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Abstract

An established method to detect concept drift in data

streams is to perform statistical hypothesis testing on the

multivariate data in the stream. Statistical decision theory

offers rank-based statistics for this task. However, these

statistics depend on a fixed set of characteristics of the

underlying distribution. Thus, they work well whenever the

change in the underlying distribution affects these properties

measured by the statistic, but they perform not very well,

if the drift influences the characteristics caught by the test

statistic only to a small degree. To address this problem, we

present three novel drift detection tests, whose test statistics

are dynamically adapted to match the actual data at hand.

The first one is based on a rank statistic on density estimates

for a binary representation of the data, the second compares

average margins of a linear classifier induced by the 1-norm

support vector machine (SVM), and the last one is based

on the average zero-one or sigmoid error rate of an SVM

classifier. Experiments show that the margin- and error-

based tests outperform the multivariate Wald-Wolfowitz test

for concept drift detection. We also show that the tests

work even if the drift is gradual in nature and that the new

methods are faster than the Wald-Wolfowitz test.

1 Introduction

Learning with concept drift poses an additional diffi-
cult challenge to existing learning algorithms. Instead
of treating all training examples equally, a concept drift
aware system must decide to what extent some particu-
lar set of examples still represents the current concept.
After all, a recent concept drift might have made the
examples less relevant or even obsolete for classifier in-
duction. This concept drift detection problem is often
addressed by statistical methods. More formally, the
problem can be framed as follows: Given a sequence
of training examples, are the last n1 examples sampled
from a different distribution than the n2 preceding ones?
Depending on the answer to this question, the learning
algorithm can then incorporate the examples at hand
to a larger or smaller extent in the generation of a clas-
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sifier. Statistical decision theory has come up with a
broad range of established methods that can be used
for this purpose. These methods typically compute a
statistic that catches the similarity between the two ex-
ample sets. The value of the statistic is then compared
to the expected value under the null hypothesis that
both sets are sampled from the same distribution. The
resulting p-value can be seen as a measure of to what
extent concept drift has happened. In order to be accu-
rate, these statistical tests need to extract as much in-
formation as possible from the two samples. Sometimes
this is done by building the minimum spanning tree of a
complete graph that encodes the similarity between ex-
amples in the two sets [8], sometimes nearest neighbor
methods are applied to compute the statistic [18], and
some approaches require a complete matrix of dissimi-
larity measures between all examples as determined by
a kernel [10].

It must be noted, though, that it is impossible to
come up with a universally best test statistic. This
is because for every test statistic one can construct
a pair of distributions, which differ from each other
to some degree, but lead to the same distribution of
the test statistic. For instance, the multivariate Wald-
Wolfowitz test [8] is based on the differences between
the data points as measured by a metric. Thus,
a concept drift, which keeps the distances constant
(such as certain rotations) can not be detected by this
test. The question on whether or not a particular
test works well in a particular setting depends on the
match of the applied test statistic with the underlying
distribution. In the following we propose and evaluate
three new methods, which adjust the test statistic
depending on the actual data. This ensures that the
test statistic captures the most important properties of
the underlying distributions and adjusts itself well in
a broad range of settings. The first method is based
on density estimation with a binary representation of
the data, the second uses a 1-norm SVM in a PAC-
Bayesian framework, while the third one is based on
the error rate of a linear classifier induced by a SVM.
As a benchmark with high computational complexity,
we use the Wald-Wolfowitz test, which is based on
the minimum spanning tree of the complete similarity
graph. The test has been shown to work very well in
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empirical studies [10], but it requires the computation
of a new minimum spanning tree for each new example.

Another consideration is the time complexity of the
tests. The kernel-based tests in [10], for instance, have
at least quadratic runtime complexity with regard to
training set size. This makes them unsuitable for typical
data stream applications such as internet transaction
monitoring, stock price prediction, or object recognition
in video data, where the learning system is expected
to work in an online fashion. In these settings the
learning system is given new examples in short time
intervals and it is asked to update its current model
without spending too much time. Costly computations
are therefore not possible. In the following we also
investigate the trade-off between accuracy and time
complexity of concept drift detection with statistical
tests in the online setting. In particular, we are
interested in whether simple statistics based on averages
over the data points can compete with computationally
more complex statistics such as rank-based measures.

The paper is organized as follows. We start with a
short overview of related work in Section 2 before we
present the evaluated concept drift detection methods
in Section 3. These methods are then evaluated empiri-
cally in Section 4. A short conclusion is given in Section
5. The Appendix contains the proofs of the main theo-
rems.

2 Related Work

Learning with concept drift has been the subject of
many studies. We refer to the survey by Tsymbal
[20] for a short overview and pointers to the relevant
literature. On the theoretical side, early investigations
extended results from computational learning theory to
relate the strength of concept drift, the hypothesis space
complexity and the expected prediction error [14, 11].
On the practical side, early approaches such as the one
by Widmer et al. [23] often used heuristics and a sliding
window to gradually adjust the generated classifier to
the current concept. Later approaches more often
applied statistical principles, such as the leave-one-out
bound [13] to measure and rate concept drift. Ensemble-
based methods adjust the weights of the base classifiers
instead of modifying a classifier, see e.g. [22, 19].

The task of concept drift detection can be framed as
a statistical hypothesis test with two samples and mul-
tivariate data. There is quite some work on such prob-
lems in the statistical literature. Most prominently, a
study by Friedman and Rafsky [8] extended the Wald-
Wolfowitz and the Smirnov tests towards the multivari-
ate setting. Later approaches are based on nearest-
neighbor analyses [18] or distances between density es-
timates [1]. Most recently, statistics based on maxi-

mum mean discrepancy for universal kernels have be-
come popular [10]. There is also a range of statistical
work on abrupt change detection, see e.g. [3, 6].

The methods for concept drift detection proposed
in this paper are related to the work by Hido et al.
[12]. Their virtual classifier approach assigns positive
and negative class labels to the instances depending
on which sample they stem from and then induces a
classifier from these labeled examples. While this is
similar to the approach we take for the SVM-based
statistics, their study is focused more on drift analysis
rather than drift detection and the method is based on
a costly cross-validation procedure that is not practical
for data stream settings. Finally, our CNF based test
is somewhat related to work by Vreeken et al. [21],
where itemset mining techniques are used for estimating
the dissimilarity between two samples. The technique
to identify concept drift locations by finding peaks in
sequences of p-values can be found in a similar way
in work by Gama et al. [9]. Finally, there is also
research on machine learning based methods in outlier
and anomaly detection [4, 24].

3 Concept Drift Detection

Let us frame the problem of concept drift detection
and analysis more formally. We are given a continuous
stream of examples x1, x2, . . .. Each example is an
m-dimensional vector in some pre-defined vector space
X = Rm. At every time point p we split the examples
in a set X of n recent examples and a set X containing
the n examples that appeared prior to those in X. We
would now like to know whether or not the examples
in X were generated by the same distribution as the
ones in X. The standard tools for drift detection
are methods from statistical decision theory. These
methods usually compute a statistic from the available
data, which is sensitive to changes between the two
sets of examples. The measured values of the statistic
are then compared to the expected value under the
null hypothesis that both samples are from the same
distribution. The resulting p-value can be seen as a
measure of the strength of the drift. A good statistic
must be sensitive to data properties that are likely
to change by a large margin between samples from
differing distributions. This means it is not enough
to look at means or variance-based measures, because
distributions can differ significantly even though mean
or variance remain in the same range. Since they
are also sensitive to higher-order moments, rank-based
measures such as the Mann-Whitney or the Wald-
Wolfowitz statistics are successful in nonparametric
drift detection.

Unfortunately, rank-based statistics for multivari-
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ate data often require costly computations. The Wald-
Wolfowitz and the Smirnov test, for example, require
the computation of the minimum spanning tree of a
complete graph with n+n vertices. In the following, we
present and evaluate three different strategies that aim
at drift detection based on statistics that are easier to
compute. In particular, we follow the lead of [12] and
re-use methods from supervised machine learning and
statistical learning theory to design and analyze suit-
able statistics for drift detection.

3.1 A CNF Density Estimation Test The first
method is based on density estimation on a binary
representation of the data. We start by discretizing
the continuous attributes in the data sets into a fixed
set of bins. We then assign a binary feature to each of
these bins. With this, each example is represented by an
m′-dimensional feature vector of binary (i.e. Boolean)
features. Let A denote the set of the m′ Boolean
attributes and Cl := {A ⊂ A||A| = l} be the set of
all feature-subsets of size l. Given an example x and
a subset A we say that A covers x, if at least one
feature in A is set to true by the example x. This is
the same as demanding that the clause a1 ∨ . . . ∨ ak is
satisfied for the subset A = {a1, . . . , ak}. Let Ai :=
{A ∈ Cl|A covers x1 ∧ . . . ∧ A covers xi} denote the set
of subsets that cover all examples x1, . . . , xi observed
on or before time step i. In other words, the set Ai
contains all clauses that are satisfied by the examples
x1, . . . , xi.

We now proceed as follows: we split the sequence of
examples in three parts. The first ṅ examples are stored
in the set Ẋ, the next n examples are saved in X and
the newest n examples are kept in X. We would now
like to find out whether the examples in X are taken
from the same distribution as the ones in Ẋ ∪ X. To
do so, we compute the set Aṅ := {A ∈ Cl|A covers x1 ∧
. . . ∧A covers xṅ} of clauses, which are consistent with
all examples in Ẋ. Then, for each example xi from X
and X, let ci := |{A ∈ Aṅ|A does not cover xi}| denote
the number of clauses which do not cover example xi. If
the examples in X are taken from the same distribution
as the ones in X (and Ẋ), the cis should be small and
not change too much, because most inconsistent clauses
were already removed during the construction of Aṅ. If,
however, X is sampled from a different distribution as
X, the ci for xi ∈ X should be much larger than the
ones in X. To measure the significance of this difference,
we apply a Mann-Whitney test on the sequence of cis.
That is, we sort the ci by size and add up the ranks of
the examples for each sample. The difference between
these sums of ranks can then be used to compute a
p-value. We call this method the CNF test, because

it essentially learns a Boolean formula in conjunctive
normal form (CNF) from the first part of the data and
evaluates the number of clauses that are satisfied for the
two samples X and X. It can be computed efficiently
in the online setting, because Aṅ and the ci can be
updated easily whenever a new example is observed.
For the experiments in Section 4, we choose l = 2, so
that the system collects all consistent clauses with up
to two literals.

3.2 A PAC-Bayesian Margin Test The second
method is based on a PAC-Bayesian analysis of a
linear classifier induced on X and evaluated on X.
Assume we have a fixed function f : X → [−1; 1].
Applying such a function, we can compute the two
sequences f(x1), . . . , f(xn) and f(x1), . . . , f(xn) and
use any established statistical test (Mann-Whitney,
etc.) on the two sequences to compute a p-value
under the null hypothesis that the two sequences were
generated by the same distribution. Ideally, we would
like to use a function f that is sensitive to the changes
between the two data samples. Unfortunately, it is not
valid to select f based on the two data samples X and X
and apply a standard two sample test. This is because
f depends on the whole data set X∪X and the function
values f(x1), . . . , f(xn), f(x1), . . . , f(xn) are thus not
independent from each other. However, it is well known
from statistical learning theory that the skew introduced
by selecting f depending on the data set is not too
large, if one chooses f to come from a rather restricted
class of functions. In the following we therefore restrict
ourselves to the class of linear functions f : x 7→ wTx,
where w is a weight vector with

∑m
j=1 |wj | = 1. If we

choose f from this class, the following version of the
PAC-Bayesian theorem can be applied to compute p-
values. For ease of notation, we define n := n + n.
The Kullback-Leibler divergence between two vectors is
given by D(w‖v) :=

∑
i wi

lnwi

ln vi

Theorem 3.1. Let v ∈ [0, 1]m with
∑m
i=1 vi = 1 be

arbitrary, but independent from the two samples. Let
d := 1

n

∑n
i=1 w

Txi and d := 1
n

∑n
i=1 w

Txi and define

n′ := nn
n+n . Then for any w ∈ [0, 1]m with

∑m
i=1 wi = 1

(where w may depend on the samples), the random
variable D = d− d fulfills the following inequality:

Pr[D ≥ t] ≤ n′e−(0.5n′−1)t2+D(w‖v)

The proof is in the Appendix. The bound can be applied
as follows. First, one selects a “prior” weight vector
v that assigns larger weights to attributes that are
assumed to be relevant. Then, we observe the two data
sets and choose a vector w that assigns large weights to
attributes that distinguish well between X and X. The
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p-value can then be computed from the bound in the
theorem. It depends on the difference between “prior”
and “posterior” knowledge as encoded by D(w‖v) and
the empirical value of the random variable D. Since the
bound is valid for any choice of w, we can also choose
a w which maximizes D subject to the constraint that∑m
i=1 wi = 1. Thus, for our purposes the best w can

be obtained by solving the following constrained linear
program:

w = argmax
w∈[0,1]m

1
n

n∑
i=1

wTxi −
1
n

n∑
i=1

wTxi

subject to
m∑
i=1

wi = 1

Determining such a w is essentially equivalent to com-
puting the 1-norm SVM [25] with a linear loss function
on a training set, which contains the examples in X
labeled with a negative class label and the examples
in X labeled with a positive label. It is easy to see
that the optimal w for this optimization problem as-
signs full weight to the single attribute, whose average
differs most between X and X. For the experiments in
Section 4, we therefore apply a 1-norm SVM with the
hinge loss instead of the linear loss. This ensures that
the weights are assigned to a larger number of attributes
and that the D is based more on the instances near the
decision boundary.

Due to its generality (it has to hold for all distri-
butions and all possible w), the bound can be loose es-
pecially for data sets with many features. For concept
drift detection, however, we are more interested in the
change of the p-value over different samples rather than
its absolute value. The experiments in section 4 indi-
cate that the random variable D can indeed be applied
to detect drift reliably. We call the described method
the margin method, because D depends essentially on
the average of margins wTx of the examples x.

Note that the original version of theorem 3.1 works
only for weight vectors whose components are positive.
To extend the result towards the general case where
w ∈ [−1, 1]m (i.e. w can also contain negative weights),
one can work with a 2m-dimensional weight vector
w′ := ([w1]+, . . . , [wm]+, [w1]−, . . . , [wm]−)T and use
a modified data matrix X ′ := (X,−X) with twice
the number of columns. Here, [x]+ := max{x, 0} is
defined to be zero for negative weights and |x| otherwise.
Likewise, [x]− := max{0,−x} is zero for positive values
and |x| otherwise. It is easy to see that the margin of
the original weight vector w on an original instance x
is equal to the margin of the new weight vector on a
duplicated instance: wTx = w′

T
x′.

3.3 Two Tests Based on Error Rates The third
method is also based on a SVM, but it uses the error
rate rather than the average margin. We give two test
statistics. The first one is based on the zero-one loss,
the second one on the sigmoid loss function. In both
cases we again build a training set by assigning the
class label +1 to all instances in X and the class label
−1 to all instances in X. Then, we apply a traditional
SVM to learn a linear classifier w from that training
set. However, instead of using the margin wTx of an
example x as a test statistic, we apply the zero-one loss
lz(wTx) or the sigmoid loss ls(wTx):

lz(x) :=

{
0 if x ≥ 0
1 otherwise

ls(x) := 1− 1
1 + e−px

Here, p > 0 is a free parameter, which controls the
smoothness of the sigmoid loss. The sigmoid loss can be
seen as a smooth variant of the zero-one loss. Whereas
the zero-one loss is non-continuous at x = 0, the sigmoid
loss decreases smoothly from one to zero. The larger a
value for p is chosen, the more ls resembles the zero-
one loss. However, since the sigmoid loss is always
differentiable, it is easier to analyze theoretically and
may thus give rise to better error bounds.

Using these two loss functions we can compute the
loss for every example x and compare the average loss
in X with the average loss in X. If X and X are drawn
from the same distribution, the average loss should not
differ too much between the two samples. The following
theorem allows the computation of a p-value for the
zero-one loss.

Theorem 3.2. Consider the case where n := n = n.
Let e := 1

n

∑n
i=1 lz(w

Txi) and e := 1
n

∑n
i=1 lz(w

Txi).
Then for any w ∈ Rm (possibly depending on X and X),
the following holds for the random variable E = e− e:

P (E ≥ t) ≤ 2

(
m+1∑
i=0

(
n

i

))
e−

1
8 t

2n

The proof is based on VC-dimension arguments. For the
sigmoid loss, one can resort to Rademacher penalization
techniques:

Theorem 3.3. Consider the case where n := n =
n and ‖x‖∞ ≤ 1 for all examples x. Let e :=
1
n

∑n
i=1 ls(w

Txi) and e := 1
n

∑n
i=1 ls(w

Txi). Then for
any w ∈ Rm with ‖w‖1 ≤ 1 (possibly depending on
X and X), the following holds for the random variable
E = e− e:

P (E ≥ t) ≤ e−(t−p
√

m
n )2n
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Both proofs are in the Appendix. For the experiments
in section 4, we use a traditional SVM to induce a
linear classifier w that separates the examples in X well
from those in X. We choose p = 100 for the sigmoid-
loss based statistic. Again, the bounds are generally
too loose to yield meaningful p-values in most settings,
but analyzing E appears to work well in the empirical
experiments in section 4. We call the two methods the
zero-one error rate method and the sigmoid error rate
method, because they are based on the training error of
the SVM classifier induced on the two samples.

3.4 The Wald-Wolfowitz Test Finally, as an es-
tablished benchmark we make use of the multivari-
ate version of the Wald-Wolfowitz test as described
in Friedman et al. [8]. The algorithm proceeds in
four steps. First, it computes the dissimilarity mea-
sure d(xi, xj) := ‖xi − xj‖2 for every pair of examples
(xi, xj). In the second step, it constructs a complete
graph, where each vertex represents an example and
each edge is labeled with the dissimilarity between its
two adjacent vertices. Third, it computes the minimum
spanning tree (MST) for this complete graph. It is clear
that this tree contains n+n−1 edges. Finally, it removes
every edge between two vertices whose corresponding
examples stem from different samples. This partitions
the MST into a forest. The number of trees in this for-
est can be used as a statistic to compute a p-value. We
refer the reader to [8] for details.

4 Experiments

In this section we want to evaluate the usefulness
of the different approaches to concept drift detection
as outlined above. In particular, we would like to
investigate the following three questions.

1. How well do the described methods detect concept
drift?

2. Are the methods robust against noise, i.e. do they
detect drift, even though there is none?

3. Do the methods still work for more gradual transi-
tions from one distribution to the other?

We will also investigate the runtimes for the different
approaches.

In order to evaluate the methods’ ability to find
existing concept drifts, we apply them to a set of
benchmark datasets where the location of concept drift
is well known. We followed the approach pioneered in
[21] to generate drift detection datasets from a set of 27
UCI datasets [2] as follows. First, we order the examples
in the dataset by class label so that the most common
class label comes first, the second common second,

etc.. Then, we shuffle the examples randomly within
each class and remove the class label column. The
resulting data matrix contains the examples from the
most frequent class label first, followed by the examples
with the second most frequent class label. Obviously,
there is a concept drift in between these two parts.
The strength of the drift depends on how much the
two classes differ. One can easily make the drift more
gradual by introducing an area of overlap that contains
a random selection of both classes. For the experiments
below, we use only the concept drift between the most
frequent and the second most frequent class. Every class
contains at least 100 examples. The implementation of
the error-based method is based on LibSVM [5].

The five methods output sequences of p-values. A
small p-value suggests that a concept drift is likely,
whereas a large value indicates that a concept drift at
that location is unlikely. The absolute value of the p-
values depends on the underlying distributions, the used
test statistic and the structural errors introduced by the
bounding methods. So, it is difficult to compare these
absolute values directly. For our purposes, though, it is
not necessary to care about the absolute values. Since
we are mainly interested in finding the location of a
possible concept drift, we are looking for peaks rather
than certain absolute values. To detect the peaks in the
sequence of p-values, we proceed as follows. First, we
compute the logarithms of the p-values. This is sensible,
because the methods make use of bounds that are
essentially exponential in the number of examples in the
samples. It is thus way easier to detect the underlying
signal on a log-scale representation. Then, at point t,
we compute the average and standard deviation of all
(logarithmic) p-values outside of the window from t−n
to t+ n. This is because we want to exclude the actual
area where the drift occurs as it would influence the
mean and variance considerably. Finally, we compute
how many standard deviations the p-value at point t is
away from the average of the examples outside of the
drift detection window. If it is more than s standard
deviations away, the system signals the discovery of a
concept drift. Figure 1 gives an example of concept drift
detection by peak identification on the segment data set
for s = 5.

The results for the experiments on all data sets
with s = 5 are summarized in Table 1. A bullet (•)
in the table indicates that concept drift was detected
at approximately the right position. The left value in
each column is the difference (in standard deviations)
between the p-value at the correct concept drift location
and the average p-value over the whole dataset. The
right value is the difference (in standard deviations) of
the second best location. Since there is only one valid
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Figure 1: Results for segment data set. Horizontal lines indicate the mean and 5 stddev thresholds.
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dataset WW CNF Error (0/1) Error (sigmoid) Margin
anneal • 24.3 4.1 (5) • 31.7 3.6 (1) • 9.1 3.6 (1) 7.4 2.8 (0) • 24.1 3.6 (2)

balance-scale • 39.0 3.3 (0) • 10.1 3.3 (1) • 28.9 6.1 (1) • 10.2 3.4 (0) • 24.0 3.1 (0)
breast-w • 49.8 4.8 (2) • > 99 5.5 (1) • 24.6 4.3 (2) • 8.5 2.6 (1) • 54.5 3.8 (4)

car • 9.4 5.9 (5) • 75.3 6.0 (1) • 11.1 4.5 (3) • 6.6 3.3 (2) • 19.0 6.4 (1)
colic • 13.2 3.3 (0) • -0.4 3.1 (0) • 5.0 2.3 (0) • 6.0 2.2 (0) • 25.9 3.7 (0)

credit-a • 10.9 5.5 (1) 2.1 5.3 (2) • 11.0 3.6 (0) • 9.1 3.0 (0) • 51.6 5.2 (0)
credit-g 3.6 5.4 (2) • 1.3 6.0 (2) 3.6 2.8 (0) 4.1 2.2 (0) 4.9 4.0 (0)
diabetes • 3.5 3.5 (1) • 0.1 6.5 (1) • 8.6 5.5 (0) • 4.9 3.2 (0) • 9.0 4.9 (1)

haberman 0.8 4.4 (0) 1.0 2.8 (2) 0.8 3.7 (0) 1.1 3.3 (0) 1.4 2.4 (0)
heart-c • 41.7 3.8 (0) • 10.2 2.2 (0) • 10.5 2.7 (0) • 7.3 2.2 (0) • 27.3 2.5 (0)
heart-h • 16.4 2.9 (0) • 13.7 3.9 (0) • 8.8 2.8 (0) • 7.4 1.8 (0) • 24.7 3.3 (0)

heart-statlog • 12.1 3.5 (0) • 14.9 2.5 (0) • 14.8 3.5 (0) • 8.3 2.0 (0) • 8.6 2.8 (0)
ionosphere 17.5 4.0 (0) 8.3 3.2 (0) 10.3 3.3 (0) 5.7 2.8 (0) 10.0 4.1 (0)

kr-vs-kp • 20.1 6.4 (10) • 11.5 6.1 (5) • 10.7 3.6 (3) • 9.0 3.2 (3) • 11.0 6.5 (8)
letter • 37.5 5.1 (5) • > 99 4.4 (7) • 31.3 6.1 (6) • 13.0 3.2 (4) • 47.8 4.7 (6)

mfeat-morph • 40.2 3.3 (0) • > 99 2.8 (0) • > 99 3.3 (0) • 47.7 2.6 (0) • > 99 3.8 (0)
nursery • 35.0 6.4 (23) -0.3 7.3 (1) • 12.4 3.8 (1) • 7.5 2.8 (0) • 11.8 5.3 (11)

optdigits • 37.6 4.3 (2) • > 99 4.7 (3) • 10.2 3.4 (0) • 10.6 3.3 (0) • 79.2 5.1 (2)
page-blocks • 30.0 6.8 (22) • 22.4 4.6 (11) • 31.4 6.2 (11) • 10.9 3.4 (4) • 39.7 6.3 (23)

pendigits 42.1 5.6 (9) • > 99 5.0 (9) • 31.9 5.0 (2) • 12.7 3.0 (1) • 81.2 6.0 (10)
segment • 37.2 3.7 (1) • 50.7 3.9 (1) • 47.9 5.1 (1) • 15.9 2.8 (1) • 81.8 3.7 (3)

sick • 8.8 6.0 (13) • 7.2 6.5 (10) • 6.1 4.5 (3) • 4.7 3.6 (0) • 14.2 6.0 (7)
tic-tac-toe • 34.6 4.5 (0) -0.3 6.4 (0) • 14.2 3.6 (0) • 7.2 2.9 (0) • 13.9 3.6 (1)

vehicle • 36.8 5.3 (0) • 40.4 4.0 (0) • 42.3 5.2 (0) • 14.7 2.5 (0) • 40.8 2.8 (0)
vote 0.1 3.5 (1) • > 99 3.8 (0) • 15.6 3.0 (0) • 8.4 1.9 (0) • 60.3 2.8 (0)

waveform-5000 • 28.5 7.2 (17) • 13.3 5.2 (13) • 9.1 3.8 (1) • 10.5 3.4 (1) • 30.7 5.5 (8)
yeast • 7.6 4.3 (3) 2.9 3.9 (2) 6.0 4.7 (0) • 4.2 3.0 (0) 10.7 4.6 (1)

Table 1: Results for the experiments. Columns represent correct detection, difference in standard deviations
between p-value at correct point and average, largest value outside drift window (in standard deviations) and
number of false detections.

concept drift location in the datasets, this is a worst-
case measure of the fluctuation caused by noise. Finally,
the number in brackets gives the number of incorrectly
detected concept drifts. As can be seen from the table,
the Wald-Wolfowitz method is much more sensitive than
the other tests and could work even with larger values
for the threshold s. This is followed by the CNF based
statistic and the three SVM-based approaches. In our
experiments, we found that the optimal threshold value
for the Wald-Wolfowitz test and the CNF test is around
ten.

To compare the performance of the five tests, Fig-
ure 2 gives a precision-recall plot with an incrementing
threshold from one to 100. The precision and recall val-
ues are averaged over all 27 data sets. The precision and
recall at the thresholds five, ten and fifteen are marked
with a diamond, a circle and a triangle respectively. As
can be seen from the plot, the margin-based test pro-
vides the best compromise between precision and recall,
while the error-based tests work especially well for large

recall settings. The Wald-Wolfowitz test, while being
the most sensitive amongst the evaluated methods, is al-
ways worse than the margin- and error-based tests. This
demonstrates that sensitivity of the test is not necessar-
ily the best measure to aim for. Instead, the success of
the margin- and error-based methods indicates that it
might make more sense to choose a less sensitive test,
but to ensure that the applied test statistic is selected
to match well with the actual data.

Table 2 shows a comparison of the runtimes of the
four methods on five datasets. As can be seen, Wald-
Wolfowitz is by far the computationally most expensive,
while the CNF-based method is fastest. The SVMs are
in between, but can probably be sped up significantly
by resorting to online SVMs.

To answer the second question, we shuffled the
examples in all datasets randomly, so that the data does
not feature any distinguishable concept drift. Running
the methods on those shuffled datasets gave p-values
that were very similar to the second-largest-peak values
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Figure 2: Precision-recall curve for the five concept drift detection methods for the thresholds between one and
100.

on the right in the columns of Table 1. This means
that on most datasets settings with concept drift can
be reliably distinguished from those without any drift,
if the threshold is selected suitably. Finally, for the
third question, we investigated wether these bounds still
work when the change is more gradual. To control
the speed of the drift we use the method outlined by
Widmer and Kubat in [23]. We define a parameter
∆x that determines the length of the interval in which
the first and second class overlaps. For each position
i in this interval we generate an example from the
first class with probability i/(∆x + 1) (and from the
second class otherwise). This corresponds to a gradual
transition from one concept to the other. The preceding
experiments can then be seen as a special case where
∆x = 0. For ∆x = 20 there was no significant change
with respect to the previous experiments. For ∆x = 50
the number of standard deviations decreased and this
led to reduced performance for the Wald-Wolfowitz and
MMW statistics and to a lesser extend for the SVM
bounds. For most data sets, however, the concept drift

was still correctly detected. For ∆x = 100 none of
the methods could detect any concept drift. This is
probably due to the fact that the drift is too slow and
the changes are spread out over more than the size of
the window. We expect that increasing the window size
might improve this, at the cost of higher computational
complexity.

5 Conclusion

In this paper we evaluated five different methods for
concept drift detection in the online setting. Traditional
statistical methods for drift detection such as the mul-
tivariate Wald-Wolfowitz test are often based on rank
statistics that require costly computations and do not
adapt to the specific properties of the underlying data
distribution. In contrast, we presented three new test
methods, whose statistics adapt to the data and which
allow for a faster update of the statistic whenever the
drift detection window moves. The first method is based
on a density estimation technique on a binary represen-
tation of the data. The second method measures the
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Dataset N m CNF Marg. Error Wald-
based based based Wolf.

page-blocks 5192 11 10 114 132 414
nursery 4625 27 15 133 153 464

sick 3810 34 12 124 143 351
waveform 3390 41 11 142 159 332
kr-vs-kp 3241 41 17 119 133 291

Table 2: Comparison of runtimes (in seconds). N is the number of examples, m the number of features.

average margin of a linear classifier induced by a 1-norm
SVM, while the third one is based on the average error
rate of a linear classifier generated by a SVM. Empir-
ical experiments show that these methods are better
able to detect concept drifts and are not too sensitive
to noise in most cases. All of them are faster than the
Wald-Wolfowitz test and remain applicable if the con-
cept drift is more gradual in nature. As an additional
advantage, the SVM-based methods provide a weight
vector that can be used for concept drift analysis in the
style of [12]. In particular, the weights in the vector in-
dicate which features were affected most by the concept
drift. This information can be presented to the user
or made use of for classifier modification. One of the
most promising directions for future research is the ap-
plication of online SVMs to further speed up the update
step.

6 Appendix: Proofs

In the proofs we will make use of the following two
results. The first is McDiarmid’s bound, a powerful
concentration inequality that can be used to bound
functions of independent random variables.

Theorem 6.1. (McDiarmid, [17]) Let
X1, X2, . . . , Xn be independent (not necessarily identi-
cally distributed) random variables. Define a function
g : X1 × . . . ×Xn → R. If there are some nonnegative
constants c1, . . . , cn so that for all 1 ≤ i ≤ n and for all
x1, . . . , xn, x

′
i:

|g(x1, . . . , xn)− g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci

then the random variable G := g(X1, . . . , Xn) fulfills for
all ε > 0:

Pr
[
G−E[G] ≥ε

]
≤ exp

(
− 2ε2∑n

i=1 c
2
i

)
and

Pr
[
E[G]−G ≥ε

]
≤ exp

(
− 2ε2∑n

i=1 c
2
i

)
The second rather technical lemma is used in the proofs
of the PAC-Bayesian theorems:

Lemma 6.1. For β > 0,K > 0, and R,S, x ∈ Rm
satisfying Rj ≥ 0, Sj ≥ 0, xj ≥ 0,

∑m
i=1Rj = 1, we

have that if

n∑
j=1

Rje
βx2

j ≤ K

then

n∑
j=1

Sjxj ≤

√
D(R‖S) + lnK

β

For a proof, see lemma 21 in [16].

6.1 Proof of Theorem 3.1 Let Dr :=
| 1n
∑n
i=1[xi]r − 1

n

∑n
i=1[xi]r| the contribution of

the rth feature in the definition of D. This is a random
variable depending on the two samples X and X. As a
first step, we prove that

Pr
X,X

[ m∑
i=1

vie
(0.5n′−1)D2

r ≤ n′

δ

]
≥ 1− δ(6.1)

Changing one example in the first sample X changes
the value of Dr by at most 2

n . Likewise, changing an
example in the second sample X changes the value of Dr

by at most 2
n . Since E[Dr] = 0, McDiarmid’s inequality

(Theorem 6.1) ensures that

Pr
X,X

[
Dr ≥ x

]
≤ 2 exp

[
− 0.5x2n′

]
(6.2)

Now, we investigate the distribution of the random
variable Dr. Let f : [0, 2] → R denote the
density function of Dr so that Pr[Dr ≤ x] =∫ x
0
f(a)da. Since we want to find an upper bound

for EX,X e
(0.5n′−1)D2

r , we look for a density fmax
that achieves the maximum of this term. More pre-
cisely, we look for the density f which maximizes∫∞
0
e(0.5n

′−1)D2
rf(Dr) dDr, subject to the constraint

(6.2) that
∫∞
x
f(Dr) dDr ≤ 2e−0.5n′x2

. The maximum
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is achieved when
∫∞
x
f(Dr) dDr = 2e−0.5n′x2

. Taking
the derivative yields that fmax(Dr) = 2n′Dre

−0.5n′D2
r .

Therefore,

E
X,X

e(0.5n
′−1)D2

r ≤
∫ ∞

0

e(0.5n
′−1)D2

rfmax(Dr) dDr

=
∫ ∞

0

2n′Dre
(0.5n′−1)D2

re−0.5n′D2
r dDr

=
∫ ∞

0

2n′Dre
−D2

r dDr

= n′

Since this upper bound is valid for all indices r, it holds
also for the linear combination of the Drs:

E
X,X

[ m∑
i=1

vie
(0.5n′−1)D2

r

]
≤ n′

Inequality (6.1) follows from this and Markov’s inequal-
ity. Applying Lemma 6.1 to (6.1) with K = n′

δ , R =
Rw, S = Rv, x = (D1, . . . , Dm)T , β = 0.5n′ − 1 yields:

Pr
X,X

[ m∑
j=1

wjDj ≥

√
D(Rw‖Rv) + ln n′

δ

0.5n′ − 1

]
≤ δ

The result follows from the definition of Dj and setting

δ = n′e−t
2(0.5n′−1)+D(Rw‖Rv) .

6.2 Proof of Theorem 3.2 The proof is a slight
modification of the well known Vapnik-Chervonenkis
theorem. We start with a symmetrization argument
based on Rademacher variables. Let σ = (σ1, . . . , σn)
be a sequence of n Rademacher random variables, which
adopt the values -1 and +1 with equal probability 0.5.
Define Li(w) := lz(wTxi)− lz(wTxi). Then,

Pr[E ≥ t] = Pr

[
sup
w∈Rm

[
1
n

n∑
i=1

Li(w)

]
≥ t

]

= Pr

[
sup
w∈Rm

[
1
n

n∑
i=1

σiLi(w)

]
≥ t

]
This holds, because having a negative Rademacher
variable is equivalent to swapping two examples between
X and X. Since X and X are drawn i.i.d., the
expectation remains the same. Applying the union
bound, we get:

Pr

[
sup
w∈Rm

[
1
n

n∑
i=1

σiLi(w)

]
≥ t

]
≤

2 Pr

[
sup
w∈Rm

[
1
n

n∑
i=1

σilz(wTxi)

]
≥ t

2

]

Now, we consider this probability conditional to a fixed
data sample x1, . . . , xn. While the supremum in the
probability is over all possible w, Sauer’s lemma (see,
for instance, theorem 13.3 in [7]) states that linear
classifiers can separate the dataset into two classes in at
most d(n,m) :=

∑m+1
i=0

(
n
i

)
distinct ways. This is based

on the fact that the hypothesis space of hyperplanes
has VC-dimension m+ 1. This means the supremum in
the probability is just a maximum over d(n,m) different
random variables.

Pr

[
sup
w∈Rm

[
1
n

n∑
i=1

σilz(wTxi)

]
≥ t

2

∣∣∣∣∣x1, . . . , xn

]
≤

d(n,m) sup
w∈Rm

Pr

[
1
n

n∑
i=1

σilz(wTxi) ≥
t

2

∣∣∣∣∣x1, . . . , xn

]
Finally, changing one σi changes the sum in the proba-
bility by at most 2

n . Thus, McDiarmid’s theorem states
that

Pr

[
1
n

n∑
i=1

σilz(wTxi) ≥
t

2

∣∣∣∣∣x1, . . . , xn

]
≤ e− 1

8 t
2n

Taking the expectation on both sides, we have that

Pr[E ≥ t] ≤ 2 Pr

[
sup
w∈Rm

[
1
n

n∑
i=1

σilz(wTxi)

]
≥ t

2

]

≤ 2

(
m+1∑
i=0

(
n

i

))
e−

1
8 t

2n

6.3 Proof of Theorem 3.3 We investigate the ran-
dom variable E′ = supw∈Rm E. Changing one example
in the first sample X changes the value of E′ by at most
1
n . Likewise, changing an example in the second sample
X changes the value of E′ by at most 1

n . McDiarmid’s
inequality (Theorem 6.1) ensures that

Pr
[
E′ − E

X,X
E′ ≥ s

]
≤ exp

[
− 2s2∑n

i=1
1
n2 +

∑n
i=1

1
n2

]
= exp

(
− s2n

)
(6.3)

Setting s = t − E[E′] it suffices to show that E[E′] ≤
2
√
m/n to gain the result. We prove this upper bound

for E[E′] using a symmetrization argument. Let σ =
(σ1, . . . , σn) be a sequence of n Rademacher random
variables, which adopt the values -1 and +1 with equal
probability 0.5. Then,

E
X,X

[E′] = E
X,X

sup
w∈Rm

[ 1
n

n∑
i=1

ls(wTxi)− ls(wTxi)
]

= E
X,X,σ

sup
w∈Rm

[ 1
n

n∑
i=1

σi(ls(wTxi)− ls(wTxi))
]
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This holds because having a negative Rademacher vari-
able is equivalent to swapping two examples between X
and X. Since X and X are drawn i.i.d., the expectation
remains the same. With this, we have:

E
X,X

[E′] = E
X,X,σ

sup
w∈Rm

[ 1
n

n∑
i=1

σi(ls(wTxi)− ls(wTxi)
]

≤ 2 E
X,σ

sup
w∈Rm

[ 1
n

n∑
i=1

σils(wTxi)
]

(6.4)

≤ p E
X,σ

sup
w∈Rm

[ 1
n

n∑
i=1

σiw
Txi

]
(6.5)

≤ p E
X,σ

∥∥∥ 1
n

n∑
i=1

σixi

∥∥∥
∞

(6.6)

Here, (6.4) is a consequence of Jensen’s inequality and
the convexity of the supremum, (6.5) is an application
of theorem 4.12 in [15] and the fact that ls(.) is
Lipschitz with Lipschitz constant p

4 . Finally, (6.6) is
an application of Hölder’s inequality and the fact that
supw∈Rm ‖w‖1 = 1. The right hand side of (6.6) can be
further bounded as follows:

E
X,X

[E′] ≤ p E
X,σ

∥∥∥ 1
n

n∑
i=1

σixi

∥∥∥
∞

≤ p E
X,σ

√√√√ m∑
j=1

∣∣∣∣[ 1
n

n∑
i=1

σixi

]
j

∣∣∣∣2(6.7)

≤ p

√√√√ m∑
j=1

E
X,σ

∣∣∣∣[ 1
n

n∑
i=1

σixi

]
j

∣∣∣∣2(6.8)

≤ p

√√√√ m∑
j=1

1
n2

E
σ

∣∣∣∣ n∑
i=1

σi

∣∣∣∣2(6.9)

= p

√√√√ m∑
j=1

1
n2

n∑
i,j=1

E
σ
σiσj

= p

√
m

n

Inequality (6.7) follows because ‖x‖∞ ≤ ‖x‖2 for all
x ∈ Rm, (6.8) is an application of Jensen’s inequality
and the concavity of the square root, while (6.9) holds,
because ‖xi‖∞ ≤ 1 for all xi. The result follows from
this upper bound and by setting s = t−E[E′] in (6.3).
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