
Parameterless Outlier Detection in Data Streams

Alice Marascu and Florent Masseglia

INRIA

AxIS Project-Team

2004 route des lucioles - BP 93

{first.last}@sophia.inria.fr

ABSTRACT
Outlyingness is a subjective concept relying on the isolation level
of a (set of) record(s). Clustering-based outlier detection is a field
that aims to cluster data and to detect outliers depending on their
characteristics (small, tight and/or dense clusters might be consid-
ered as outliers). Existing methods require a parameter standing for
the “level of outlyingness”, such as the maximum size or a percent-
age of small clusters, in order to build the set of outliers. Unfortu-
nately, manually setting this parameter in a streaming environment
should not be possible, given the fast time response usually needed.
In this paper we propose WOD, a method that separates outliers
from clusters thanks to a natural and effective principle. The main
advantages of WOD are its ability to automatically adjust to any
clustering result and to be parameterless.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Data Streams, Outliers, Parameterless

1. INTRODUCTION
Clustering is a major topic of data mining that aims to separate

objects into groups (or clusters) according to their similarity. The
first goal of clustering was to provide patterns representing the ma-
jority of data. In contrast, outlier detection aims to discover highly
unlikely data. This is an important topic of data mining since it has
many applications, such as fraud detection for credit card [1], cy-
ber security [4] or safety of critical systems [6]. Actually, outliers
might be indicative of suspicious data such as skewed or erroneous
values, entry mistakes or malicious behaviours. A malicious be-
haviour can be detected as an outlier in datasets such as transactions
in a credit card database or records of usage on a web site.

To the best of our knowledge, outlier detection always relies on
a parameter, given by the end-user and standing for a “degree of
outlyingness” above which records are considered as atypical. For
instance, in [11], a distance-based outlier is an object such that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

a user-defined fraction of dataset objects have a distance of more
than a user-defined minimum distance from that object. In [5], the
authors propose a nonparametric clustering process and the detec-
tion of outliers requires a user defined value k corresponding to the
top-k desired outliers.

In this paper we propose WOD (Wavelet-based Outlier Detec-
tion), a parameterless method intending to automatically extract
outliers from the results of a clustering step. In contrast to pre-
vious work, our goal is to find the best division of a distribution
and to automatically separate values into two sets corresponding to
clusters on the one hand and outliers on the other hand. The tail
of the distribution is found thanks to a wavelet technique and does
not depend on any user threshold. Our method fits any distribution
depending on any characteristic such as distances between objects
[11], objects’ density [2, 14] or clusters’ size [8].

Our framework involves clustering-based outlier detection in data
streams. Clustering-based detection of outliers aims to find objects
that do not follow the same model as the rest of the data depending
on the clusters’ size or tightness [8, 17, 5]. This framework will
allow us to illustrate our proposal with one of the possible charac-
teristics observed for building a distribution of objects (i.e. clus-
ters’ size). The choice of data streams is motivated by the specific
constraints of this domain. In a data stream environment, data are
generated at a very high rate and it is not possible to perform block-
ing operations. In this context, requesting a parameter such as k,
for top-k outliers, or x, a percentage of small clusters, should be
prohibited. First, because the user doesn’t have enough time to try
different values of these parameters for each period of analysis on
the stream. Secondly, because a permanent value may be adapted
to one period of the stream but it is highly likely to be wrong on
the next periods (the data distribution will change, as well as the
number or percentage of outliers). For these reasons, detecting out-
liers should not depend on any parameter and should be adaptive in
order to keep the best accuracy all along the stream.

This paper is organized as follows. Section 2 gives an overview
of existing works in outlier detection and Section 3 gives a formal
definition of our problem. Our method relies on a clustering step
described in Section 4. Section 5 gives the details of WOD and its
principle for separating outliers from clusters. Section 6 shows the
advantages of WOD through a set of experiments on real Web usage
data and Section 7 gives our conclusion.

2. RELATED WORKS
In this paper, we focus on clustering-based outlier detection al-

gorithms [11, 16, 9, 7, 14]. Such techniques rely on the assumption
that normal points belong to large clusters while outliers either do
not belong to any cluster [11, 16] or form very small and tight clus-
ters [8, 17, 5]. In other words, outlier detection consists in identi-

fying among data those that are far from being significant clusters.
Depending on the approach, the number of parameters required to
run the algorithm can be high and will lead to different outliers. To
avoid this, some works return a ranked list of potential outliers and
limit the number of parameters to be specified [16, 9, 5]. Let us
note that [5] proposes to reduce or to avoid given parameter to the
clustering algorithm, while maintaining a parameter regarding the
outliers: n the number of required outliers. In this paper, we aim to
detect outliers on the basis of clusters characteristics only. Among
these characteristics, we have selected the clusters’ size. A distri-
bution of the clusters’ size combined with our wavelet approach
allows cutting the clusters set into two sub-sets, basically corre-
sponding to “big” and “small” clusters. This method would also
cut down this set with regard to other characteristics, such as clus-
ters tightness or their number of neighbors (density) for instance.

3. PROBLEM STATEMENT
We instantiate WOD on streaming usage data of a Web site. We

need to define a navigation sequence as the series of URLs re-
quested by a user.

DEFINITION 1. Let I = i1, i2, ..., in be a set of items. Let
X = i1, i2, ..., ik/k ≤ n and ∀j ∈ [1..k] ij ∈ I. X is called an
itemset (or a k−itemset). Let T = t1, t2, ..., tm be a set of times,
over which a linear order <T is defined, where ti <T tj means ti

occurs before tj . A transaction T is a couple T = (tid, X) where
tid is the transaction’s identifier and X is the associated itemset.
Associated to each item i in X we have a time-stamp ti which rep-
resents the valid time of occurrence of i in T .

DEFINITION 2. A navigation sequence is an ordered list of item-
sets denoted by < s1, s2, . . . , sn >, where sj is an itemset and
each item of sj stands for a URL.

A data stream is made of n series of navigation sequences. Each
series is potentially infinite. Each navigation sequence n in the data
stream is associated to a client c and n corresponds to the series of
requests by c on the Web site. In section 4 we propose a method for
clustering the navigation sequences of a data stream. Our proposal
for detecting outliers without any parameter is given in section 5.

4. CLUSTERING STREAMING USAGE DATA
Our method will process the data stream as batches of fixed size.

Let B1, B2, ...Bn be the batches, where Bn is the most recent
batch of transactions. The principle of WOD will be to cluster the
sequences of each batch b in [B1..Bn] and to detect the outliers ac-
cording to the clusters’ size. The general principle of our method
can be described as follows: for each batch of transactions, WOD
discovers the clusters of users (grouped by behavior) and then ana-
lyzes their navigations by means of a sequence alignment process.
This allows us to obtain clusters of behaviors that represent the
current usage of the Web site. In [13] the authors have proposed
a method for mining sequential patterns in data streams which is
based on sequence alignment. The clustering function of WOD
catches and extends this principle. For each cluster c, the aligned
sequence corresponding to the content of c gives a summary of c.
After processing each batch, we are provided with patterns (the
summaries or alignments obtained for the clusters) and their sup-
ports (the size of the clusters).

For each batch, the clustering algorithm is initialized with only
one cluster which contains the first navigation (the first sequence of
the batch). To each cluster s is associated a centroid ςc (the aligned

sequence of the cluster) that summarizes the cluster. WOD will
process the batch of sequences in only one scan. During this scan,
the following operations are performed:

1. For each navigation n in the batch, n is compared to each
existing centroid. Let c be the cluster such that its centroid ςc

is the most similar to n, then n is inserted into c. If no such
cluster has been found, then a new cluster is created and n is
inserted in this new cluster.

2. For each cluster c, WOD computes the centroid ςc of c incre-
mentally.

The centroid ςc of cluster c is computed thanks to an alignment
technique applied to c. When the first sequence is inserted into c,
ςc is equal to this unique sequence.

The alignment of sequences is based on the definition of [12]
and leads to a weighted sequence represented as follows: SA =<

I1 : n1, I2 : n2, ..., Ir : nr >: m. In this representation, m

stands for the total number of sequences involved in the alignment.
Ip (1 ≤ p ≤ r) is an itemset represented as (xi1 : mi1 , ...xit :
mit),where mit is the number of sequences containing the item
xi at the p

th position in the aligned sequences. Finally, np is the
number of occurrences of itemset Ip in the alignment. In WOD, the
aligned sequence is incrementally updated, each time a sequence is
added to its cluster. For that purpose, we maintain a matrix which
contains the number of items for each sequence and a table rep-
resenting the distances between sequences. This is illustrated in
Figure 1. Our matrix (left) stores for each sequence the number
of occurrences of each item in this sequence. For instance, s1 is a
sequence containing twice the item a. The table of distances stores
the sum of similarities (similMatrix) between sequences. Let s1i

be the number of occurrences of item i in sequence s1 and let m

be the total number of items. similMatrix is computed thanks to
the matrix in the following way :

similMatrix(s1, s2) =
Pm

i=1 min(s1i , s2i).

For instance, with two sequences s1 and s2 in the matrix of Fig-
ure 1, this sum is: s1a + s2b + s2c = 1 + 0 + 1 = 2.

Sometimes, the alignment has to be refreshed and cannot be up-
dated incrementally. Let us consider a sequence sn. First, sn is
inserted in the matrix and its distance to the other sequences is
computed (

Pn
i=1 similMatrix(sn, si)). sn is then inserted in the

distance table, with respect to the decreasing order of distances val-
ues. For instance, in Figure 1, sn is inserted after s2. Let r be the
rank where sn is inserted (in our current example, r = 2) in c.
After inserting sn, there are two possibilities:

1. r > 0.5 × |c|. In this case, the alignment is updated incre-
mentally and
ςc = alignment(ςc, sn).

2. r ≤ 0.5 × |c|. In this case, the centroid has to be refreshed
and the alignment is computed again for all sequences of this
cluster.

Let s be the current sequence and C the set of all clusters. WOD
scans C and, for each cluster c ∈ C, performs a comparison be-
tween s and ςc (the centroid of c, which is an aligned sequence).
This comparison is based on the longest common sub-sequence
(LCS) between s and ςc. The length of the sequence is also taken
into account since it has to be no more than 120% and no less than
80% of the original sequence (i.e. the first sequence inserted into
c).

5. PARAMETERLESS OUTLIER DETECTION

Seq a b c
s1 2 0 1
s2 1 0 1
...

Seq
Pn

i=1 similMatrix(s, si)
s1 16
s2 14
sn 13
s3 11
...

sn−1 1

Figure 1: Distances between sequences

Most previous work in outlier detection requires a parameter [9,
18, 15, 10], such as a percent of small clusters that should be con-
sidered as outliers or the top-n outliers. Generally, their key idea
is to sort the clusters by size and/or tightness. We consider that our
clusters will be as tight as possible, according to our clustering al-
gorithm, and we aim to extract outliers by sorting the clusters by
size. The problem is to separate “big” and “small” clusters without
any apriori knowledge about what is big or small. Our solution is
based on an analysis of cluster distribution, once they are sorted
by size. The key idea of WOD is to use a wavelet transform to cut
down such a distribution. With a prior knowledge on the number
of plateaux (we want two plateaux, the first one standing for small
groups, or outliers, and the second one standing for big groups,
or clusters) we can cut the distribution in a very effective manner.
Actually, each cluster having size lower than (or equal to) the first
plateau will be considered as an outlier.

The wavelet transform is a tool that cuts up data or functions
or operators into different frequency components, and then studies
each component with a resolution matched to its scale [3]. In other
words, wavelet theory represents series of values by breaking them
down into many interrelated component pieces; when the pieces
are scaled and translated wavelets, this breaking down process is
termed wavelet decomposition or wavelet transform. Wavelet re-
constructions or inverse wavelet transforms involve putting the wavelet
pieces back together to retrieve the original object [3]. Mathemati-
cally, the continuous wavelet transform is defined by:

T

wav
f(a, b) =

1√
a

Z +∞

−∞
f(x)ψ∗(

x− b

a

)dx

where z

∗ denotes the complex conjugate of z, ψ

∗(x) is the an-
alyzing wavelet, a (> 0) is the scale parameter and b is the trans-
lation parameter. This transform is a linear transformation and it
is co-variant under translations and dilations. This expression can
be equally interpreted as a signal projection on a function family
analyzing ψa,b constructed from a mother function in accordance
with the following equation: ψa,b(t) = 1√

a
ψ(t−b

a). Wavelets are
a family of basis functions that are localized in time and frequency
and are obtained by translations and dilations from a single func-
tion ψ(t), called the mother wavelet. For some very special choices
of a, b, and ψ, ψa,b is an orthonormal basis for L

2(R). Any signal
can be decomposed by projecting it on the corresponding wavelet
basis function. To understand the mechanism of wavelet transform,
we must understand the multiresolution analysis (MRA). A mul-
tiresolution analysis of the space L

2(R) consists of a sequence of
nested subspaces such as:

... ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1... ⊂ Vj+1 ⊂ Vj ...

S
j∈Z Vj = L

2(R)

T
j∈Z Vj = {0}

∀j ∈ Z if f(x) ∈ Vj ⇐⇒ f(2−1
x) ∈ Vj+1

(or f(2j
x) ∈ V0)

∀k ∈ Z if f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0

There is a function ϕ(x) ∈ L

2(R), called scaling function,
which by dilation and translation generates an orthonormal basis
of Vj . Basis functions are constructed according to the following
relation :

ϕj,n(x) = 2−
j
2
ϕ(2−j

x− n), n ∈ Z, and the basis is orthonor-
mated if

R +∞
−∞ ϕ(x)ϕ∗(x + n)dx = δ(n), n ∈ Z. For each Vj , its

orthogonal complement Wj in Vj−1 can be defined as follows:
Vj−1 = Vj ⊕ Wj and L

2(R) =
L

j∈Z Wj . As Wj is orthogo-
nal to Vj−1, then Wj−1 is orthogonal to Wj , so ∀j, k �= j then
Wj ⊥ Wk.

There is a function ψ(x) ∈ R, called wavelet, which by dilations
and translations generates an orthonormal basis of Wj , and so of
L

2(R). The basis functions are constructed as follows:

ψj,n(x) = 2−
j
2
ψ(2−j

x− n), n ∈ Z

Therefore, L2(R) is decomposed into an infinite sequence of wavelet
spaces, i.e.L2(R) =

L
j∈Z Wj . To summarize the wavelet de-

composition: given a fn function in Vn, fn is decomposed into
two parts, one part in Vn−1 and the other in Wn−1. At next step,
the part in Vn−1 continues to be decomposed into two parts, one
part in Vn−2 and the other in Wn−2 and so on. Figure 2 gives an
illustration of the multiresolution analysis.

Figure 2: Multiresolution Analysis Principle

A direct application of multiresolution analysis is the fast dis-
crete wavelet transform algorithm. The idea is to iteratively smooth
data and keep the details all along the way. More formal proofs
about wavelets can be found in [3]. The wavelet transform pro-
vides a tool for time-frequency localization and are generally used
to summarize data and to capture the trend in numerical functions.
In practice, the majority of wavelets coefficients are small or in-
significant, so to capture the trend only a few significant coeffi-
cients are needed. We use the Haar wavelets to illustrate our outlier
detection method. Let us consider the following series of values:
[1, 1, 2, 5, 9, 10, 13, 15]. Its Haar wavelet transform is illustrated
by the following table:

Level Approximations Coefficients
8 1, 1, 2, 5, 9, 10, 13, 15
4 1, 3.5, 9.5, 14 0, -1.5, -0.5, -1
2 2.25, 11.75 -1.25, -2.25
1 7 -4.75

Then, we keep only the most two significant coefficients and we
make the others zero. In our series of coefficients ([7, −4, 75,

−1.25, −2.25, 0, −1.5, −0.5, −1]) the most two significant ones
are 7 and −4, 75, meaning that the series becomes [7, −4, 75, 0,

0, 0, 0, 0, 0]. In the following step, the inverse operation is cal-
culated and we obtain an approximation of the original data [2.25,

2.25, 2.25, 2.25, 11.75, 11.75, 11.75, 11.75]. This gives us two
plateaux corresponding to values {1, 1, 2, 5} and {9, 10, 13, 15}.
The set of outliers contains all the clusters having size smaller than
the first plateau(e.g. 2.25). In our example, o = {1, 1, 2} is the set
of outliers.

Depending on the distribution, wavelets will give different in-
dexes (where to cut). For instance, with few clusters having the
maximum size, wavelets will cut the distribution in the middle. On
the other hand, with a large number of such large clusters, wavelets
will accordingly increase the number of clusters in the little plateau
(taking into account the large number of big clusters).

Applying the wavelet transform on the series allows us to ob-
tain a good data compression and, meanwhile, according to differ-
ent trends, a good separation. Knowing that outliers are infrequent
objects, they will always be grouped into small clusters. WOD’s
principle of separating outliers from clusters is based on theorem
1.

THEOREM 1. Let P1 and P2 be the two plateaux obtained after
applying the wavelet transform and selecting the most two signifi-
cant coefficients. The optimal separation into two groups according
to clusters’ size and regarding the minimisation of the sum squared
error, is given by P1 and P2.

Proof In an orthonormal base, it has been shown that keeping the
largest k wavelet coefficients gives the best k-term Haar approxi-
mation to the original signal, in terms of minimizing the sum squared
error for a given k [3]. For this propose, let us consider the original
signal f(x) and the basis functions u1(x), ...um(x). The signal
can thus be represented depending on the basis functions as :

f(x) =
mX

i=1

ciui(x)

The goal is to find an approximating function with fewer coeffi-
cients. Let σ be a permutation of 1, ..., m and f

� the approximating
function using only the first m

� elements of σ, with m’ < m.

f

�(x) =
m�X

i=1

cσ(i)uσ(i)(x)

The square of L

2 error of this approximation is:

˛̨
|f(x)− f

�(x)
˛̨
|22 =< f(x)− f

�(x)|f(x)− f

�(x) >

=

*
mX

i=m�+1

cσ(i)uσ(i)|
mX

j=m�+1

cσ(j)uσ(j)

+

=
mX

i=m�+1

mX

j=m�+1

cσ(i)cσ(j) < uσ(i)|uσ(j) >

=
mX

i=m�+1

(cσ(i))
2

Due to the basis orthonormality, < ui, uj >= δ, so, for any
m

�
< m, to minimize this error the best choice for σ is the in-

creasing permutation (or the permutation that contains the elements
ordered in increasing order).

Therefore, for m

� = 2 we obtain the best 2-term Haar approxi-
mation to the original signal.§

Based on theorem 1, we select the clusters having size smaller
than the first plateau. These clusters can be considered as outliers
without any parameter given by the end-user.

6. EXPERIMENTS
The goal of our experiments is to show the advantages of our pa-

rameterless outlier detection in a streaming environment. In such
an environment, choosing a good level of outlyingness is highly
difficult given the short time available to take a decision. In this
context, an outlier detection method which does not depend on a
parameter such as k, for the top-k outliers, or a percentage p of
small clusters, should be much appreciated. On the other hand,
such a parameterless outlier detection method also has to guarantee
good results. This method should be able to provide the end-user
with an accurate separation into small and big clusters. It should
also be able to fit any kind of distribution shape (exponential, loga-
rithmic, linear, etc.). Finally, it should also be able to automatically
adjust to the number of clusters and to their size from one batch to
the other. Our claim is that WOD matches all these requirements
and we illustrate these features in this section .

For these experiments we used real data, coming from the Web
Log usage of our institute from January 2006 to April
2007. The original files have a total size of 18 Gb and they corre-
spond to a total of 11 millions navigations that have been split into
batches of 8500 requests each (in average). In these experiments,
we report some results on the first 15 batches, since they are very
representative of the global results.

Figures ?? and ?? show the behaviour of two filters on the first
15 batches. Foreach batch, the number of objects (navigation se-
quences) and clusters is given in Table 1. The first filter (figure ??)
shows the size of clusters selected by a top-k filter. The principle
of this filter is to select only the first k clusters after sorting them
by size. An obvious disadvantage of this filter is to select either too
much or not enough clusters. Let us consider, for instance, batch
13 in Figure ??. With k = 50 the maximum outliers size is 12,
whereas with k = 90 this size is 265 (which is the maximum size
of a cluster in this batch since it contains only 87 clusters).

Another disadvantage is to arbitrary select or ignore clusters with
equal size. For instance, with s = {1, 1, 2, 2, 3, 5, 10} a series of
sizes and k = 3, the top-k filter will select the 3 first clusters having
sizes: 1, 1 and 2, but will ignore the 4th cluster having size 2. We
have also implemented a filter based on p, a percentage of clusters,
to select outliers. The number of outliers selected by this filter with
different values of p (i.e. from 0.01 to 0.09) are given in figure
??. The principle is to consider p ∈ [0..1], a percentage given
by the end-user, d = maxV al − minV al the range of cluster
sizes and y = (p × d) + minV al. Then, the filter aims to select
only clusters having size s, such that s ≤ y. For instance, with
s = {1, 3, 10, 11, 15, 20, 55, 100} a series of sizes and x = 0.1
we have d = 100 − 1 = 99, y = 1 + (0.1 × 99) = 10 and
the set of outliers will be o = {1, 3, 10}. In our experiments, this
filter is generally better than a top-k filter. Actually, we can notice
homogeneous results from Figure ??. For instance, with batch 13
we can see a number of outliers ranging from 24 (1 %) to 70 (9 %).

Figures 3 and 4 give a comparison of WOD (applied to the same
data) with top-k and percentage filtering. In figure 3, we compare
WOD with a top-10 and a top-80 filter. Filter top-80 gives good
results for approximately 50% of the batches, whereas filter-10 al-
ways gives very low values (size 1 or 2). Unfortunately, a value
of 80 for this filter cannot be considered as a reference. For in-
stance, in batch number 11, we notice a cluster having size 127 is
considered an outlier. The maximum size of a cluster in batch 11 is
172 and there are 82 clusters. This result is thus not acceptable and

Batch 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of Objects 1391 2076 2234 1635 2174 1672 1955 2009 2455 2182 2857 2498 2294 2698 2090
Number of Clusters 154 92 118 98 128 116 119 111 119 108 82 94 87 106 122

Table 1: Batches, objects and clusters

Figure 3: Comparison between top-k and WOD

Figure 4: Comparison between % filters and WOD

shows that top-k is unable to adjust to changes in the distribution of
cluster sizes. On the other hand, thanks to its wavelet feature, WOD
is able to automatically adjust and will select 8 as a maximum size
of an outlier.

In figure 4, we focus on three percentage filters with 1%, 4%,
9% and we compare them to WOD. Our observation is that WOD
and 4% would give similar results. For instance, with batch 11, we
know that WOD labels clusters having size less than or equal to 8
as outliers. That filtering gives a total of 38 clusters (where filter 4
% gives 45 outliers). These clusters represent a total of 184 objects
in a batch which contains 2294 objects. Therefore, the advantage
of WOD over the percentage filter is double:

1. WOD does not require any parameter tuning. It adjusts auto-
matically, whatever the distribution shape and the number of
clusters. In contrast, the end-user will have to try several per-
centage values before finding the good range (i.e. between

3% and 9% the percentage filter gives good outliers for the
first batches). Furthermore, the outlier detection provided by
WOD will not degrade with a variation of distribution shape
over time. In our case, the distribution is usually exponential.
Let us consider a change of usage, or a change of cluster-
ing method, resulting in a variation of the distribution shape.
That new shape could be logarithmic, for instance. Then, the
percentage filter would have to be manually modified to fit
that new distribution, whereas WOD would keep giving the
good set of outliers without manual settings.

2. WOD gives a natural separation between small and big values
(according to theorem 1). Let us consider our previous illus-
tration of a distribution s = {1, 3, 10, 11, 15, 20, 55, 100}.
We know that on this distribution a 10% filter would give
the following set of outliers :o = {1, 3, 10}. However, why
not including 11 into o? Actually, 10 and 11 are very close
values. On the other hand, with WOD we have o = {1, 3},
which is obviously a natural and realistic result.

7. CONCLUSION

8. REFERENCES
[1] E. Aleskerov, B.and Freisleben, and B. Rao. Cardwatch: A

neural network based database mining system for credit card
fraud detection. In IEEE Computational Intelligence for
Financial Engineering, 1997.

[2] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:
identifying density-based local outliers. SIGMOD Records,
29(2):93–104, 2000.

[3] Ingrid Daubechies. Ten lectures on wavelets. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA,
1992.

[4] L. Ertoz, E. Eilertson, A. Lazarevic, P.-N. Tan, V. Kumar,
J. Srivastava, and P. Dokas. Minds - minnesota intrusion
detection system. Data Mining - Next Generation Challenges
and Future Directions, 2004.

[5] H. Fan, O. R. Zaiane, A. Foss, and J. Wu. A nonparametric
outlier detection for effectively discovering top-n outliers
from engineering data. In Pacific-Asia conference on
knowledge discovery and data mining, 2006.

[6] R. Fujimaki, T. Yairi, and K. Machida. An approach to
spacecraft anomaly detection problem using kernel feature
space. In 11th ACM SIGKDD international conference on
Knowledge discovery in data mining, 2005.

[7] Z. He, X. Xu, and S. Deng. Discovering cluster-based local
outliers. Pattern Recognition Letters, 24, 2003.

[8] M. F. Jaing, S. S. Tseng, and C. M. Su. Two-phase clustering
process for outliers detection. Pattern Recogn. Lett.,
22(6-7):691–700, 2001.

[9] W. Jin, A. K. H. Tung, and J. Han. Mining top-n local
outliers in large databases. In 7th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 293–298, 2001.

[10] J. Joshua Oldmeadow, S. Ravinutala, and C. Leckie.
Adaptive clustering for network intrusion detection. In 8th
Pacific-Asia Conference on Advances in Knowledge
Discovery and Data Mining, volume 3056 of Lecture Notes
in Computer Science, pages 255–259, 2004.

[11] E. M. Knorr and R. T. Ng. Algorithms for mining
distance-based outliers in large datasets. In 24rd
International Conference on Very Large Data Bases, pages
392–403, 1998.

[12] H. Kum, J. Pei, W. Wang, and D. Duncan. ApproxMAP:
Approximate mining of consensus sequential patterns. In
Proceedings of SIAM Int. Conf. on Data Mining, San
Francisco, CA, 2003.

[13] Alice Marascu and Florent Masseglia. Mining sequential
patterns from data streams: a centroid approach. J. Intell. Inf.
Syst., 27(3):291–307, 2006.

[14] S. Papadimitriou, H. Kitagawa, P.B. Gibbons, and
C. Faloutsos. LOCI: fast outlier detection using the local
correlation integral. In 19th International Conference on
Data Engineering, 2003.

[15] L. Portnoy, E. Eskin, and S. Stolfo. Intrusion detection with
unlabeled data using clustering. In ACM CSS Workshop on
Data Mining Applied to Security, 2001.

[16] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient
algorithms for mining outliers from large data sets. SIGMOD
Records, 29(2):427–438, 2000.

[17] Karlton Sequeira and Mohammed Zaki. Admit:
anomaly-based data mining for intrusions. In KDD ’02:
Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
386–395, New York, NY, USA, 2002. ACM.

[18] S. Zhong, T. M. Khoshgoftaar, and N. Seliya.
Clustering-based network intrusion detection. International
Journal of Reliability, Quality and Safety Engineering, 14,
2007.

