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Abstract

We develop a new k-means clustering algorithm for data
streams, which we call StreamKM++. Our algorithm com-
putes a small weighted sample of the data stream and solves
the problem on the sample using the k-means++ algorithm
[1]. To compute the small sample, we propose two new tech-
niques. First, we use a non-uniform sampling approach simi-
lar to the k-means++ seeding procedure to obtain small core-
sets from the data stream. This construction is rather easy
to implement and, unlike other coreset constructions, its run-
ning time has only a low dependency on the dimensionality
of the data. Second, we propose a new data structure which
we call a coreset tree. The use of these coreset trees sig-
ni�cantly speeds up the time necessary for the non-uniform
sampling during our coreset construction.

We compare our algorithm experimentally with two
well-known streaming implementations (BIRCH [16] and
StreamLS [4, 9]). In terms of quality (sum of squared
errors), our algorithm is comparable with StreamLS and
signi�cantly better than BIRCH (up to a factor of 2). In
terms of running time, our algorithm is slower than BIRCH.
Comparing the running time with StreamLS, it turns
out that our algorithm scales much better with increasing
number of centers. We conclude that, if the �rst priority is
the quality of the clustering, then our algorithm provides a
good alternative to BIRCH and StreamLS, in particular,
if the number of cluster centers is large.

We also give a theoretical justi�cation of our approach

by proving that our sample set is a small coreset in low

dimensional spaces.

1 Introduction

Clustering is the problem to partition a given set of ob-
jects into subsets called clusters, such that objects in the
same cluster are similar and objects in di�erent clusters
are dissimilar. The goal of clustering is to simplify data
by replacing a cluster by one or a few representatives,
classify objects into groups of similar objects, or �nd
patterns in the dataset. Often the datasets, which are
to be clustered, are very large and so clustering algo-
rithms for very large datasets are basic tools in many
di�erent areas including data mining, database systems,
data compression, and machine learning. These very
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large datasets often occur in the form of data streams
or are stored on harddisks, where a streaming access is
orders of magnitude faster than random access.

One of the most widely used clustering algorithms
is Lloyd's algorithm (sometimes also called the k-means

algorithm) [6, 12, 13]. This algorithm is based on
two observations: (1) Given a �xed set of centers,
we obtain the best clustering by assigning each point
to the nearest center and (2) given a cluster, the
best center of the cluster is the center of gravity
(mean) of its points. Lloyd's algorithm applies these
two local optimization steps repeatedly to the current
solution, until no more improvement is possible. It is
known that the algorithm converges to a local optimum
[15] and no approximation guarantee can be given.
Recently, Arthur and Vassilvitskii developed the k-
means++ algorithm [1], which is a seeding procedure for
Lloyd's k-means algorithm that guarantees a solution
with certain quality and gives good practical results.
However, the k-means++ algorithm (as well as Lloyd's
algorithm) needs random access on the input data and
is not suited for data streams.

In this paper, we develop a new clustering algorithm
for data streams that is based on the idea of the k-
means++ seeding procedure.

1.1 Related Work. Clustering data streams is a
well-studied problem in both theory and practice. One
of the earliest and best known practical clustering
algorithms for data streams is BIRCH [16]. BIRCH

is a heuristic that computes a pre-clustering of the
data into so-called clustering features and then clusters
this pre-clustering using an agglomerative (bottom-up)
clustering algorithm. Another well-known algorithm is
StreamLS [4, 9], which partitions the input stream into
chunks and computes for each chunk a clustering using
a local search algorithm from [10]. StreamLS is slower
thanBIRCH but provides a clustering with much better
quality (with respect to the sum of squared errors).

In the theory community, a number of streaming
algorithms for k-median and k-means clusterings have
been developed [5, 7, 8, 10, 11]. Many of these algo-
rithms are based on applying the merge-and-reduce pro-
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cedure from [11] to obtain a small coreset [3] of the data
stream, i.e., a small weighted point set that approxi-
mates the points from the data stream with respect to
the k-means clustering problem.

1.2 Our Contribution. We develop a new algo-
rithm for k-means clustering in the data streaming
model, which we call StreamKM++. Our streaming
algorithm maintains a small sketch of the input using
the merge-and-reduce technique [11], i.e., the data is or-
ganized in a small number of samples, each representing
2im input points (for some integer i and a �xed value
m). Everytime when two samples representing the same
number of input points exist we take the union (merge)
and create a new sample (reduce).

For the reduce step, we propose a new coreset
construction. Here, we focus on giving a construction
that is suitable for high-dimensional data. Existing
coreset constructions based on grid-computations [11, 8]
yield coresets of a size that is exponential in the
dimension. Since the k-means++ seeding works well for
high-dimensional data, a coreset construction based on
this approach seems to be more promising. In order to
implement this approach e�ciently, we develop a new
data structure, which we call the coreset tree.

We compare our algorithm experimentally with
BIRCH and StreamLS, which are both frequently
used to cluster data streams, as well as with the non-
streaming version of algorithm k-means++. It turns
out that our algorithm is slower than BIRCH, but
it computes signi�cantly better solutions (in terms of
sum of squared errors). In addition, to obtain the
desired number of clusters, our algorithm does not
require the trial-and-error adjustment of parameters
as BIRCH does. The quality of the clustering of
algorithm StreamLS is comparable to that of our
algorithm, but the running time of StreamKM++

scales much better with the number of cluster centers.
For example, on the dataset Tower, our algorithm
computes a clustering with k = 100 centers in about
3% of the running time of StreamLS. In comparison
with the standard implementation of k-means++, our
algorithm runs much faster on larger datasets and
computes solutions that are on a par with k-means++.
For example, on the dataset Covertype, our algorithm
computes a clustering with k = 50 centers of essentially
the same quality as k-means++ does, but is a factor of
40 faster than algorithm k-means++.

We back up our strategy with a theoretical analysis
of the new coreset construction. We prove that, with
high probability, sampling according to the k-means++
seeding procedure gives small coresets, at least in low
dimensional spaces.

2 Preliminaries

Let ‖ · ‖ denote the `2-norm on Rd. By d(x, y) =
‖x − y‖ we denote the Euclidean distance and by
d2(x, y) = ‖x − y‖2 the squared Euclidean distance of
x, y ∈ Rd. We use d(x,C) = minc∈C d(x, c), d2(x,C) =
minc∈C d2(x, c), and cost(P,C) =

∑
x∈P d2(x,C) for

C,P ⊂ Rd. Analogously, for a weighted subset S ⊂
Rd with weight function w : S → R≥0, we use
costw(S,C) =

∑
y∈S w(y) d2(y, C) . The Euclidean k-

means problem is de�ned as follows.

Problem 1. Given an input set P ⊂ Rd with |P | = n
and k ∈ N, �nd a set C ⊂ Rd with |C| = k that

minimizes cost(P,C).

Furthermore, by

optk(P ) = min
C′⊂Rd:|C′|=k

cost(P,C ′)

we denote the cost of an optimal Euclidean k-means
clustering of P .

An important concept we use is the notion of core-
sets. Generally speaking, a coreset for a set P is a small
(weighted) set, such that for any set of k cluster cen-
ters the (weighted) clustering cost of the coreset is an
approximation for the clustering cost of the original set
P with small relative error. The advantage of such a
coreset is that we can apply any fast approximation al-
gorithm (for the weighted problem) on the usually much
smaller coreset to compute an approximate solution for
the original set P more e�ciently. We use the following
formal de�nition.

Definition 2.1. Let k ∈ N and ε ≤ 1. A weighted

multiset S ⊂ Rd with positive weight function w : s →
R≥0 and

∑
y∈S w(y) = |P | is called (k, ε)-coreset of P

i� for each C ⊂ Rd of size |C| = k we have

(1− ε)cost(P,C) ≤ costw(S,C) ≤ (1 + ε)cost(P,C) .

Our clustering algorithm maintains a small coreset
in the data streaming model. In this model, the input
is a sequence of points. Due to the long length of the
sequence, algorithms are only allowed to perform one
sequential scan over the data and to use local memory
that is merely polylogarithmic in the size of the input
stream.

3 Coreset Construction

Our coreset construction is based on the idea of the k-
means++ seeding procedure from [1]. One reason for
this design decision was that the k-means++ seeding
works well for high-dimensional datasets, which is often
required in practice. This nice property does not apply
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to many other clustering methods, like the grid-based
methods from [11, 8], for instance.

In the following, let P ⊂ Rd with |P | = n. The
k-means++ seeding from [1] is an iterative process as
follows:

1. Choose an initial point q1 ∈ P uniformly at
random.

2. Let S be a set of points already chosen from
P . Then, each element p ∈ P is chosen with

probability d2(p,S)
cost(P,S) as next element of S.

3. Repeat step 2 until S contains the desired number
of points.

We say S is chosen at random according to d2.
For an arbitrary �xed integer m our coreset con-

struction is as follows. First, we chose a set S =
{q1, q2, . . . , qm} of size m at random according to d2.
Let Qi denote the set of points from P which are clos-
est to qi (breaking ties arbitrarily). Using weight func-
tion w : S → R≥0 with w(qi) = |Qi|, we obtain the
weighted set S as our coreset. Note that this construc-
tion is rather easy to implement and its running time
has a merely linear dependency on the dimension d.

Empirical evaluation (as given in Section 6) suggests
that our construction leads to good coresets even for
relatively small choices of m (i.e., say, m = 200k).
Unfortunately, we do not have a formal proof supporting
this observation. However, we are able to do a �rst step
by giving a rigorous proof to the fact that at least in
low dimensional spaces, our construction indeed leads
to small (k, ε)-coresets. Please note that there is no
reason to assume that the size bound from Theorem 3.1
is tight.

Theorem 3.1. If m = Θ
(
k logn
δd/2εd logd/2

(
k logn
δd/2εd

))
, then

with probability at least 1− δ the weighted multiset S is

a (k, 6ε)-coreset of P .

Proof. First, we need the following two lemmas. The
�rst lemma is due to [1]. The proof of the second lemma
can be found in Appendix A.

Lemma 3.1. Let S ⊆ P be a set of m points chosen at

random according to d2. Then we have E[cost(P, S)] ≤
8(2 + lnm)optm(P ).

Lemma 3.2. Let γ > 0. If m ≥
(

9d
γ

) d
2 k dlog(n) + 2e,

then optm(P ) ≤ γ optk(P ).

Now, let C be an arbitrary set of k centers. For
p ∈ P , let qp denote the element from S closest to
p, breaking ties arbitrarily. By the triangle inequality,

we have |cost(P,C)− costw(S,C)| ≤
∑
p∈P

∣∣d2(p, C) −
d2(qp, C)

∣∣ . By P ′ =
{
p ∈ P d(p, qp) ≤ εd(p, C)

}
and

P ′′ = P \ P ′ we de�ne a partition of P . Using the
triangle inequality of the Euclidean distance, we obtain
Proposition 3.1 and Proposition 3.2 below. The proofs
of these propositions can be found in Appendix B and
C.

Proposition 3.1. If p ∈ P ′, then∣∣d2(p, C)− d2(qp, C)
∣∣ ≤ 3εd2(p, C) .

Proposition 3.2. If p ∈ P ′′, then∣∣d2(p, C)− d2(qp, C)
∣∣ ≤ 3

ε
d2(p, qp) .

Using Proposition 3.1 and 3.2, we �nd∣∣cost(P,C)− costw(S,C)
∣∣

≤
∑
p∈P ′

∣∣d2(p, C)− d2(qp, C)
∣∣

+
∑
p∈P ′′

∣∣d2(p, C)− d2(qp, C)
∣∣

≤ 3ε
∑
p∈P ′

d2(p, C) +
3
ε

∑
p∈P ′′

d2(p, qp)

≤ 3εcost(P,C) +
3
ε

cost(P, S) .

Using Lemma 3.1 and Markov's inequality, we obtain
cost(P, S) ≤ 8

δ (2 + lnm)optm(P ) with probability at

least 1−δ. Hence, using Lemma 3.2 with γ = ε2δ
8(2+lnm) ,

we have with high probability

cost(P, S) ≤ 8
δ

(2 + lnm)optm(P )

≤ ε2optk(P ) ≤ ε2cost(P,C)

for m = Θ
(
k logn
δd/2εd logd/2

(
k logn
δd/2εd

))
. Therefore, the

theorem follows. �

4 The Coreset Tree

Unfortunately, there is one practical problem concerning
the k-means++ seeding procedure. Assume that we
have chosen a sample set S = {q1, q2, . . . , qi} from
the input set P ⊆ Rd so far, where i < m and
|P | = n. In order to compute the probabilities to choose
the next sample point qi+1, we need to determine the
distance from each point in P to its nearest neighbor in
S. Hence, using a standard implementation of such a
computation, we require time Θ(dnm) to obtain all m
coreset points, which is too slow for larger values of m.
Therefore, we propose a data structure called coreset
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tree which speeds up this computation. The advantage
of the coreset tree is that it enables us to compute
subsequent sample points by taking only points from
a subset of P into account that is signi�cantly smaller
than n. We obtain that if the constructed coreset tree is
balanced (i.e., the tree is of depth Θ(log k)), we merely
need time Θ(dn logm) to compute all m coreset points.
This intuition is supported by our empirical evaluation,
where we �nd that the process of sampling according to
d2 is signi�cantly sped up, while the resulting sample
set S has essentially the same properties as the original
k-means++ seeding.

In the following, we explain the construction of the
coreset tree in more detail. A description in pseudocode
is given by Figure 1.

4.1 De�nition of the Coreset Tree. A coreset tree
T for a point set P is a binary tree that is associated
with a hierarchical divisive clustering for P : One starts
with a single cluster that contains the whole point set
P and successively partitions existing clusters into two
subclusters, such that the points in one subcluster are
far from the points in the other subcluster. The division
step is repeated until the number of clusters corresponds
to the desired number of clusters. Associated with this
procedure, the coreset tree T has to satisfy the following
properties:

• Each node of T is associated with a cluster in the
hierarchical divisive clustering.

• The root of T is associated with the single cluster
that contains the whole point set P .

• The nodes associated with the two subclusters of a
cluster C are the child nodes of the node associated
with C.

With each node v of T , we store the following
attributes: A point set Pv, a representative point qv
from Pv, an integer size(v), and a value cost(v). Here,
point set Pv is the cluster associated with node v. Note
that the set Pv only has to be stored explicitly in the
leaf nodes of T , while for an inner node v, the set Pv is
implicitly de�ned by the union of the point sets of its
children. The representative qv of a node v is obtained
by sampling according to d2 from Pv. At any point of
time, the set of all the points q` stored at a leaf node `
are the points that have been chosen so far to be points
of the eventual coreset. Furthermore, the attribute
size(v) of a node v denotes the number of points in
set Pv. For leaf nodes, the attribute cost(v) equals
cost(Pv, qv), which is the sum of squared distances over
all points in Pv to qv. The value cost(v) of an inner
node v is de�ned as the sum of the cost of its children.

4.2 Construction of the Coreset Tree. To sim-
plify descriptions, at any time, we number the leaf nodes
of the current coreset tree consecutively starting with
1. At the beginning, T consists of one node, the root,
which is given the number 1 and associated with the
whole point set P . The attribute q1 of the root is our
�rst point in S and computed by choosing uniformly
at random one point from P . Now, let us assume that
our current tree has i leaf nodes 1, 2, . . . , i and the cor-
responding sample points are q1, q2, . . . , qi. We obtain
the next sample point qi+1, a new cluster in our hierar-
chical divisive clustering, and, thus, new nodes in T by
performing the following three steps:

1. Choose a leaf node ` at random.

2. Choose a new sample point denoted by qi+1 from
the subset P` at random.

3. Based on q` and qi+1, split P` into two subclusters
and create two child nodes of ` in T .

The �rst step is implemented as follows. Starting at
the root of T , let u be the current inner node. Then, we
select randomly a child node of u, where the probability
distribution for the child nodes of u is given by their
associated costs. More precisely, each child node v of

the current node u is chosen with probability cost(v)
cost(u) .

We continue this selection process until we reach a leaf
node. Let ` be the selected leaf node, let q` be the
sample point contained in `, and let P` be the subset of
P corresponding to leaf `.

In the second step, we choose a new sample point
from P` at random according to d2, i.e., each p ∈
P` is chosen with probability d2(p,q`)

cost(P`,q`)
. In doing

so, we sample each point from P with probability
proportional to its distance to the sample points of the
clustering induced by the partition of the leaf nodes and
their sample points. That is, we are using the same
distribution as the k-means++ algorithm does with the
exception that the partition is determined by the coreset
tree rather than by assigning each point to the nearest
sample point.

In the third step, we create two new leaf nodes
`1 and `2 and compute the associated partition of P`
as well as the corresponding attributes. We store at
node `1 the point q` and at node `2 we store our new
sample point qi+1. We partition P` into two subsets
P`1 = {p ∈ P` d(p, q`) < d(p, qi+1)} and P`2 = P` \ P`1
and associate them with the corresponding nodes. Node
` becomes the parent node of the two new leaf nodes
`1 and `2. We determine size and cost attributes for
the nodes `1 and `2 as described above and update the
cost of ` according to this. This update is propagated
upwards, until we reach the root of the tree.
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TreeCoreset(P,m):
1 choose q1 uniformly at random from P
2 root ← node with qroot = q1,

size(root) = |P |, cost(root) = cost(P, q1)
3 S ← {q1}
4 for i← 2 to m do

5 start at root , iteratively select random
child node until a leaf ` is chosen

6 choose qi according to d2 from P`
7 S ← S ∪ {qi}
8 create two child nodes `1, `2 of ` and

update size(`) and cost(`)
9 propagate update upwards to node root

Figure 1: Algorithm TreeCoreset

InsertPoint(p):
1 put p into B0

2 if B0 is full then
3 create empty bucket Q
4 move points from B0 to Q
5 empty B0

6 i ← 1
7 while Bi is not empty do
8 merge points from Bi and Q,

store merged points in Q
9 empty Bi
10 i← i+ 1
11 move points from Q to Bi

Figure 2: Algorithm InsertPoint

4.3 The Coreset. Once we have constructed a core-
set tree with m leaf nodes, let q1, q2, . . . , qm denote the
points associated with the leaf nodes. We obtain coreset
S = {q1, q2, . . . , qm} where the weight of qi is given by
the number of points that are associated with the leaf
node of qi.

5 The Algorithm

Now, we are able to describe our clustering algorithm
for data streams. To this end, let m be a �xed size
parameter. First, we extract a small coreset of size m
from the data stream by using the merge-and-reduce
technique from [11]. This streaming method is described
in detail in the subsection below. For the reduce step, we
employ our new coreset construction, using the coreset
trees as given in Section 4. After that, a k-clustering
can be obtained at any point of time by running any
k-means algorithm on the coreset of size m. Note that

since the size of the coreset is much smaller than (or even
independent of) the size of the data stream, we are no
longer prohibited from algorithms that require random
access on their input data. In our implementation, we
run the k-means++ algorithm from [1] on our coreset
�ve times independently and choose the best clustering
result obtained this way. We call the resulting algorithm
StreamKM++.

5.1 The Streaming Method. In order to maintain
a small coreset for all points in the data stream, we use
the merge-and-reduce method from [11]. For a data
stream containing n points, the algorithm maintains
L = dlog2( nm ) + 2e buckets B0, B1, . . . , BL−1. Bucket
B0 can store any number between 0 and m points. In
contrast, for i ≥ 1, bucket Bi is either empty or contains
exactly m points. The idea of this approach is that,
at any point of time, if bucket Bi is full, it contains a
coreset of size m representing 2i−1m points from the
data stream.

New points from the data stream are always in-
serted into the �rst bucket B0. If bucket B0 is full (i.e.,
containsm points), all points from B0 need to be moved
to bucket B1. If bucket B1 is empty, we are �nished.
However, if bucket B1 already contains m points, we
compute a new coreset Q of size m from the union of
the 2m points stored in B0 and B1 by using the coreset
construction described above. Now, both buckets B0

and B1 are emptied and the m points from coreset Q
are moved into bucket B2 (unless, of course, bucket B2

is also full in which case the process is repeated). Algo-
rithm InsertPoint for inserting a point from the data
stream into the buckets is given in Figure 2.

At any point of time, it is possible to compute a
coreset of size m for all the points in the data stream
that we have seen so far. For this purpose, we compute
a coreset from the union of the at most mdlog2( nm ) + 2e
points stored in all the buckets B0, B1, . . . , BL−1 by
using the coreset tree construction and obtain the
desired coreset of size m.

5.2 Running Time and Memory Usage. Using
our implementation, a single merge-and-reduce step is
guaranteed to be executed in time O(dm2) (or even
in time Θ(dm logm), if we assume the used coreset
tree to be balanced). For a stream of n points, d nme
such steps are needed. The amortized running time of
all merge-and-reduce steps is at most O(dnm). The
�nal merge of all buckets to obtain a coreset of size m
can be done in time O(dm2 log n

m ). Finally, algorithm
k-means++ is executed �ve times on an input set of
size m, using time Θ(dkm) per iteration. Obviously,
algorithm StreamKM++ uses at most Θ(dm log n

m )
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memory units. Hence, we obtain a low dependency on
the dimension d and our approach is suitable for high-
dimensional data.

Of course, careful consideration has to be given
to the choice of the coreset size parameter m. Our
experiments show that a choice of m = 200k is su�cient
for a good clustering quality without sacri�cing too
much running time.

6 Empirical Evaluation

We conducted several experiments on di�erent datasets
to evaluate the quality of algorithm StreamKM++.1

A description of the datasets can be found in the next
subsection. The computation on the biggest dataset,
which is denoted by BigCross, was performed on a
DELL Optiplex 620 machine with 3 GHz Pentium
D CPU and 2 GB main memory, using Linux 2.6.9
kernel. For all remaining datasets, the computation was
performed on a DELL Optiplex 620 machine with 3 GHz
Pentium D CPU and 4 GB main memory, using Linux
2.6.18 kernel.

We compared algorithm StreamKM++ with two
frequently used clustering algorithms for processing
data streams, namely with algorithm BIRCH [16] and
with a streaming variant of the local search algorithm
given in [4, 9] which we call StreamLS. On the
smaller datasets, we also compared our algorithm with
a classical implementation of Lloyd's k-means algorithm
[12], using initial seeds either uniformly at random
(algorithm k-means) or according to the non-uniform
seeding from [1] (algorithm k-means++). All algorithms
were compiled using g++ from the GNU Compiler
Collection on optimization level 2. The quality measure
for all experiments was the sum of squared distances, to
be referred as costs of the clustering.

6.1 Datasets. Since synthetical datasets (like Gaus-
sian distributed points near some uniformly distributed
centers in Rd) are typically easy to cluster, we use real-
world datasets to obtain practically relevant results.
Our main source for data was the UCI Machine Learning
Repository [2] (datasets Covertype2, Census 1990, In-
trusion3, and Spambase) as well as dataset Tower4 from
[8]. To test our algorithm on really huge datasets, we
created the cartesian product of the Tower and Cover-

1The sourcecode, the documentation, and the datasets of
our experiments can be found at http://www.cs.upb.de/en/

fachgebiete/ag-bloemer/research/clustering/streamkmpp/
2Copyright by Jock A. Blackard, Colorado State University
3
Intrusion dataset is part of the kddcup99 dataset.

4
Tower dataset was contributed by Gereon

Frahling and is available for free download at:
http://homepages.uni-paderborn.de/frahling/coremeans.html

data points dimension type

Spambase 4 601 57 �oat
Intrusion 311 079 34 int, �oat
Covertype 581 012 54 int
Tower 4 915 200 3 int
Census 1990 2 458 285 68 int
BigCross 11 620 300 57 int

Table 1: Overview of the datasets

type dataset. We used a 1.5 GB sized subset of the
cartesian product with 11 620 300 data points at 57 at-
tributes, referred as the BigCross dataset in this paper.
The size and dimensionality of the datasets is summa-
rized in Table 1.

6.2 Parameters of the Algorithms. In the fol-
lowing, we describe the experimental environment for
the two streaming algorithms BIRCH and StreamLS.
For algorithm BIRCH we set all parameters as recom-
mended by the authors of BIRCH except for the mem-
ory settings. Like the authors in [9], we observed that
the CF-Tree had less leaves than it was allowed to use.
Therefore, from time to time, BIRCH did not produce
the correct number of centers, especially when the num-
ber of clusters k was high. For this reason, the memory
settings had to be manually adjusted for each individ-
ual dataset. The complete list of parameters is given
in Appendix H. Second, for algorithm StreamLS the
size of the data chunks used by the streaming method
from [4] is set equal to the coreset size m = 200k of
algorithm StreamKM++. We have to point out that,
due to its nature, algorithm StreamLS does not always
compute the prespeci�ed number of cluster centers. In
such a case, the di�erence varies from dataset to dataset
and, usually, lies within a 20% margin from the speci�ed
number.

6.3 Comparison with BIRCH and StreamLS.

Due to the randomized5 nature of the algorithms
StreamKM++ and StreamLS, ten experiments were
conducted for both algorithms and for each �xed k. For
BIRCH, a single run was used, since it is a determin-
istic algorithm. We conducted the experiments on the
four larger datasets, i.e., the datasets Covertype, Tower,
Census 1990, and BigCross. The average running times
and cost of the clusterings are summarized in Figure 3.
The interested reader can �nd the concrete values of all
experiments in the appendix.

In our experiments, algorithm BIRCH had the
best running time of all algorithms. However, this

5We used the Mersenne Twister PRNG [14].
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Figure 3: Experimental results for Covertype, Tower, Census 1990, and BigCross datasets
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Figure 4: Experimental results for Spambase and Intrusion datasets

comes at the cost of a high k-means clustering cost.
In terms of the sum of squared distances, algorithms
StreamKM++ and StreamLS outperform BIRCH by
up to a factor of 2. Furthermore, as already mentioned,
one drawback of algorithm BIRCH is the need of
adjusting parameters manually to obtain a clustering
with the desired number of centers.

By comparing StreamKM++ and StreamLS, we
observed that the quality of the clusterings were on
a par. More precisely, the absolute value of the cost
of both algorithms lies within a ±5% margin from
each other. In contrast to algorithm StreamLS,
the number of centers computed by our algorithm
always equals its prespeci�ed value. Hence, the cost
of clusterings computed by algorithm StreamKM++

tends to be more stable than the costs computed by
algorithm StreamLS (see Table 2, for a complete
overview of the standard deviations of our experiments
see Appendix G). In terms of the running time, it
turns out that our algorithm scales much better with
increasing number of centers than algorithm StreamLS

does. While for about k ≤ 10 centers StreamLS

is sometimes faster than our algorithm, for a larger
number of centers our algorithm easily outperforms
StreamLS. For k = 100 centers on the dataset Tower,

the running times of both algorithms di�ered by a factor
of about 30.

Overall, we conclude that, if the �rst priority is the
quality of the clustering, then our algorithm provides
a good alternative to BIRCH and StreamLS, in
particular, if the number of cluster centers is large.

6.4 Comparison with k-means and k-means++.
We also compared the quality of StreamKM++ with
classical non-streaming k-means algorithms. Because of
their popularity, we have chosen the k-means algorithm
and the recent k-means++ as competitor. These algo-
rithms are designed to work in a classical non-streaming
setting and, due to their need for random access on the
data, are not suited for larger datasets. For this rea-
son, we have run k-means only on the two smallest
datasets Spambase and Intrusion, while k-means++ has
been evaluated only on the four smaller datasets (Cover-
type, Tower, Spambase, and Intrusion). For each �xed
k, we conducted ten experiments. The results of these
experiments are summarized in Figure 4 (and, in part,
in Figure 3). Please note that the results for dataset In-
trusion are on a logarithmic scale. The concrete values
of all experiments can be found in the appendix.

As expected, k-means++ is clearly superior to the
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k = 20 running time cost
StreamKM++ StreamLS k-means++ StreamKM++ StreamLS k-means++

Spambase 1.09 - 3.88 6.49 ·105 - 1.73 ·106

Intrusion 3.22 - 98.11 8.54 ·1010 - 3.70 ·1011

Covertype 6.93 18.18 1249.18 1.08 ·109 1.03 ·1010 9.17 ·108

Tower 0.58 14.11 1594.76 7.31 ·106 2.71 ·107 4.39 ·107

Census 1990 5.16 54.30 - 3.66 ·106 3.14 ·106 -
BigCross 11.49 162.44 - 2.46 ·1010 3.36 ·1011 -

Table 2: Standard deviation for k = 20

classical k-means algorithm both in terms of qual-
ity and running time. Comparing k-means++ with
our streaming algorithm, we �nd that on all datasets
the quality of the clusterings computed by algorithm
StreamKM++ is on a par with or even better than
the clusterings obtained by algorithm k-means++. We
conjecture that this is due to the fact that in the last
step of our algorithm we run the k-means++ algorithm
�ve times on the coreset and choose the best clus-
tering result obtained this way. On the other hand,
for the experiments with the k-means++ algorithm,
we run the k-means++ algorithm only once in each
repetition of the experiment. However, the running
time of k-means++ is only comparable with algorithm
StreamKM++ for the smallest dataset Spambase. Even
for moderately large datasets, like dataset Covertype,
we obtain that algorithm StreamKM++ is orders of
magnitude faster than k-means++. We conclude that
algorithm k-means++ should only be used if the size of
the dataset is not too large. For larger datasets, algo-
rithm StreamKM++ computes comparable clusterings
in a signi�cantly improved running time.
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A Proof of Lemma 3.2

Let C = {c1, . . . , ck} be an optimal solution to the
Euclidean k-means problem for P with |P | = n, i.e.,
cost(P,C) = optk(P ). We consider an exponential grid
around each ci. The construction of this grid follows
the one from [11].

Let R = 1
noptk(P ) and, for j = 1, 2, . . . , dlog(n)+2e

and for each ci, let Qij denote the axis-parallel square

centered at ci with side length
√

2jR. We de�ne
recursively Ui0 = Qi0 and Uij = Qij \Qi,j−1 for j ≥ 1.
Obviously, each p ∈ P is contained within a Uij , since
otherwise we would have

d2(p, C) >
1
4

2dlog(n)+2eR

≥ optk(P ) ,

which is a contradiction.
For each i, j individually, we partition Uij into small

grid cells with side length
√

γ
9d2jR. For each grid cell

which contains points from P , we select a single point
from within the cell as its representative. Let G be the
set of all these representatives. Note that there are at
most ( 9d

γ )
d
2 kdlog(n)+2e grid cells and, hence, |G| ≤ m.

Let gp denote the representative of p ∈ P in G.
Then, we have

optm(P ) ≤ cost(P,G)

≤
∑
p∈P

d2
(
p, gp

)
.

Observe that, for p ∈ Ui0, we have d2
(
p, gp

)
≤ γ

9R.
On the other hand, for p ∈ Uij with j ≥ 1, we �nd
d2(p, C) ≥ 2j−3R. Therefore, in this case, we have

d2
(
p, gp

)
≤ γ

9
2jR ≤ 8γ

9
d2(p, C) .

We obtain

optm(P ) ≤ n
γ

9
R+

8γ
9

∑
p∈P

d2(p, C)

=
γ

9
optk(P ) +

8γ
9
optk(P ) = γoptk(P ).

�

B Proof of Proposition 3.1

Assume d(p, C) ≤ d(qp, C). Let cp denote the element
from C closest to p. By triangle inequality, we have

d(qp, C) ≤ d(qp, cp)
≤ d(p, cp) + d(p, qp)
≤ (1 + ε)d(p, C) .

Hence, for the squared distances, we obtain

d2(qp, C) ≤ (1 + ε)2d2(p, C) ≤ (1 + 3ε)d2(p, C) .

and we have d2(qp, C)− d2(p, C) ≤ 3εd2(p, C).
Now assume d(qp, C) < d(p, C). Let cs denote

the element from C closest to qp. Again, by triangle
inequality, we have

d(p, C) ≤ d(p, cs)
≤ d(qp, cs) + d(p, qp)
≤ d(qp, C) + εd(p, C) ,

since p ∈ P ′. Therefore, (1 − ε)d(p, C) ≤ d(qp, C). For
the squared distances, we obtain

d2(qp, C) ≥ (1− 2ε+ ε2)d2(p, C)
> (1− 2ε)d2(p, C) .

Hence, we get

d2(p, C)− d2(qp, C) ≤ 2εd2(p, C)
< 3εd2(p, C) .

�

C Proof of Proposition 3.2

Since d(p, qp) > εd(p, C) and ε ≤ 1, we have∣∣d2(p, C)− d2(qp, C)
∣∣

=
∣∣d(p, C)− d(qp, C)

∣∣ · (d(p, C) + d(qp, C)
)

≤ d(p, qp) ·
(
2d(p, C) + d(p, qp)

)
≤

(2
ε

+ 1
)
d2(p, qp) ≤

3
ε

d2(p, qp).

�
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D Numerical Values for Spambase and Intrusion

running time (in sec) cost
dataset k StreamKM++ k-means++ k-means StreamKM++ k-means++ k-means

Spambase 10 3.06 3.57 19.02 7.85 ·107 8.71 ·107 1.70 ·108

20 7.04 8.22 59.85 2.27 ·107 2.45 ·107 1.53 ·108

30 16.45 19.05 88.8 1.24 ·107 1.34 ·107 1.51 ·108

40 28.93 20.54 132.03 8.64 ·106 9.01 ·106 1.49 ·108

50 44.48 25.9 182.08 6.29 ·106 6.68 ·106 1.48 ·108

Intrusion 10 74.1 50.6 408.8 1.27 ·1013 1.75 ·1013 9.52 ·1014

20 103.1 262.4 2711.3 1.26 ·1012 1.55 ·1012 9.51 ·1014

30 143.8 1973.3 4389.1 4.29 ·1011 4.96 ·1011 9.51 ·1014

40 197.6 1257.0 10733.7 1.95 ·1011 2.25 ·1011 9.50 ·1014

50 250.5 1339.5 14282.0 1.11 ·1011 1.29 ·1011 9.50 ·1014

Table 3: Average running time and average cost for the experiments on Spambase and Intrusion

E Numerical Values for Covertype and Tower

running time (in sec)
dataset k StreamKM++ StreamLS BIRCH k-means++

Covertype 10 245 147 44 3389
20 297 460 44 5160
30 378 1027 44 14933
40 454 1773 44 16713
50 617 2588 44 25803

Tower 20 157 679 77 2960
40 168 1989 78 6902
60 187 3849 77 11247
80 211 6212 77 19206
100 248 8946 77 17161

Table 4: Average running time for the experiments on Covertype and Tower
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cost
dataset k StreamKM++ StreamLS BIRCH k-means++

Covertype 10 3.43 ·1011 3.42 ·1011 4.24 ·1011 3.42 ·1011

20 2.06 ·1011 2.05 ·1011 2.97 ·1011 2.03 ·1011

30 1.57 ·1011 1.56 ·1011 1.89 ·1011 1.54 ·1011

40 1.31 ·1011 1.32 ·1011 1.59 ·1011 1.29 ·1011

50 1.15 ·1011 1.18 ·1011 1.41 ·1011 1.13 ·1011

Tower 20 6.24 ·108 6.16 ·108 9.26 ·108 6.51 ·108

40 3.34 ·108 3.34 ·108 4.75 ·108 3.30 ·108

60 2.43 ·108 2.37 ·108 3.89 ·108 2.40 ·108

80 1.95 ·108 1.91 ·108 3.47 ·108 1.92 ·108

100 1.65 ·108 1.63 ·108 2.98 ·108 1.63 ·108

Table 5: Average cost for the experiments on Covertype and Tower

F Numerical Values for BigCross and Census 1990

running time (in sec) cost
dataset k StreamKM++ StreamLS BIRCH StreamKM++ StreamLS BIRCH

BigCross 15 5486 6239 1006 5.05 ·1012 5.23 ·1012 6.69 ·1012

20 5738 10502 998 4.15 ·1012 4.23 ·1012 4.85 ·1012

25 5933 15780 996 3.59 ·1012 3.54 ·1012 4.45 ·1012

30 6076 22779 996 3.18 ·1012 3.18 ·1012 3.83 ·1012

Census 1990 10 1571 631 271 2.48 ·108 2.40 ·108 3.98 ·108

20 1724 2362 271 1.90 ·108 1.85 ·108 3.17 ·108

30 1839 5504 271 1.59 ·108 1.53 ·108 2.94 ·108

40 1956 10054 272 1.41 ·108 1.35 ·108 2.78 ·108

50 2057 11842 272 1.28 ·108 1.24 ·108 2.73 ·108

Table 6: Average running time and average cost for the experiments on BigCross and Census 1990
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G Standard Deviation of our Experiments

running time (in sec)
dataset k StreamKM++ StreamLS k-means++ k-means

Spambase 10 0.29 - 1.5 3.33
20 1.09 - 3.88 6.36
30 1.52 - 11.27 17.61
40 6.56 - 6.97 26.95
50 6.59 - 12.83 68.1

Intrusion 10 0.68 - 40.81 58.84
20 3.22 - 98.11 499.7
30 6.07 - 1263.44 345.6
40 24.91 - 563.20 1306.2
50 31.58 - 706.00 1190.78

Covertype 10 0.88 2.43 2295.85 -
20 6.93 18.18 1249.18 -
30 14.15 52.14 9653.06 -
40 14.02 97.64 6838.93 -
50 39.28 123.28 12231.98 -

Tower 20 0.58 14.11 1594.76 -
40 1.79 50.83 2085.12 -
60 3.96 58.27 3656.87 -
80 7.95 122.65 5162.60 -
100 11.34 315.31 1795.07 -

Census 1990 10 2.04 9.08 - -
20 5.16 54.3 - -
30 5.38 98.03 - -
40 23.31 193.00 - -
50 17.43 533.39 - -

BigCross 15 10.49 93.6 - -
20 11.49 162.44 - -
25 15.69 226.38 - -
30 16.66 200.68 - -

Table 7: Standard deviation of the running time of our experiments
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cost
dataset k StreamKM++ StreamLS k-means++ k-means

Spambase 10 2.05 ·106 - 9.57 ·106 1.06 ·106

20 6.49 ·105 - 1.73 ·106 8.78 ·104

30 3.14 ·105 - 9.51 ·105 8.81 ·104

40 1.93 ·105 - 5.31 ·105 3.42 ·106

50 1.49 ·105 - 2.47 ·105 2.91 ·106

Intrusion 10 1.39 ·1012 - 6.61 ·1012 3.09 ·1011

20 8.54 ·1010 - 3.70 ·1011 8.20 ·109

30 3.13 ·1010 - 6.85 ·1010 2.54 ·1010

40 7.03 ·109 - 3.25 ·1010 1.53 ·108

50 6.01 ·109 - 1.61 ·1010 6.82 ·108

Covertype 10 2.47 ·109 2.70 ·1010 3.63 ·109 -
20 1.08 ·109 1.03 ·1010 9.17 ·108 -
30 1.49 ·109 6.61 ·109 6.12 ·108 -
40 8.38 ·108 5.63 ·109 6.64 ·108 -
50 5.68 ·108 3.90 ·109 2.92 ·108 -

Tower 20 7.31 ·106 2.71 ·107 4.39 ·107 -
40 1.85 ·106 1.65 ·107 4.37 ·106 -
60 1.52 ·106 1.55 ·107 1.61 ·106 -
80 1.03 ·106 9.63 ·106 1.54 ·106 -
100 7.73 ·105 1.03 ·107 1.17 ·106 -

Census 1990 10 5.02 ·106 1.45 ·105 - -
20 3.66 ·106 3.14 ·106 - -
30 1.61 ·106 9.34 ·105 - -
40 1.21 ·106 8.13 ·105 - -
50 1.01 ·106 6.80 ·105 - -

BigCross 15 3.22 ·1010 1.75 ·1011 - -
20 2.46 ·1010 3.36 ·1011 - -
25 1.86 ·1010 1.76 ·1011 - -
30 1.94 ·1010 1.29 ·1011 - -

Table 8: Standard deviation of the cost of our experiments
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H Parameters of Algorithm BIRCH

Covertype Tower Census 1990 BigCross

p = 10 5 5 25

Table 9: Manually adjusted TotalMemSize percentage for algorithm BIRCH

parameter value

CorD 0
TotalMemSize (in bytes) p% of dataset size
TotalBu�erSize (in bytes) 5% of TotalMemSize
TotalQueueSize (in bytes) 5% of TotalMemSize
TotalOutlierTreeSize (in bytes) 5% of TotalMemSize

WM�ag 0
W vector (1,1,. . . ,1)
M vector (0,0,. . . ,0)

PageSize (in bytes) 1024

BDtype 4
Ftype 0
Phase1Scheme 0
RebuiltAlg 0
StatTimes 3
NoiseRate 0.25

Range 2000

CFDistr 0
H 0
Bars vector (100,100,. . . ,100)

K number of clusters k
InitFt 0
Ft 0
Gtype 1
GDtype 2
Qtype 0
Re�neAlg 1
NoiseFlag 0
MaxRPass 1

Table 10: List of parameters for algorithm BIRCH

187 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.




