting tree.

Now, let us examine the clustering quality of the reporting
threshold method. For the set of points S = {s1,...,s,},leto;
and 6;(1 < i < n) be the real value of point s; and the value
reported for clustering, respectively. The reporting threshold
method ensures dist(o;,6;) < A.

Lemma 1. Let ds be the sum of distances of the exact k-means
on oy,...,0, and ds be the sum of distances of the exact
k-means on 61,...,0,. Then, ds < ds + 2nA, where A is
the reporting threshold.

Proof. Let ¢y, ..., ¢, be the centers in the exact k-means on
01,...,0, and ¢i,...,¢, be the centers in the exact
k-means on 0y, ..., 0.

For each center c;, let 0j,, .. ., 0}, be the values assigned
to ¢;. We can calculate the corresponding center ¢; of
0j,,---,0;. That is, we form clusters of ¢i,...,0,
synchronizing with oy,...,0, in partitioning. Since
dist(0;,6;) < A, dist(cj, ¢j) < A.

Let dj, = dist(0),,c;) and d; = dist(0j,,c}). As illu-
strated in Fig. 2, |d;, — d} | < 2A.

_Letds' =", d;. Then, ds' < ds + 2nA. Clearly, ds' >
ds since ds is the optimum on ¢, ..., ¢. Thus, we have
ds < ds' < ds+ 2nA. The lemma is proved. O

Theorem 3 (Quality-reporting threshold). The reporting
threshold method has an approximation factor of 2"=26"1 to
the optimum k-means solution, where h is the height of the
reading reporting tree and b is the approximation factor of the
k-means clustering algorithm used in the internal nodes of the
reading reporting tree.
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Proof. According to Theorem 1, the hierarchical L-search
method introduces an approximation factor 2"-2p"~1.
The reporting threshold method uses the hierarchical
L-search method to approximate the optimum k-means
solution on the values reported. Lemma 1 shows that the
exact k-means on the stored values approximate the
exact k-means on the real current values by an absolute
error bound 2nA, which is a constant and does not affect
the approximation factor of the reporting threshold
method. Thus, we have the theorem. O

The above theoretical analysis shows that the reporting
threshold method only introduces an error bounded by a
constant (when the set of points and the threshold are
fixed). Moreover, we can control the error bound by setting
the reporting threshold.

How much can be saved in reporting cost by the
reporting threshold method?

Theorem 4 (Cost-reporting threshold). Let S be the set of
points. Under the assumptions that: 1) The values of points are
independent from each other and 2) the changes of values of
points follow a normal distribution with a mean of y and a
standard deviation of o, in the reporting threshold method, the
expected number of points reporting at an instant is

(- eo(2)s

( )”:E27z+1

2 T e 2 &K (-1
erf(m) :ﬁ/o (& tdt:\/—%;m

is the Gauss error function and A is the reporting threshold.

where

Proof. Consider a point s € S. Suppose 6 is the value of s
last reported. At the current instant, s has the current
value o. It reports again if and only if dist(o,0) > A.

Since the changes of the values follow a normal
distribution, the probability Pr(dist(o,0) < A) is the area
under the curve of the probability density function of
normal distribution so that y — A <z < p+ A. That is,
Pr(dist(o,0) < A) = erf(%ﬁ).

Thus, Pr(dist(o,6) > A)=1— Pr(dist(o,0) < A) =
1—erf (%ﬁ) There are | S| points in total. The expectation
stated in the theorem follows. O
One possible drawback of the reporting threshold

method is that it may be very sensitive to the threshold.

The data from sensors can be very noisy. Compared to the

uniform sampling approach, the negative effect of noise can
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be enlarged in the reporting threshold method if the
threshold is not set properly.

6 A LAazy METHOD

All the methods we discussed so far are aggressive in data
collection and clustering: they conduct clustering at every
instant. Moreover, a k-means clustering procedure is run at
every internal node of the reading reporting tree. In the
situations where the values of points evolve slowly, the
k-means clusters change slowly and are relatively stable.
Instead of being aggressive, can we be adaptive to the
changes so that more reporting cost can be saved even for
the internal nodes?

Here, we propose a lazy method. The central idea is that
at each internal node of the reading reporting tree, the
k-means centers in a previous instant are reused as much as
possible unless the changes are large enough.

Technically, for each internal node u in the reading
reporting tree, at an instant, u reports the new centers to its
parent only if using the new centers results in a change of at
least 7 in the sum of distances than using the centers u
reports last time, where 7 is the change threshold on the
sum of distances. We describe the details in two cases.

In the first case, let us consider a data collection node u.
Suppose si, ..., sz are the children of u. Then, u remembers
the centers ci,...,¢, and the sum of distances ds that it
reports to the parent last time, as well as the weights of the
centers wy, . .., wy, thatis, w; (1 < i < k) points are assigned
to center ¢; in the k-means partitioning.

When u receives the new values from the children, u runs
the k-means procedure to calculate the new centers and the
sum of distances ds,,,,. u also tries to greedily assign the new
readings to the old centers ¢y, . . ., ¢; as follows: For each point
oof thenew readings, ois assigned to the nearest center whose
capacity is not full. We assign points to centers in the distance
ascending order. A center ¢; is full once it is assigned
w; points. The sum of distances between the points to the
assigned centers ds/,,,, is calculated. u reports the new centers
to its parent only if |ds,c, — ds/,,,,| > 7.

new | —

Lemma 2. ds,_ can be computed in time O(t*k*(k + log t2k)).

new

Proof. Each data collection node has ¢k children. Sorting
the leaf nodes in the distance ascending order takes
time O(#’klogt’k). When some centers are full, these
leaf nodes using some full center as the nearest center
need to update the distance to the nearest center, and
be inserted into the right position in the sorted list. For
such a leaf node, the cost is O(k+ logt’k). Such
adjustments can happen at most O(t’k - k) times. Thus,
the overall complexity is O(t?klogt’k+ t*k- k- (k +
log #2k)) = O(t?k*(k + log t2k)). O

In the second case, let us consider an aggregation node w.
The children of u report to u the centers in the children
nodes with the corresponding weights. We only need to
treat each updated center c with weight w from a child as w
points at location ¢. The method in the first case can be
applied straightforwardly.

We can also use the observation in Lemma 1 to save
more. Let u be a data collection node, which has t* children.
If every child of u has a change of value less than T then the
change of the sum of distances must also be less than 7.
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Clearly, no children of u need to report, and u does not need
to run the k-means clustering procedure.

Using the above observation, at an instant, a point
informs its parent if its value changes at least - Then, the
parent informs its children to update the values if it receives
the change notification from at least one child. Once the
new values arrive, a k-means clustering is conducted and if
the change in the sum of distances is at least 7, an update is
reported to the parent.

We claim that the lazy method has a good approximation
quality as given in the following theorems.

Theorem 5 (Quality-lazy method). The lazy method has an
approximation factor of 2"=2b"~1 to exact k-means, where h is
the height of the reading reporting tree and b is the
approximation factor of the k-means clustering algorithm
used in the internal nodes of the reading reporting tree.

Proof. At each internal node in the reading reporting tree,
when the node reports, the approximation factor b is
satisfied. When the node does not report, that is, the lazy
method uses threshold 7 to save communication, we
have ds <b-ds+r, where ds is the optimum sum of
distances and ds is the approximation using the centers
of some previous instant. In other words, the approx-
imation factor b still holds. According to Theorem 1, the
approximation factor 2"2p"~! is achieved at the root of
the reading reporting tree. 0

The lazy method can be viewed as pushing the reporting
threshold method into every internal node.

Theorem 6 (Cost-lazy method). Let S be the set of points.
Under the assumptions that: 1) The values of points are
independent from each other and 2) the changes of values of
points follow a normal distribution with a mean of p and a
standard deviation of o, in the lazy method, the expected
number of points reporting at an instant is

ot (1))
2k 2kov/2 ’

where er f(x) is the Gauss error function and T is the change
threshold on the sum of distances.

Proof. Using the same idea in the proof of Theorem 4, we
can show that erf(77—) is the probability that a point
does not raise a change notification to its parent. A point
does not report if itself and all its siblings do not raise a

change notification. The probgbility is (erf (g ﬁ))tzk . The
points are partitioned into l%l groups at the leaf node
level. Thus, we have the formula in the theorem. O
The lazy method can be effective if the values of the
points are relatively stable, such as surveillance sensors in
forest. In such a situation, the lazy method can reduce the
cost of clustering procedures and communication. It is
change-driven—an internal node is triggered only if the
points that it manages detect some significant changes.

7 SIMULATION EVALUATION

Table 2 summarizes the quality guarantees and the
expected reporting cost in these methods. In this section,
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TABLE 2
The Summary of the Quality Guarantees and
Expected Reporting Cost of the Methods

[ Method
Hierarchical L-search

| Approximation factor |

Qh—Zph—1
oh—2ph—114e€
I—c

Reporting cost |
o(s))

Olgommrs iz I5)
O((1 — erf(A YIS

fes

Oz (erf (s )™

Uniform sampling

Reporting threshold 2h=2ph—1

Lazy 2h—2ph—1

we empirically evaluate the methods proposed in this
paper. Particularly, we test the algorithms in the aspects of
clustering quality, reporting cost, and scalability.

All the experiments were conducted on a PC with a
3.0 GHz Pentium 4 CPU, 1.0 GB main memory, and a
160 GB hard disk, running the Microsoft Windows XP
Professional Edition operating system, our algorithms were
implemented in Microsoft Visual Studio 2005.

7.1 Simulation Setup

There are some existing synthetic data generation methods
in sensor networks in literature. Yu and coworkers [29], [30]
developed a synthetic data generation framework for sensor
networks, for the purpose of statistics estimation of data,
data compression, and data estimation. Jindal and Psounis
[31], [32] provided methods to generate data in sensor
networks with various degrees of spatial correlation. Other
synthetic data generation methods include [29] and [33].

The existing methods are not suitable for our simulation
purpose, since the generated data may not reflect the
characteristics of clusters in sensor readings and the temporal
evolving behavior of clusters. Therefore, we generate
synthetic data sets to simulate the cluster-evolving scenarios
in sensor networks as given in the following paragraphs.'

A data set contains n points in an /-dimensional space
Dy x --- x D;. The domain of each dimension is [0,2,000].
By default, n = 1,280 and [ = 2.

At instant 1, 98 percent of the points in the data set form
k (by default, k = 5) clusters with equal size and the rest
2 percent of points are noise points that do not belong to
any cluster. The number of points in each cluster is [2242].
The cluster centers are uniformly distributed in space
D; x ---x D;. The cluster radius follows the normal
distribution N(20,1). For each point s in a cluster with
center ¢ and radius r, the reading of s in dimension D;
(1 < j <) follows the normal distribution N (c;7 0) in range
[¢} —r,cj+7], where ¢} is the reading of center ¢ in
dimension D; at instant 1 and o = N(20,1). The noise
points are uniformly distributed in space D; x --- x Dj.

The sensor readings at instant ¢ (¢ > 1) are generated to
simulate the following cluster-evolving scenarios.

Local move (LM). For each point, the current reading
deviates slightly from the reading of the same point at the
previous instant. Particularly, at instant 7 (i > 1), for each
point s, the reading of s in dimension D; (1 <j <) is
generated following the normal distribution N(sj™',10),
where s’ is the reading of s in dimension D; at instant i — 1.

1. The data sets are available at http:/ /www.cs.sfu.ca/~jpei/Software/
SESER .rar.
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Radius shrinking (RS). At the current instant, the
radius of each cluster shrinks compared to the radius of
the same cluster at the previous instant. Particularly, for
each point s, let 5! be the reading of s in dimension D;
(1 <j<) at instant i — 1 (i > 1). The distance between s
and the cluster center ¢ is [sj ! —¢/7!|, where /! is the
reading of center ¢ in dimension D; at instant i — 1. At
instant ¢, the reading of center ¢ does not change (that is,
¢, =c"), while the reading of s in dimension D; is
changed to s) = ¢, + (s; ' —cj)a, where a € (0,1) is the
radius changing ratio. By default, o = 0.6.

Radius expanding (RE). At the current instant, the
radius of each cluster enlarges compared to the radius of
the same cluster at the previous instant. The reading of each
point at instant ¢ is generated in the same way as the
situation of radius shrinking. The only difference is that the
radius changing ratio « is greater than 1. By default, a = 2.

Radius bumping (RB). The radius of each cluster
changes from the previous instant, and some clusters merge
into each other. The data generation for the radius bumping
scenario for instant ¢ is the same as that in the situation of
radius expanding. The only difference is that the radius
changing ratio « is large so that some clusters may merge.
By default, o = 6.

Center change (CC). The center of each cluster moves.
Particularly, at instant ¢ (¢ > 1), the reading of a center c in
dimension D; (1 < j <) is generated following the normal
distribution N(¢j*,100), where ¢/ ! is the reading of ¢ in
dimension D; at instant ¢ — 1. For each point s in the cluster
with center ¢, the reading of s in dimension D; at instant ¢ is
changed to s} = ¢/ 4 (s;' — ¢/ '), where s/ " is the reading
of s in dimension D; at instant ¢ — 1.

Membership exchange (ME). Many points leave the
clusters they belong to at the previous instant and join a
new cluster at the current instant. Particularly, at instant i, we
randomly select a cluster C' as the dissolving cluster. Each
point s in C'joins another cluster C’ that is randomly selected
from the rest clusters. The reading of s atinstant is generated
in the same way as the existing member points in C’.

We test the approximation quality of each algorithm in
various cluster evolving situations. The height of the
reading report tree is set to 4, and the facility factor ¢ = 4.
The number of clusters is 5.

So far, there does not exist a polynomial time algorithm
to compute the optimal k-means. Thus, we use the
popularly adopted randomized algorithm to compute an
approximation of the optimal results. That is, as the baseline
method, we run the k-means algorithm offline on the whole
data set and obtain the sum of distance as the benchmark.
The clustering results in the proposed methods are
compared with the benchmark values. Previous studies
have shown that the offline method can often achieve very
good approximation to the optimal results, and has a
theoretically provable approximation ratio 2 [34].

The error rate of each algorithm is defined as

dsum — dsum
Error rate = ————
dsum -k
where dsum is the sum of distances computed by the offline
k-means algorithm, dsum is the sum of distances computed
by an approximation algorithm proposed in this paper, and
k is the number of clusters.
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Fig. 3. Approximation quality in different situations of cluster changes. (a) Error rate of RT. (b) Error rate of US. (c) Error rate of lazy RT. (d) Error rate

of lazy US.

7.2 Clustering Quality

In this section, we report the results on testing the clustering
quality of our methods. Since the k-means algorithms are
randomized algorithms in nature, we run each of our
experiments five times and report the median of the results.
Choosing the median is to avoid the ill-effect of some
extreme outlier values.

We compare four methods: the reporting threshold
method (RT), the uniform sampling method (US), the lazy
reporting threshold method (lazyRT), and the lazy uniform
sampling method (lazyUS). The lazy uniform sampling
method is to combine the lazy method with the uniform
sampling: if k-means clustering has to be conducted in an
internal node in a reading reporting tree, a uniform sample is
draw from its children to derive the clustering information.

7.2.1 Clustering Quality of the Four Algorithms

The error rates of the four methods in various situations of
cluster changes are reported in Fig. 3. Since the trends of the
error rates in the situations of RS, RE, and RB are similar,
we only show the curves of the RE situation as the
representative and omit the curves of RB and RS to make
the figures more legible.

Fig. 3a reports the error rates of the reporting threshold
method. Generally, as the change threshold increases, fewer
points will report their values, and thus, the error rates are
expected to increase. However, in the situations of LM and
ME, the error rates drop slightly when the change threshold
is greater than 12 (there are very few new point values
reported, and the clustering is mainly based on the previous
data). The reason is that the sum of distances is stable in
those two situations; therefore, computing the clustering
using most of the previous readings actually gives a good
approximation of the real clustering.

Fig. 3b shows that the error rates of the uniform sampling
method are stable, in general, and decrease slightly as the
sample rate increases. This is because more point values are
collected when the sample rate is higher. In general, the
error rates of the uniform sampling method are higher than
the error rates of the reporting threshold method. The
reason is that the reporting threshold method uses both the
previous readings of those stable points and the updated
current values of those significantly changed points. Thus,
more accurate information is captured in the reporting
threshold method.

Figs. 3c and 3d show the error rates of the lazy reporting
threshold method and the lazy uniform sampling method,
respectively. In general, when the sum of distances change
threshold becomes larger, fewer internal nodes report their
changes, so the error rates become higher. This trend is
observed in the experiments, though the increase of error

rates is quite mild. The error rates of the lazy methods are
all below 10 percent, which illustrate their effectiveness.

In summary, the four methods all provide good
approximation quality of the real clusterings in various
cluster evolving situations. The reporting threshold method
is more accurate than the uniform threshold method since
the reporting threshold method reuses the information at
the previous instant. The lazy methods can provide high-
quality approximation in most clustering evolving situa-
tions, except for the center change case.

7.2.2 Effects of the Parameters of Reading Reporting
Trees on Quality

The four algorithms proposed in this paper use the reading
reporting tree framework. A reading reporting tree takes
three structural parameters: the number of clusters k, the
facility factor ¢, and the height of the tree h. Moreover, it is
well known that clustering is sensitive to the dimensionality
of data. In our case, the dimensionality is the number of
measures detected by a point.”

We tested the clustering quality with respect to the four
parameters listed above. Here, we use the situation of local
move to report the results. The results on the other
situations of cluster evolving are similar.

We set the parameters for the algorithms as follows: In
the reporting threshold method, we set the change thresh-
old to 10. In the uniform sampling method, we set sampling
rate to 50 percent. In the two lazy methods, we set the
change threshold to 600.

Fig. 4a shows the error rates of the four algorithms with
respect to different number of clusters k. It is interesting that
as k increases from 2 to 8, the error rates also increase; but
when k further increases from 9 to 10, the error rates drop
down. The reason is that when k is very small, each cluster
contains a large set of points and is relatively stable. When
the number of clusters increases, the clusters become smaller
and are easier to be affected by the change of data. However,
when the number of clusters is large, most of the clusters are
local. Local changes in data cannot affect most clusters.

Fig. 4b shows the error rates of the algorithms with
respect to different facility factors. We can observe a similar
trend as shown in Fig. 4a. This is because, when ¢ is very
small, there are very few point values in each microcluster;
therefore, the cluster centers reported in the internal nodes
are very close to the actual point values. The approximation
is accurate. As t increases, the error rates also go up. This is
because, the current values of points are approximated by
cluster centers in the internal nodes of a reading report tree,

2. In the applications of sensor networks, typically, this is a small
positive integer (e.g., about 3-5) in most of the state-of-the-art sensor
networks.
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which leads to an accuracy loss. However, when ¢ > 7, the
error rates start to decrease, because when there are enough
points in each microcluster, the increasing number of
cluster centers led by a larger value of ¢t becomes a good
approximation of other readings in the same cluster.

In Fig. 4c, the error rates decrease when the height of the
reading reporting tree increases. This is simply because the
number of points increases dramatically when the height of
the reporting becomes larger. With more data, the cluster-
ing quality can be expected better. Technically, the sum of
distances in the actual clustering also increases dramati-
cally. This sum is used as the denominator of the error rate
calculation. In other words, the approximation made by our
methods is proportionally stable with respect to the sum of
distances in the actual clustering. The results also translate
to a highly desirable conclusion: our methods have lower
error rates (that is, better approximation quality) on larger
data sets.

Fig. 4d shows the error rates with respect to dimension-
ality up to 10. The error rates of our methods are stable, in
general, though some exceptional points do exist. The
results clearly show that our methods can handle the
dimensionality high enough for a few applications such as
sensor networks detecting multiple measures.

7.3 Reporting Cost

The major purpose of our four methods is to save reporting
cost. In this section, we test the effect of reporting cost
reduction of all the four algorithms with respect to different
cluster evolving situations and structural parameters of the
reading reporting tree.

7.3.1 Reporting Cost in the Four Algorithms

We evaluated the reporting cost of the four algorithms in
terms of the number of points that report their current values
during the clustering process. The results are shown in Fig. 5.

Fig. 5a shows the number of points reported with respect to
change threshold in the reporting threshold method. As
expected, when the change threshold increases, fewer points
will report their values. Among the different cluster evolving

situations, most points report their values in the center
change situation, since all the point values change substan-
tially in order to make the cluster center change. In the local
move situation, the fewest points report their values, because
apoint does not report its current value if the change between
the previous reading and the current reading is within the
change threshold. When the change threshold is 20, very few
points report their current values, but the error rates are still
lower than 10 percent, as shown in Fig. 3a, which shows the
effectiveness of the reporting threshold method.

Fig. 5b shows that the number of points reported
increases linearly as the sample rates increases. When the
sample rate is 10 percent, there are fewer than 200 points
reported, but the error rates are still lower than 10 percent,
as shown in Fig. 3b. If we compare the error rates of the
reporting threshold method and the uniform sampling
method, it is interesting to observe that when the number of
samples reported is similar in the two methods, the error
rates of the reporting threshold methods are lower than the
error rates of the uniform sampling method, which again
verifies the effectiveness of the reporting threshold method.

In Figs. 5c and 5d, we plot the percentage of the number
of internal nodes reported in the lazy reporting threshold
method and the lazy uniform sampling method. As the sum
of distances change threshold increases, fewer internal
nodes report their centers. It is clear that in the lazy
methods, only a small portion of internal nodes report their
new centers, which verifies the effectiveness of the lazy
methods in reducing the reporting cost.

In summary, the number of points reported in the
clustering can be controlled by different parameters in the
four algorithms. Reducing the number of reporting points
can reduce the reporting cost. Moreover, our experimental
results show that the approximation quality is not affected
significantly, while the number of reporting points can be
reduced substantially. This property clearly shows the
effectiveness of our methods.

8 CONCLUSIONS

In this paper, we tackled a novel and interesting problem:
continuously monitoring k-means with low reporting cost.
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We proposed a reading reporting tree structure and devel-
oped a set of methods. Our methods reduce the number of
points that need to report, and thus, save the reporting cost.

As future work, it is interesting to exploit our methods in
applications like data collection in sensor networks. In such
applications, in addition to reporting cost, there are other
types of cost which have not been included in our model.
For example, sensing different measures may have different
cost. Integrating these types of cost in a comprehensive
model is interesting and challenging.

APPENDIX A
PRrRooF of THEOREM 1

To prove Theorem 1, we need the following two lemmas:

Lemma 3. Given a set of points S, let dsump(S) be the sum of
distances in the optimum k-means on S. Consider an arbitrary
partitioning of S into | exclusive subsets Si,...,S;. Let
dsumey(S;) be the sum of distances in the optimum k-means
on S; (1 <i<1). Then,

g dsump (S,

Moreover, let S’ be the set of weighted centers of Sy,. .., S,
that is, each point ¢ € S’ is a center in some S; carrying a weight
w, where w is the number of points in S; assigned to c. Let
dsump: (S") be the sum of distances in the optimum k-means on
S, then

) < dsumep(S).

dsumep(S) < dsumeu(S)

1
+ Z dsumyy(S;)
=1

Proof. Let Cs be the set of optimum k centers on S. Consider

subset S; C S. Let dsumc,(S;) be the sum of distances
of assigning points in S; to centers Cg. Clearly,
dsumep(S;) < dsumc,(S;). Otherwise, dsum,y(S;) is not

the optimum. Therefore,

E dsumg (S, E dsume, (S

=1
The first part is proved.

Consider a point pe S with weight w, Let
copt(S’,p) be the center to which p is assigned in the
optimum k-means on S’. The sum of distances in the
optimum k-means on 5’ is

Z dist(p, Copt

pes’

= dsumep(S).

(5',p)) - wp-

Since each weighted point p is a weighted center in
S1,...,5, for any point s € S, there exists a point p; € S’
such that s is assigned to p,. Thus, the sum of distances in
the optimum k-means on S’ can also be written as

> dist(ps, cop (S, ps))-

seS

Let ¢, (S, s) be the center to which s is assigned in the
optimum k-means on S, and p; is the center, where s is
assigned in some S;. According to the triangle inequality,
wehave dist(copi (S, s), ps) < dist(s,ps) + dist(s, cop (S, s)).

1689
Since
!

Z dist(s,ps) = Z dsumop (S,

ses i=1
and

> dist(p, cop(S.p)) = dsumy(S),

P

we have the second inequality in the lemma. O

Lemma 4. In the hierarchical L-search method using a reading
reporting tree, each aggregation node in the reading reporting
tree which is a grand parent of a leaf node finds O(k)-centers
with an approximation factor of 2b?, where b is the
approximation factor for the k-means clustering algorithm
used in the internal nodes of the reading reporting tree.

Proof. According to the definition, each aggregation node
which is a grand parent of a leaf node has ¢ children, and
each of its children collects #*k points. Let X; be the set of
data points collected by the ith child of an aggregation
node o.

Using the first item in Lemma 3, we know

E dsum g (X

Let dsumy(X;) be the sum of distances in the k-means
solution on X; found by a b-approximation algorithm.
Then,

) < dsumep (Ui_; X;).

Z dsumy (X,

Let X' be the set of weighted centers at node o. Using
the second item in Lemma 3, we know

+ Z dsump (X,

)<b- dsumgpt(Ufﬂ Xi)'

dsumgp (X') < dsumopt
Then,

dsumy(X') < b(dsumopt + stumopt
< b(dsumopt(uizl Xi) + dsumupt( Ui:l XL))
= 2bdsumep (Uj_; X;).

Since the clustering result of each aggregation node is
obtained by first clustering the data in its children, and
then, clustering the weighted centers to O(k) centers, the
approximation factor is 2b - b = 2b%. O

Proof of Theorem 1. Let the approximation factor for the
clustering result at an aggregation node at the jth level is
A;. The path from such a node to a leaf node has length ;.

By the assumption that a b-approximation algorithm is
used in each internal node, we know that A; = b. From
Lemma 4, we know that the approximation factor follows a
recurrence A; = A;_12b (j > 2). By solving the recurrence,
we have A; = 27710/, Since the root node is at level h — 1,
the approximation factor at the root node is 2"~2p"~1. O
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APPENDIX B
PROOF OF THEOREM 2

To prove Theorem 2, we need the following lemma:

iln[S
dsum(S,Cs)e? |S‘ then

Lemma 5. If the sample size | X| >
Pr{|dsum(X,Cs) — E[dsum(X, Cy)]|

> eEldsum(X,Cs)]} <6,
and
Pr{|dsum(X,Cx) — Eldsum(X, Cx)]|
> eE[dsum(X,Cx)]} <6,

where E[Y] is the expectation of variable Y.

Proof. Following with Chernoff-Hoeffding bound [35], we
have

Pr{|dsum(X, Cy)

& Eldsum(X,Cg)]

< 2e” 3 <.

— Eldsum(X, Cg)]| > eE[dsum(X, Cs)]}

(4)

Since X is a uniform sample of S, we have

Eldsum(X,Cg)] = @dsum(S, Cy).

5]
Inequality (4) can be rewritten as

Pr{ldsum(X,Cs) —

“—‘lsum(s(b)

<2~ 7 <.

Eldsum(X, Cg)]| > eE[dsum(X, Cs)]}

Thus, if | X| > 7228 15], (2) holds.

Similarly, following with Chernoff—Hoeffding bound
[35], we have

Pr{|dsum(X,Cx) —

2lX ‘dsum(s.cm

]
< 2e <.

Eldsum(X,Cx)]| > eE[dsum(X, Cx)]}

Thus, (3) holds if

X| > 31n6
| ~ dsum(S,Cx)e? 315

Clearly, we have dsum(S,Cx) > dsum(S, Cs). So,

3In2
dsum(S,Cx)ée?

15| < 3In2
~ dsum(S,Cg)e?

Therefore, if | X| > WSH%Q)H S|, (3) holds immediately.O

Proof of Theorem 2. Since Cx is the set of optimal centers
in sample X, we have dsum(X,Cx) < dsum(X,Cs).
Apparently,

|5]-

X |dsum(S Cs),

Eldsum(X, Cg)] = 5]

and

Eldsum(X,Cx)] = X |dsum(S Cx).

5]
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Using Lemma 5, we have, when | X| > Délgl =15/,
dsum(X,Cg) < (1 + ¢)E[dsum(X, Cs)]
=(1+e¢) ||S|| dsum(S, Cs),
and
dsum(X,Cx) > (1 — e)%dsum(&'7 Cx),

with a probability higher than (1 — ¢). Thus, we have

(I+¢ X |dsum(S Cs) > (1—€)— 1X] dsum(S,Cx).

|51 5]
Inequality (1) follows with the inequality immediately.
The uniform sampling method uses the hierarchical
L-search method to approximate dsum(S,Cx). Theo-
rem 1 indicates that the approximation factor is
2h=2p"-1 where b is the approximation factor of the
k-means algorithm used in each internal node of the
reading reporting tree, and h is the height of the tree.
Therefore, the approximation factor of the uniform
sampling method is 2"2b""'1< with a high prob-
ability (1 —6) when the sample size is large enough.
The theorem is proved. 0
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