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ABSTRACT
Data streams are gaining importance in many sensoring and
monitoring environments. Frequent mining tasks on data
streams include classification, modeling and outlier detec-
tion. Since often the data arrival rates vary, anytime algo-
rithms have been proposed for stream clustering and clas-
sification, which can deliver a fast first result and improve
their result if more time is available.

In this work, we propose the novel concept of anytime out-
lier detection and introduce an algorithm for anytime outlier
detection based on a hierarchical cluster representation. We
show promising results in preliminary experiments and dis-
cuss future research for anytime outlier detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

1. INTRODUCTION
Data streams are prevalent in many application domains,

ranging from web tra�c over surveillance data to sensor net-
works and monitoring tasks. Analysis of such streaming
data requires special focus on the properties of streaming
contexts, i.e. infinite data, limited memory, limited time
and often varying time allowances. Especially for monitoring
applications, data mining needs to produce results in near
real-time in order to be meaningful. For example, in medical
applications, monitoring a patient’s heart rate is only helpful
if any relevant patterns can be communicated to the doctors
or nurses immediately such that they can take appropriate
counter-measures on time. Similarly, assisted living that re-
lies on supervision of elderly or chronically ill people requires
that people receive assistance if anything suspicious occurs.

These examples are situations where we are interested
in determining deviating signals from the continuous data
stream. Outlier detection is the data mining task that aims
at discovering such deviating data. In the literature, di↵er-
ent notions of outliers exist. A popular definition is that of
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Hawkins, who states that an outlier is “an observation which
deviates so much from other observations as to arouse suspi-
cions that it was generated by a di↵erent mechanism” [10].
Existing work on outlier detection has approached this task
from di↵erent perspectives, e.g. statistically by analyzing
the data distribution [4], or based on distances by defining
outliers as objects who do not have a minimum number of
objects within a certain distance [15]. Cluster-based tech-
niques use clustering to describe the underlying structure of
the data, i.e. the prevailing patterns, and define outliers as
those objects that do not belong to any cluster or do not fit
their cluster well [7, 11].

Recently, some approaches for outlier detection on data
streams have been proposed [1, 3, 24, 26]. However, all of
these approaches assume streams of fixed arrival rates, while
in many data streams the assumption of a stream with a
fixed data arrival rate does not hold. Consider for exam-
ple sensor networks. In order to reduce the communication
overhead and to save battery power, modern sensors send
data only when necessary, e.g. when measurements di↵er
significantly. Likewise, when monitoring a patient’s health
status, little data needs to be sent to a central analysis sys-
tem when the measured values are within normal ranges,
but additional measures might be taken and sent otherwise.

Generally, stream mining tasks cannot be performed o↵-
line. This is inherent to the scenario: for any algorithm
that cannot process the incoming data items at their speed,
any bu↵ering of the points (to process them o✏ine) would
fail, because new data items are constantly arriving. The
algorithm could never catch up again and hence any bu↵er
is doomed to overflow. This yields the well known require-
ment for stream algorithms to be able to keep up with the
data stream. For streams with constant arrival rate, the
algorithm is simply tailored to the specific amount of time
(budget), that is available between two objects.

The varying data streams discussed above pose additional
challenges for outlier detection. A straightforward solution
would be to resort to a very e�cient, but maybe less e↵ec-
tive outlier detection algorithm. Such a “worst case” outlier
detection would be able to keep up with the stream even in
very bursty times, but would be idle most of the remaining
time. Trying to estimate an average time budget does still
incur idle times and, more critically, incurs the danger of
a bu↵er overflow, since the amount of data to come is un-
foreseeable. Thus, outlier detection needs to adapt to the
stream speed.

Making as much use of the time available for data mining
on streams has been discussed in the literature as anytime
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Figure 1: Anytime outlier detection.

algorithms [25, 23, 6, 16] for classification or clustering. The
general idea is that an anytime algorithm should be capable
of delivering an initial result as soon as possible, but be able
to improve the mining result if more time is available. In
this manner, the algorithm refines its initial solution until
interrupted by the next data in the stream.

In this work, we propose the problem of anytime outlier
detection. We claim that especially for monitoring applica-
tions in medicine, assisted living, sensor networks etc. out-
lier detection should be capable of keeping up with streams
of varying arrival rates, while refining the initial decision on
the outlierness of an object if time permits. Moreover, we
introduce our approach for anytime outlier detection, show
preliminary experiments and discuss future research direc-
tions for anytime outlier detection.

2. RELATED WORK
In the literature, di↵erent paradigms for outlier detection

exist. In supervised learning, the problem is to learn to
detect outliers based on labeled historical data, similar in
spirit to an unbalanced classification problem [28, 8]. As
validated outlier data is typically not available, unsupervised
approaches search for outliers as those objects that deviate
considerably from the remainder of the data [10].

Distance-based outlier detection searches objects where
at least a certain fraction of all objects lies at a distance
greater than some threshold [15]. Statistical techniques as-
sume a certain data distribution to identify data that devi-
ates significantly from it [4]. Cluster-based techniques use
clustering to describe the underlying structure of the data,
i.e. the prevailing patterns, and define outliers as those ob-
jects that do not belong to any cluster or do not fit their
cluster well [7, 11]. The assumption that deviating behavior
is uniform within a dataset was overcome in the local outlier
factor (LOF) approach [5], where the notion of an outlier-
ness degree was introduced. An extension to top-n outlier
detection was proposed in [14]. Outlier detection for high
dimensional data using angle spectrum diversity is studied
in [20]. Harmonizing local outlier scores to probabilities is
proposed in [19].

Some approaches for stream mining focus on detecting
outliers in time series data, e.g. [22]. The goal is identifying
patterns in the temporal ordering, which is a di↵erent task
from detecting outliers in a stream of data objects.

Recently, some approaches for outlier detection on data
streams have been proposed [1, 3, 24, 26]. Anguilli et al.

[3] compute distance-based outliers within a fixed window
over the stream. A statistical approach for outlier detection
in streaming data is based on learning a model of the data
that accounts for temporal decay of older data in the stream
[26]. [1] present a supervised outlier detection approach for
multidimensional data streams with a special focus of learn-
ing the di↵erence between di↵erent types of rare events. For
sensor networks, [24] propose a framework for distributed
data approximation of multi-dimensional data that can be
used to analyze di↵erent data properties, such as distance-
or density-based outliers, by distributing the computational
e↵ort within the network.

However, all of these approaches assume streams of fixed
arrival rates and do not meet the requirement of anytime
outlier detection that more time leads to better accuracy.

3. ANYTIME OUTLIER DETECTION
In this section, we introduce the problem of anytime out-

lier detection for data streams of varying interarrival rates.
This is followed by an algorithmic solution to the problem.

3.1 Problem definition
Outlier detection is the data mining task concerned with

identifying deviating, abnormal data. As illustrated in Fig-
ure 1(a), the idea is to compare objects with others in the
data collection to identify whether they fit the general pat-
tern of the data.

The goal in anytime outlier detection is to make best use
of the time available, as dictated by the stream arrival rate
(cf. Figure 1(b)). This means that during busy times, when
the stream arrival rate is very high, the detection of outliers
needs to be very fast. Conversely, when the stream speed
is low, detection of outliers should be capable of using the
additional time to determine the outlierness more reliably.
In this manner, all available time up to the arrival of the
next objects should be used to perform outlier detection as
good as possible. The performance of a prototypical anytime
algorithm is illustrated in Figure 1(c): good outlier detection
accuracy early on, and increasing performance as more time
is available.

We formalize the notion of anytime outlier detection in
the following:

Definition 1. Anytime outlier detection.

Given a data stream of data objects o

i

arriving at unknown
interarrival rates, the anytime outlier detection problem is
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Figure 2: ClusTree structure.

to compute an outlier score s(o
i

) in the time t

i

between the
arrival of o

i

and its successor o
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i

, the better
the outlier score s(o

i

) should reflect the outlier degree of o
i

.

Please note that the assessment of the quality of the outlier
score s(o

i

) is not straightforward. In a controlled experi-
ment, we may use synthetic data or manually label data to
compute a ground truth that can be used to evaluate the
scores obtained. For real application scenarios, however,
only domain experts can assess the outlierness of objects
returned with high scores.

3.2 Algorithmic approach
As reviewed in the related work section, di↵erent approaches

have been discussed in the literature. An approach we will
follow here is the clustering-based paradigm [7, 11]: the idea
is to use clustering to identify the prevailing patterns in the
data and thereby those data items that do not follow these
detected patterns. In Figure 1(a), the majority of (black)
objects could be detected as a cluster, whereas the single
(red) object at the top left is not part of this cluster, and
is thereby easily identified as an outlier. Naturally, in many
practical applications, the decision boundary between “nor-
mal” data and outliers is less clear-cut. We thus use an
outlier score to assess the degree of deviation, as in other
outlier degree approaches (e.g. LOF [5]).

As stated in Definition 1, the key property of anytime
outlier detection is the ability to compute an initial outlier
score very e�ciently, and then refine it with time. This
means that we need to be able to compare an object with
the remainder of the data at di↵erent granularities.

We propose making use of a hierarchical clustering struc-
ture we introduced for anytime clustering in [16]. The idea
of the ClusTree is a tree which contains cluster information
at various levels. It is a balanced index like the R-tree, R*-
tree, etc. [9, 23]. The information stored in each node is a
cluster feature that summarizes its subtree as used in [2, 27,
16]. A cluster feature CF = (n,LS, SS) contains the num-
ber n of represented objects, their linear sum LS, and their
squared sum SS. This tuple su�ces for computing mean
and variance, and can be incrementally updated. Any clus-
ter feature (CF) then represents a micro-cluster, i.e. a set
of objects, and the main characteristics of its distribution.
The tree is created and updated like any multidimensional
index structure. In addition to these cluster features, nodes
also store bu↵ers that are used to temporarily store objects
before they are assigned to a cluster. We will not go into de-
tails about the anytime clustering algorithm here, for more
information please refer to [16]. The general structure of
the ClusTree is illustrated in Figure 2: in this example, each
inner node stores two entries, which contain a cluster fea-

ture (depicted as a small curve), and possibly also a bu↵er
entry (second small curve or empty). Following the pointers
to the subtrees, we can descend to lower levels, where the
same data is represented at a more fine grained level.

The ClusTree thus provides di↵erent representations of
the data at di↵erent levels of granularity. In the root node,
few cluster features summarize the entire data. We can thus
easily compare the object to these cluster features to deter-
mine whether the object agrees with them or not. If there
is more time available, we can descend down the tree to de-
termine the outlierness of the object more closely. At lower
levels of the tree, we have more detailed cluster features
which is likely to improve the reliability of the outlier score.

We propose an outlier score that is based on how well the
object fits its closest entry at the time of interruption by the
anytime algorithm. This means that we descend down the
tree, and stop when the next object in the stream arrives.
At this point, we use the distance between the object and
its closest entry as the outlier score for this object.

We define this as the mean outlier score in the following:

Definition 2. Mean outlier score.

Given a data object o
i

, its mean outlier score s

m

(o
i

) is com-
puted as s

m

(o
i

) := dist(o
i

, µ(e
s

)), where µ(e
s

) is the mean
of the entry where o

i

is inserted when o

i+1 arrives.

A second way of deciding the outlierness is based on the in-
terpretation of the cluster features as parameters of a Gaus-
sian distribution for the subtree. The Gaussian probability
density of an object o

i

on an entry e

s

with mean µ

es and
covariance matrix ⌃

es is given by the following equation:

g(o
i

, e

s

) =
1

(2⇡)d/2 · det(⌃
es)1/2

e

(� 1
2 (oi�µes )

T⌃�1
es

(oi�µes ))

where det(⌃
es) is the determinant and ⌃�1

es the inverse of
⌃

es . The important part is that we can estimate the proba-
bility density of o

i

on e

s

based on e

s

’s cluster feature vector
to determine its outlierness.

We define this density outlier score as follows:

Definition 3. Density outlier score.

Given a data object o

i

, its density outlier score s

d

(o
i

) is
computed as s

d

(o
i

) := g(o
i

, e

s

), where e

s

is the entry where
o

i

is inserted when o

i+1 arrives.

These two scores di↵er in how they assess the similarity of
the object to the nearest entry. In the following section,
we will evaluate the performance of these two approaches in
preliminary experiments.

4. PRELIMINARY EXPERIMENTS
We evaluate our anytime outlier detection approach on

synthetic data to validate that we are capable of successfully
identifying hidden outliers, and on real data to demonstrate
the practical usefulness of the approach.

As discussed before, our approach is based on the Clus-
Tree structure that provides a cluster representation of the
data. We therefore start by building up the tree, and then
analyze the outlier detection. The synthetic data (500,000
objects) therefore consists of 210,000 four-dimensional ob-
jects that belong to 3 classes that form the “normal” data,
plus another 290,000 objects which either belong to the 3
original classes or to a newly introduced class. There is al-
ways 5% noise present that forms a class of its own (i.e. 3
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(a) Anytime stream results
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(b) Early interruption
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(c) Late interruption

Figure 3: Mean outlier score.
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Figure 4: Density outlier score on synthetic data.

+ 1 + noise classes). For all figures, we show the outlier
scores (as smoothed trendlines for better readability) in a
time window starting from the last “normal” object of the
first part of the data, until 5000 objects in the data stream
have been analyzed.

Figure 3(a) shows the outlier scores for the di↵erent classes.
The scores were computed using the mean outlier score (cf.
Def. 2), hence low values mean higher similarity. Noise (in
gray, top line) is clearly indicated by values that are four
times as high as those of consistent data. The novel class
(in red, second from top) does not start with scores as high
as noise objects, but with values only twice as high as the
normal data. This is probably due to the generation that
allows noise to be placed in a larger data space radius than
the fourth class, making this class more similar to existing
clusters. As we can see, the more data from the new class is
seen, the lower the scores of other objects that fit with this
new cluster structure. This initial result means that our
approach shows very promising behavior in terms of identi-
fying outliers (noise), and also of adapting to new concepts
over time.

For a more detailed evaluation of the anytime behavior of
our outlier detection approach, we have studied the outlier
scores with respect to the time that was available until in-
terruption. Generally, we found that the outlier scores are
very useful already on the second level below the root (Fig-
ure 3(b)), and that the di↵erentiation between the new class

and existing classes improved when the algorithm had more
time available and could go to leaf level (Figure 3(c)).

We now turn to evaluating the second outlier score, the
density outlier score (cf. Def. 3). In this case, a high score
indicates similarity. Figure 4 gives an example of the experi-
mental results at level three below the root: the outlier score
returned for noise objects is reliably close to 0. The red line
– representing the new class – indicates, that the new class
is also initially identified as outliers, and later recognized
as being more similar to existing data. However, with the
density outlier score, this learning process is slower than for
the mean outlier score.

Finally, we evaluate the usefulness of the anytime out-
lier score for a real-world scenario where outlier detection
is used for intrusion detection in network tra�c data (KDD
Cup 1999 [12]). In this data, a peculiar property is that the
classes usually arrive in larger stretches. We examined var-
ious points in the data, where a change of classes occurs to
see if the outlier score reflects this. Results for mean outlier
score are given in Figure 5. The scores of 10,000 objects
are given: The first half is the end of a stretch of nearly 2
million objects belonging to one class (represented by the
line at the bottom). The second half are objects of a new
class. The scores of the novel class are considerably higher
independent of the interrupt level.

5. OUTLOOK AND FUTURE WORK
The new anytime outlier problem and our proposed tech-

nique open up further research questions. We could explore
the usage of the di↵erent results we obtain for one object
as we descend the tree. The individual results at the dif-
ferent levels constitute a vector of scores, which we name
the outlier profile. In an anytime setting we obtain a dy-
namic vector that grows with time, i.e. while we descend.
This outlier profile can be returned to the user to provide
a more detailed reasoning on the outlier decision. Instead
of just using the latest score we could combine the scores in
an (unweighted or weighted) ensemble approach. The dif-
ferent levels can also be exploited in traditional settings, i.e.
where anytime properties are not required. In a training
phase the best level or the optimal outlier profile weights
can be determined for the given domain.

Another aspect regards the employed tree structure, which
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Figure 5: Network tra�c: new data type.

so far uses the incremental insertion proposed in [16]. Bulk
loading uses larger (entire) sets of data at a time to build up
data structures and has been shown to improve the perfor-
mance in various applications [21, 17]. For anytime outlier
detection in a streaming context bulk loading can be used in
two di↵erent ways. In rather static domains, i.e. where large
amounts of training data are available and normal concepts
do not change (e.g. health monitoring), bulk loading can be
employed once to build up the tree structure for improved
anytime outlier detection. In domains with evolving data
distributions, as e.g. sensor networks or customer data, bulk
loading can be employed in a chunk based approach where
new trees are regularly build and employed.

So far we only used the points seen so far to determine
the outlierness of a new object. With more objects arriving
the outlier degree might decrease due to a newly emerging
concept, i.e. the score can also be considered as depending
on future observations. In this setting we have to keep a
reference to (or a bu↵er of) outlier points to be able to in-
spect their score over time. Moreover, a strategy is required
that allows the transition from noise or outliers to regular
points to reflect novel clusters in the data structure, i.e. the
update and insertion process has to be revised.

Finally, the problem of anytime outlier detection can be
solved through di↵erent outlier paradigms (cf. Section 2).
Moreover, recent results show that anytime algorithms are
also beneficial in other contexts, e.g. for a pool of instances
[13] or on constant data streams [18], by distributing the
computation time according to confidences in the individual
decisions. In this spirit, anytime outlier algorithms could
stop early for credible outliers and spend more time on ob-
jects where the outlierness is less clear.

6. CONCLUSIONS
Data streams are ubiquitous and often the amount of data

arriving on the stream varies over time. In this paper we pro-
posed the new concept of anytime outlier detection, which
handles these varying arrival rates by providing a first re-
sult very e�ciently and using additional time to improve the
reliability of its decision. We sketched an anytime outlier al-
gorithm based on a recent stream clustering approach and
showed promising preliminary results. Finally we discussed
future research directions for the newly proposed topic.
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