

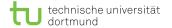
DeepLearning on FPGAs

Introduction to Data Mining

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

October 18, 2016

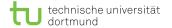


Structure of this course

Goals:

- → Learning the basics of Data Mining
- → Learning the basics of Deep Learning
- → Learning the basics of FPGA programming

¹https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/



Structure of this course

Goals:

- → Learning the basics of Data Mining
- → Learning the basics of Deep Learning
- → Learning the basics of FPGA programming

Small lecture-phase in the beginning

- Week 1 4: Data Mining and Deep Learning
- Week 4 6: FPGAs and Software

¹https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/

Structure of this course

Goals:

- → Learning the basics of Data Mining
- → Learning the basics of Deep Learning
- → Learning the basics of FPGA programming

Small lecture-phase in the beginning

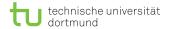
- Week 1 4: Data Mining and Deep Learning
- Week 4 6: FPGAs and Software

Goal: Dogs vs. Cats Kaggle competition¹

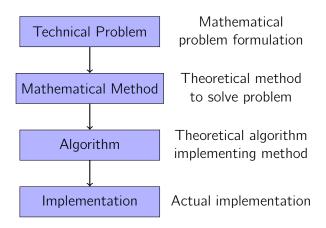
- Image classification on FPGA with Deep Learning
- Train classifier on FPGA with Deep Learning

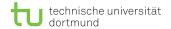
¹https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/

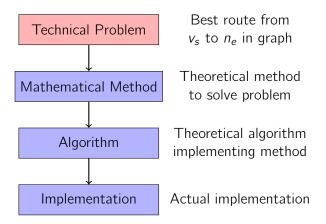
The Goal: Predict dogs and cats

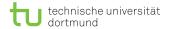


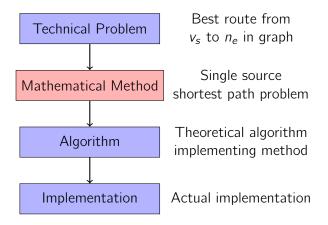
Overall Computer Science Approach

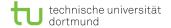


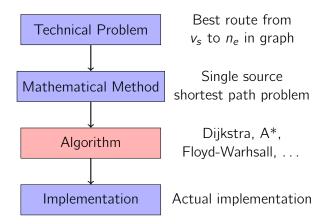


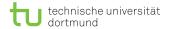


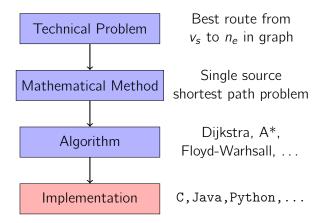


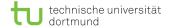




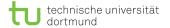








What is Data Mining?



"The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use."

"The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use."

Fact: Data Mining follows the same general approach

But: Some problems are hard to be exactly formalised and thus

need some special treatment

"The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use."

Fact: Data Mining follows the same general approach

But: Some problems are hard to be exactly formalised and thus

need some special treatment

Example: Find all cats on the given pictures

→ What is a mathematical representation of a cat?

"The overall goal of the data mining process is to extract information from a data set and transform it into an understandable structure for further use."

Fact: Data Mining follows the same general approach

But: Some problems are hard to be exactly formalised and thus need some special treatment

Example: Find all cats on the given pictures

 \rightarrow What is a mathematical representation of a cat?

Idea: Formalise given problem by positive and negative examples

 \rightarrow That is our data

Problem 1: Data needs to be gathered and pre-processed → crawling the web for images with tag "cat"

Problem 1: Data needs to be gathered and pre-processed

ightarrow crawling the web for images with tag "cat"

Problem 2: Totally unclear what knowledge our data might contain

- ightarrow cats and dogs can be on the same picture
- ⇒ We have to "mine" data and knowledge from it

Problem 1: Data needs to be gathered and pre-processed

ightarrow crawling the web for images with tag "cat"

Problem 2: Totally unclear what knowledge our data might contain

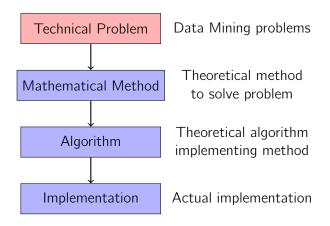
- ightarrow cats and dogs can be on the same picture
- ⇒ We have to "mine" data and knowledge from it

Data Mining is an interdisciplinary field of:

- computer science: algorithm, theory, data structure, algorithm implementation, data warehousing, . . .
- statistics: algorithm, theoretical insights, modelling, ...
- domain specifics: theoretical and practical insights, special knowledge, . . .

Our focus: Mostly implementation and algorithms

Overall Computer Science Approach



Data Mining: Problems

Our focus: Classification

Given:

- Set of possible classes \mathcal{Y} , e.g. $\mathcal{Y} = \{-1, +1\}$
- Set of labelled training examples / data $\mathcal{D} = \{ (\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N) \mid (\vec{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y} \}$
- A model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ with parameter $\theta \in \Theta$

Find: $\widehat{\theta}$, so that $f_{\widehat{\theta}}(\vec{x}) = \widehat{f}(\vec{x})$ that predicts class y for given \vec{x}

Data Mining: Problems

Our focus: Classification

Given:

- Set of possible classes \mathcal{Y} , e.g. $\mathcal{Y} = \{-1, +1\}$
- Set of labelled training examples / data $\mathcal{D} = \{(\vec{x}_1, y_1), \dots, (\vec{x}_N, y_N) \mid (\vec{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}$
- A model $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ with parameter $\theta \in \Theta$

Find: $\widehat{\theta}$, so that $f_{\widehat{\theta}}(\vec{x}) = \widehat{f}(\vec{x})$ that predicts class y for given \vec{x}

Note 1: If $|\mathcal{Y}| = 2$ its called binary classification

Note 2: If $\mathcal{Y} = \mathbb{R}$ its called regression

Our focus: Binary classification: $\mathcal{Y} = \{0, +1\}$ or $\mathcal{Y} = \{-1, +1\}$

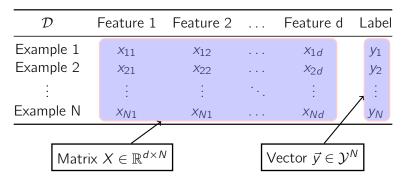
Data Mining: Notation

Note: The input space can be (nearly) everything **Our focus:** d-dimensional vectors: $\vec{x} \in \mathcal{X} \subseteq \mathbb{R}^n$

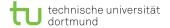
\mathcal{D}	Feature 1	Feature 2		Feature d	Label
Example 1 Example 2	<i>X</i> ₁₁ <i>X</i> ₂₁	X ₁₂ X ₂₂		X _{1d} X _{2d}	У1 У2
:	:	:	٠.	:	:
Example N	x_{N1}	x_{N1}		x_{Nd}	УN

Data Mining: Notation

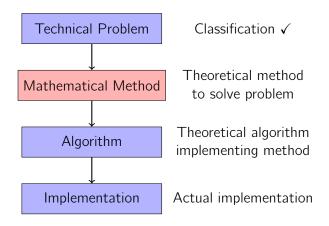
Note: The input space can be (nearly) everything **Our focus:** d-dimensional vectors: $\vec{x} \in \mathcal{X} \subseteq \mathbb{R}^n$



then: in short $\mathcal{D} = (X, \vec{y})$



Overall Computer Science Approach



Data Mining: K nearest neighbour method

Obviously: We want a prediction method $\hat{f}(\vec{x})$

Observation: Examples $\vec{x_i}$ and $\vec{x_j}$ which are similar probably have

the same label $y_i = y_j$

Data Mining: K nearest neighbour method

Obviously: We want a prediction method $\widehat{f}(\vec{x})$ **Observation:** Examples $\vec{x_i}$ and $\vec{x_j}$ which are similar probably have the same label $y_i = y_j$

Idea: Given new and unseen observation \vec{x}

- use distance function $dist: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
- calculate $d(\vec{x}, \vec{x_i})$ for all i = 1, ..., N
- find k nearest neighbours of \vec{x} $S = \{(\vec{x}_1, y_1), \dots, (\vec{x}_k, y_k)\}$
- predict most common label in S

Data Mining: K nearest neighbour method

Obviously: We want a prediction method $\widehat{f}(\vec{x})$ **Observation:** Examples $\vec{x_i}$ and $\vec{x_j}$ which are similar probably have the same label $y_i = y_j$

Idea: Given new and unseen observation \vec{x}

- use distance function $dist: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
- calculate $d(\vec{x}, \vec{x_i})$ for all i = 1, ..., N
- find k nearest neighbours of \vec{x} $S = \{(\vec{x}_1, y_1), \dots, (\vec{x}_k, y_k)\}$
- predict most common label in S

Note: If *S* has equal number of positive and negative examples, take a random class

Data Mining: K-NN (Some Notes)

Note 1: K-NN has no real model θ , we just use the data directly

Data Mining: K-NN (Some Notes)

Note 1: K-NN has no real model θ , we just use the data directly

K-NN has two parameters

dist Models the distance of neighbours. This must fit the data given! Usually euclidean norm is a good start:

$$dist(\vec{x}_i, \vec{x}_j) = \sqrt{(\vec{x}_i - \vec{x}_j)^T \cdot (\vec{x}_i - \vec{x}_j)}$$

K Models the number of neighbours we want to look at.

Data Mining: K-NN (Some Notes)

Note 1: K-NN has no real model θ , we just use the data directly

K-NN has two parameters

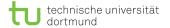
dist Models the distance of neighbours. This must fit the data given! Usually euclidean norm is a good start:

$$dist(\vec{x}_i, \vec{x}_j) = \sqrt{(\vec{x}_i - \vec{x}_j)^T \cdot (\vec{x}_i - \vec{x}_j)}$$

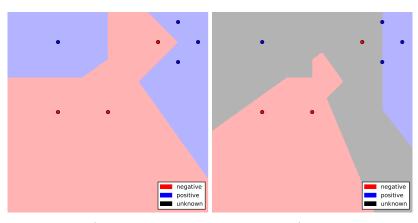
K Models the number of neighbours we want to look at.

Note 2: K-NN can be used for regression as well. Just average the labels in S:

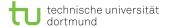
$$\widehat{f}(\vec{x}) = \frac{1}{k} \sum_{y \in S} y$$



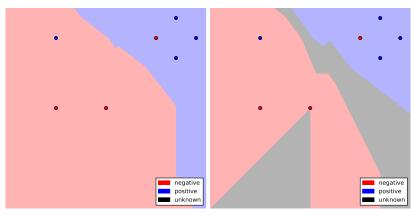
Data Mining: K-NN Examples



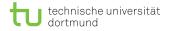
k = 1 k = 2



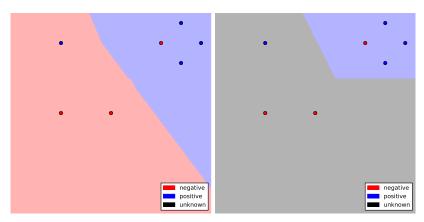
Data Mining: K-NN More examples



k = 3 k = 4

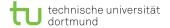


Data Mining: K-NN Even more examples

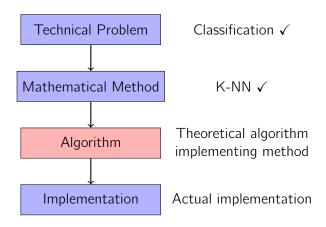


k = 5 k = 6

DeepLearning on FPGAs



Overall Computer Science Approach



Data Mining: Naive K-NN algorithm

Let: \vec{x}^* be new unobserved data to be classified

```
1: S = \emptyset

2: for i = 1, ..., K do

3: for \vec{x} \in X do

4: if d(\vec{x}^*, \vec{x}) < min \text{ and } \vec{x} \notin S then

5: min = d(\vec{x}^*, \vec{x})

6: \vec{x}_{min} = \vec{x}

7: end if

8: S = S \cup \{\vec{x}_{min}\}

9: end for

10: end for
```


Data Mining: Naive K-NN algorithm

Let: \vec{x}^* be new unobserved data to be classified

```
1: S = \emptyset
                                                    Computation in O(d)
 2: for i = 1, ..., K do
     for \vec{x} \in X do
3.
           if d(\vec{x}^*, \vec{x}) \leq min and \vec{x} \notin S then
               min = d(\vec{x}^*, \vec{x})
 5:
              \vec{X}_{min} = \vec{X}
6:
           end if
                                               Lookup in O(K)
7.
          S = S \cup \{\vec{x}_{min}\}\
8:
        end for
 9.
10: end for
```


Data Mining: Naive K-NN algorithm

Let: \vec{x}^* be new unobserved data to be classified

```
1: S = \emptyset
                                                  Computation in O(d)
 2: for i = 1, ..., K do
     for \vec{x} \in X do
3.
           if d(\vec{x}^*, \vec{x}) < min and \vec{x} \notin S then
              min = d(\vec{x}^*, \vec{x})
 5:
             \vec{X}_{min} = \vec{X}
    end if
                                             Lookup in O(K)
7.
          S = S \cup \{\vec{x}_{min}\}\
8:
        end for
 9.
10: end for
```

Worst Case runtime: $O(K^2Nd)$ for every new example!

We want: Extract model $\widehat{\theta}$ once, then apply it

Thus: Model extraction can be slow, but application should be fast

We want: Extract model $\widehat{\theta}$ once, then apply it

Thus: Model extraction can be slow, but application should be fast

Often: $k \le 20$, $d \approx 100 - 1000$, $N \ge 1000$

Observation 1: Our K-NN algorithm does not really compute a model. It just uses the data $\mathcal{D} \to \text{really fast model computation}$

We want: Extract model $\widehat{\theta}$ once, then apply it

Thus: Model extraction can be slow, but application should be fast

Often: $k \le 20$, $d \approx 100 - 1000$, $N \ge 1000$

Observation 1: Our K-NN algorithm does not really compute a model. It just uses the data $\mathcal{D} \to \text{really fast model}$ computation

But: Application is really slow, since we search over all examples **Observation 2:** It is enough to only look at examples "near" \vec{x}^*

We want: Extract model $\widehat{\theta}$ once, then apply it

Thus: Model extraction can be slow, but application should be fast

Often: $k \le 20$, $d \approx 100 - 1000$, $N \ge 1000$

Observation 1: Our K-NN algorithm does not really compute a model. It just uses the data $\mathcal{D} \to \text{really}$ fast model computation

But: Application is really slow, since we search over all examples **Observation 2:** It is enough to only look at examples "near" \vec{x}^*

Idea: Pre-process \mathcal{D} (\rightarrow data structures), so that fast retrival of

neighbours is possible ⇒ "Fast nearest neighbour search"

Thus: Training time increases, but queries are faster

Fact: There are many algorithms realising this idea

- Tree structures: k-d tree, quadtree, range tree, . . .
- Locality Sensitive Hashing: Random projection, TLSH, ...
- Approximative Nearest Neighbour: Best bin first, LSH, . . .

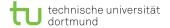
Fact: There are many algorithms realising this idea

- Tree structures: k-d tree, quadtree, range tree, . . .
- Locality Sensitive Hashing: Random projection, TLSH, ...
- Approximative Nearest Neighbour: Best bin first, LSH, . . .

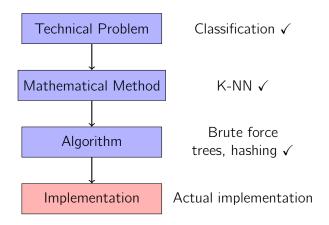
Usually we expect for the average case:

- **Pre-processing:** $O(Nd \log(Nd))$
- **Queries:** $O(Kd \log(N))$

Bottom line: The runtime not only depends on the method, but also the algorithm realising it



Overall Computer Science Approach



Obviously: Implementation also influences the runtime!

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

- System: CPU, GPU, FPGA, ...
- Hardware: Word length, cache sizes, vectorization, ...
- **Software:** Paging in OS, (Multi-) Threading, Swapping, ...
- Language: C vs. Java vs. Haskell ...

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

- System: CPU, GPU, FPGA, ...
- Hardware: Word length, cache sizes, vectorization, . . .
- **Software:** Paging in OS, (Multi-) Threading, Swapping, ...
- Language: C vs. Java vs. Haskell ...

Usually: Use language and system we know

But: Some systems / hardware is better at certain tasks

 \rightarrow e.g. graphics cards are built to do matrix-vector multiplication

Obviously: Implementation also influences the runtime!

Fact: We need to take the underlying system into account

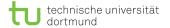
- **System:** CPU, GPU, FPGA, ...
- Hardware: Word length, cache sizes, vectorization, . . .
- **Software:** Paging in OS, (Multi-) Threading, Swapping, ...
- Language: C vs. Java vs. Haskell ...

Usually: Use language and system we know

But: Some systems / hardware is better at certain tasks

ightarrow e.g. graphics cards are built to do matrix-vector multiplication

Thus: Choose method and algorithm depending on system **Our focus:** Mostly methods and algorithms, later implementation



Overall Computer Science Approach



Fact 1: Prediction quality also depends on the algorithm, the implementation and the data

→ Integer operations are fast, but less accurate than floating point

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data

ightarrow Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms and even more implementations

 \rightarrow Brute force K-NN vs. indexing vs. approximated K-NN . . .

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data

ightarrow Integer operations are fast, but less accurate than floating point

Fact 2: There are many different models, even more algorithms and even more implementations

 \rightarrow Brute force K-NN vs. indexing vs. approximated K-NN . . .

Bottom line: Comparing specific methods is difficult

Thus: Compare performance of **computed** model

Fact 1: Prediction quality also depends on the algorithm, the implementation and the data

ightarrow Integer operations are fast, but less accurate than floating point

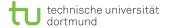
Fact 2: There are many different models, even more algorithms and even more implementations

 \rightarrow Brute force K-NN vs. indexing vs. approximated K-NN . . .

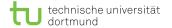
Bottom line: Comparing specific methods is difficult **Thus:** Compare performance of **computed** model

Important: There is no free lunch (**Wolpert, 1996**)

ightarrow Some methods work better on some problems, but no method works well on all problems



- how well explains the model training data?
- 2 can we give any guarantees for new predictions?
- 3 how well generalises the model to new and unseen data?



- 1 how well explains the model training data?
- 2 can we give any guarantees for new predictions?
- 3 how well generalises the model to new and unseen data?
- 1: K-NN just saves the data
- ightarrow does not explain the data at all

- 1 how well explains the model training data?
- 2 can we give any guarantees for new predictions?
- 3 how well generalises the model to new and unseen data?
- 1: K-NN just saves the data
- \rightarrow does not explain the data at all
- 2: K-NN assumes similarity depending on the distance function
- \rightarrow no guarantees at all, especially if distance function does not fit

Fact: In binary classification we have two choices: predict 0 or $1 \rightarrow 2$ possible wrong predictions and 2 possible correct predictions

Fact: In binary classification we have two choices: predict 0 or 1 ightarrow 2 possible wrong predictions and 2 possible correct predictions

Visualization: Confusion matrix

	Predicted value	
	True positive	False negative
True value	(TP)	(FN)
	False positive	True negative
	(FP)	(TN)

Fact: In binary classification we have two choices: predict 0 or $1 \rightarrow 2$ possible wrong predictions and 2 possible correct predictions

Visualization: Confusion matrix

	Predicted value	
True value	True positive (TP)	False negative (FN)
	False positive (FP)	True negative (TN)

Accuracy: $Acc = \frac{TP+TN}{N}$

Big Remark: The accuracy only tells us something about the data \mathcal{D} we know! There are no guarantees for new data

Obviously: The best model has Acc = 1, the worst has Acc = 0

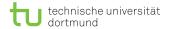
Observation: If we use k = 1, then Acc = 1 (perfect!)

Obviously: The best model has Acc = 1, the worst has Acc = 0

Observation: If we use k = 1, then Acc = 1 (perfect!)

Question: Is that what we want?

Clear: This is just memorizing the training data, no real learning! **Question:** How well deals our model with new, yet unseen data?



Obviously: The best model has Acc = 1, the worst has Acc = 0

Observation: If we use k = 1, then Acc = 1 (perfect!)

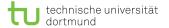
Question: Is that what we want?

Clear: This is just memorizing the training data, no real learning! **Question:** How well deals our model with new, yet unseen data?

Idea: Split data into training \mathcal{D}_{Train} and test data \mathcal{D}_{Test}

Then: \mathcal{D}_{Test} is new to the model $f_{\widehat{\theta}}$

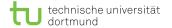
Question: How to split \mathcal{D} ?



- 1) Test/Train: Split \mathcal{D} by size, e.g. 80% training and 20% test data
- → Fast and easy to compute, but sensitive for "bad" splits.
- → Model quality might be over- or under-estimated

- 1) Test/Train: Split \mathcal{D} by size, e.g. 80% training and 20% test data
- \rightarrow Fast and easy to compute, but sensitive for "bad" splits.
- → Model quality might be over- or under-estimated
- **2) Leave-One-Out:** Use every example once for testing and train model on the remaining data. Average results.
- \rightarrow N models are computed, but insensitive for "bad" splits.
- → Usually impractical

- 1) Test/Train: Split \mathcal{D} by size, e.g. 80% training and 20% test data
- → Fast and easy to compute, but sensitive for "bad" splits.
- → Model quality might be over- or under-estimated
- **2) Leave-One-Out:** Use every example once for testing and train model on the remaining data. Average results.
- \rightarrow N models are computed, but insensitive for "bad" splits.
- → Usually impractical
- **3) K-fold cross validation:** Split data into *k* buckets. Use every bucket once for testing and train model on the rest. Average results.
- \rightarrow Insensitive for "bad" splits and practical. Usually k = 10.



Summary

Important concepts:

- Classification is one data mining task
- Training data is used to define and solve the task
- A Method is a general approach / idea to solve a task
- **A algorithm** is a way to realise a method
- A model forms the extracted knowledge from data
- Accuracy measures the model quality given the data

Summary

Important concepts:

- Classification is one data mining task
- Training data is used to define and solve the task
- A Method is a general approach / idea to solve a task
- **A algorithm** is a way to realise a method
- A model forms the extracted knowledge from data
- Accuracy measures the model quality given the data

Note: Runtime and model quality depend on method, algorithm and implementation

So far: K-NN is one method with many different algorithms and implementations to solve classification problems

Some administration stuff

Requirements to pass this course:

- Implement your own neural network for the FPGA
- Apply it to the data of the kaggle competition
- Give a small presentation / review about your approach

Thus: After the lecture phase you are free to do what you want until the end of the semester \rightarrow you work in self-organizing groups **Question:** When will we meet again for lectures?

Homework: I give some simple homeworks to get you started more easily \rightarrow We will use the MNIST dataset for that

- 32 × 32 pixel grayscaled images of numbers 0 9 (10 labels)
- already pre-processed in CSV format
- test/train split plus a smaller sample for development

Homework

Homework until next meeting

- Implement a simple CSV-Reader
 - First column contains the label (0-9)
 - Remaining 784 columns contain grayscale value (0 255)
- Implement accuracy computation for Test/Train split
 - We discussed the binary confusion matrix (4 entries)
 - Here 10 classes: Only diagonal of the confusion matrix needed for the accuracy → just count correct classifications and divide it by the total number of test examples
- Implement K-NN with distance function of your choice
 - Euclidean distance is a good start
- **Note 1:** We will later use C, so please use C or a C-like language **Note 2:** Use the smaller split for development and the complete data set for testing → What's your accuracy?