

DeepLearning on FPGAs

Introduction to Artificial Neural Networks

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

November 2, 2016

Recap: Computer Science Approach

Recap: Data Mining (1)

Important concepts:

- Classification is one data mining task
- **Training data** is used to define and solve the task
- A Method is a general approach / idea to solve a task
- A algorithm is a way to realise a method
- A model forms the extracted knowledge from data
- Accuracy measures the model quality given the data

Recap: Data Mining (1)

Important concepts:

- Classification is one data mining task
- **Training data** is used to define and solve the task
- A Method is a general approach / idea to solve a task
- A algorithm is a way to realise a method
- A model forms the extracted knowledge from data
- Accuracy measures the model quality given the data

K-NN: Look at the k nearest neighbours of \vec{x}^* and use most common label as prediction

Homework: How good was your prediction?

The MNIST dataset

Common error rates¹ without pre-procssing: K-NN: 2.83% - SVM: 1.4% - CNN: $\sim 0.4\%$

Big Note: Dataset already centered and scaled

¹See: http://yann.lecun.com/exdb/mnist/

K-NN: Example (1)

k=1, all points available

k = 1, 2 points missing

K-NN: Example (2)

 $k=1,\,8$ points missing

k = 1, 12 points missing

Note: K-NN fails to recognize patterns in incomplete data

Note: K-NN fails to recognize patterns in incomplete data **Fact 1:** State space grows exponentially with increasing dimension. Example $\mathcal{X} = \{1, 2, \dots, 10\}$

- **For:** \mathcal{X}^1 , there are 10 different observations
- For: \mathcal{X}^2 , there are $10^2 = 100$ different observations
- For: \mathcal{X}^3 , there are $10^3 = 1000$ different observations ...

Note: K-NN fails to recognize patterns in incomplete data **Fact 1:** State space grows exponentially with increasing dimension. Example $\mathcal{X} = \{1, 2, \dots, 10\}$

- **For:** \mathcal{X}^1 , there are 10 different observations
- For: \mathcal{X}^2 , there are $10^2 = 100$ different observations
- For: \mathcal{X}^3 , there are $10^3 = 1000$ different observations . . .

Fact 2: Training data is generated by a noisy real-world process

- We usually have no influence on the type of training data
- We usually cannot interfere with the real-world process

Note: K-NN fails to recognize patterns in incomplete data **Fact 1:** State space grows exponentially with increasing dimension. Example $\mathcal{X} = \{1, 2, \dots, 10\}$

- **For:** \mathcal{X}^1 , there are 10 different observations
- For: \mathcal{X}^2 , there are $10^2 = 100$ different observations
- For: \mathcal{X}^3 , there are $10^3 = 1000$ different observations . . .

Fact 2: Training data is generated by a noisy real-world process

- We usually have no influence on the type of training data
- We usually cannot interfere with the real-world process

Thus: Training data should be considered incomplete and noisy

Fact: There is no free lunch (Wolpert, 1996)

- Every method has is advantages and disadvantages
- Most methods are able to perfectly learn a given toy data set
- Problem occurs with noise, outlier and generalisation

Fact: There is no free lunch (Wolpert, 1996)

- Every method has is advantages and disadvantages
- Most methods are able to perfectly learn a given toy data set
- Problem occurs with noise, outlier and generalisation

Conclusion: All methods are equally good or bad **But:** Some methods prefer certain representations

Fact: There is no free lunch (Wolpert, 1996)

- Every method has is advantages and disadvantages
- Most methods are able to perfectly learn a given toy data set
- Problem occurs with noise, outlier and generalisation

Conclusion: All methods are equally good or bad **But:** Some methods prefer certain representations

Feature Engineering: Finding the right representation for data

- Reduce dimension? Increase dimension?
- Add additional information? Regularities?
- Transform data completely?

Feature Engineering: Example

Raw data without transformation. Linear model is a bad choice. Parabolic model would be better. Data transformed with $\phi(x_1,x_2)=(x_1,x_2-0.3\cdot x_1^2).$ Now linear model fits the problem.

Feature Engineering: Conclusion

Conclusion: Good features are crucial for good results!

Question: How to get good features?

Feature Engineering: Conclusion

Conclusion: Good features are crucial for good results!

Question: How to get good features?

- **1 By hand:** Domain experts and data miner examine the data and try different features based on common knowledge.
- **Semi supervised:** Data miner examines the data and tries different similarity functions and classes of methods
- **3 Unsupervised:** Data miner only encodes some assumptions about regularities into the method.

Feature Engineering: Conclusion

Conclusion: Good features are crucial for good results!

Question: How to get good features?

- **1 By hand:** Domain experts and data miner examine the data and try different features based on common knowledge.
- **Semi supervised:** Data miner examines the data and tries different similarity functions and classes of methods
- **3 Unsupervised:** Data miner only encodes some assumptions about regularities into the method.

Note 1: Hand-crafted features give us insight about the process **Note 2:** Semi/unsupervised features give us insight about the data **Our focus:** Unsupervised feature extraction.

Data Mining Basics

What is Deep Learning?

Deep Learning Basics

So... What is Deep Learning? **Well...** its currently one of the big things in Al!

- Since 2010: DeepMind learns and plays old Atari games
- **Since 2012:** Google is able to find cats in youtube videos
- December 2014: Near real-time translation in Skype
- October 2015: AlphaGo beats the European Go champion
- October 2015: Tesla deploys Autopilot in their cars
- March 2016: AlphaGo beats the Go Worldchampion
- June 2016: Facebook introduces DeepText
- . . .

Deep Learning: Example

Deep Learning Basics

Deep Learning: is a branch of Machine Learning dealing with

- (Deep) Artificial Neural Networks (ANN)
- High Level Feature Processing
- Fast Implementations

Deep Learning Basics

Deep Learning: is a branch of Machine Learning dealing with

- (Deep) Artificial Neural Networks (ANN)
- High Level Feature Processing
- Fast Implementations

ANNs are well known! So what's new about it?

- We have more data and more computation power
- We have a better understanding of optimization
- We use a more engineering-style approach

Our focus now: Artificial Neural Networks

Simple case: Let $\vec{x} \in \mathbb{B}^d$ Biology's view:

Geometrical view:

Simple case: Let $\vec{x} \in \mathbb{B}^d$ Biology's view:

"Fire" if input signals reach threshold:

$$f(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} x_i \ge b \\ 0 & \text{else} \end{cases}$$

Geometrical view:

Predict class depending on side of line (count):

$$f(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^d x_i \ge b \\ 0 & \text{else} \end{cases}$$

Note: We basically count the number of positive inputs **1943:** McCulloch-Pitts Neuron:

- Simple linear model with binary input and output
- Can model boolean OR with b=1
- Can model boolean AND with b = d
- Simple extension also allows boolean NOT

Note: We basically count the number of positive inputs **1943:** McCulloch-Pitts Neuron:

- Simple linear model with binary input and output
- Can model boolean OR with b=1
- Can model boolean AND with b = d
- Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every boolean function (functional complete)

Note: We basically count the number of positive inputs **1943:** McCulloch-Pitts Neuron:

- Simple linear model with binary input and output
- Can model boolean OR with b=1
- Can model boolean AND with b = d
- Simple extension also allows boolean NOT

Thus: A network of McCulloch-Pitts neurons can simulate every boolean function (functional complete)

Remark: That does not help with classification, thus

- **Rosenblatt 1958:** Use weights $w_i \in \mathbb{R}$ for every input $x_i \in \mathbb{B}$
- Minksy-Papert 1959: Allow real valued inputs $x_i \in \mathbb{R}$

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier $f \colon \mathbb{R}^d \to \{0,1\}$ with

$$\widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i \ge b \\ 0 & \text{else} \end{cases}$$

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier $f \colon \mathbb{R}^d \to \{0,1\}$ with

$$\widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i \ge b \\ 0 & \text{else} \end{cases}$$

Linear function in d=2: $y=mx+\tilde{b}$

Perceptron: $w_1 \cdot x_1 + w_2 \cdot x_2 \ge b \Leftrightarrow x_2 = \frac{b}{w_2} - \frac{w_1}{w_2} x_1$

Obviously: A perceptron is a hyperplane in d dimensions

Artificial Neural Networks: Perceptron

A perceptron is a linear classifier $f \colon \mathbb{R}^d \to \{0,1\}$ with

$$\widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \sum_{i=1}^{d} w_i \cdot x_i \ge b \\ 0 & \text{else} \end{cases}$$

Linear function in d=2: $y=mx+\tilde{b}$

Perceptron: $w_1 \cdot x_1 + w_2 \cdot x_2 \ge b \Leftrightarrow x_2 = \frac{b}{w_2} - \frac{w_1}{w_2} x_1$

Obviously: A perceptron is a hyperplane in d dimensions

Note: $\vec{w} = (w_1, \dots, w_d, b)^T$ are the parameters of a perceptron **Notation:** Given \vec{x} we add a 1 to the end of it $\vec{x} = (x_1, \dots, x_d, 1)^T$

$$\mathbf{Then}: \ \widehat{f}(\vec{x}) = \begin{cases} +1 & \text{if } \vec{x} \cdot \vec{w}^T \geq 0 \\ 0 & \text{else} \end{cases}$$

Note: A perceptron assumes that the data is linear separable

Note: A perceptron assumes that the data is linear separable **Big Note:** This is an assumption and not necessarily true!

Note: A perceptron assumes that the data is linear separable **Big Note:** This is an assumption and not necessarily true! **But:** In case of linear separability, there are many "good" \vec{w}

Note: A perceptron assumes that the data is linear separable **Big Note:** This is an assumption and not necessarily true! **But:** In case of linear separability, there are many "good" \vec{w}

Note: We are happy with **one** separative vector \vec{w}

Question: How do we get the weights \vec{w} ?

Question: How do we get the weights \vec{w} ? **Observation:** We look at $\vec{x} \cdot \vec{w}^T > 0$

- if output was 0 but should have been 1 increment weights
- if output was 1 but should have been 0 decrement weights
- if output was correct, don't change weights

Question: How do we get the weights \vec{w} ? **Observation:** We look at $\vec{x} \cdot \vec{w}^T > 0$

- if output was 0 but should have been 1 increment weights
- if output was 1 but should have been 0 decrement weights
- if output was correct, don't change weights
- 1: $\vec{w} = rand(1, \dots, d+1)$ 2: while ERROR do 3: for $(\vec{x}_i, y_i) \in \mathcal{D}$ do 4: $\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}(\vec{x}_i))$ 5: end for

6: end while

Question: How do we get the weights \vec{w} ? **Observation:** We look at $\vec{x} \cdot \vec{w}^T > 0$

- if output was 0 but should have been 1 increment weights
- lacksquare if output was 1 but should have been 0 decrement weights
- if output was correct, don't change weights
- 1: $\vec{w} = rand(1, \dots, d+1)$ 2: while FRROR do
- 3: for $(\vec{x}_i, y_i) \in \mathcal{D}$ do
- 4: $\vec{w} = \vec{w} + \alpha \cdot \vec{x}_i \cdot (y_i \widehat{f}(\vec{x}_i))$
- 5: **end for**
- 6: end while

Note: $\alpha \in \mathbb{R}_{>0}$ is a stepsize / learning rate

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

■ Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

■ Case 1:
$$y_i - \widehat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \widehat{f}_{old}(\vec{x}_i) = 0$$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

■ Case 1:
$$y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$$

$$\hat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

$$J_{new}(x_i) = x_i \cdot (w_{new}) = x_i \cdot (w_{old} + \alpha \cdot 1 \cdot x_i)$$
$$= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

■ Case 1:
$$y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T
= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

 $ightarrow \vec{w}$ is incremented and classification is moved towards 1 \checkmark

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

■ Case 1:
$$y_i - \widehat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \widehat{f}_{old}(\vec{x}_i) = 0$$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T$$

$$= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

 $ightarrow ec{w}$ is incremented and classification is moved towards 1 \checkmark

■ Case 2:
$$y_i - \widehat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \widehat{f}_{old}(\vec{x}_i) = 1$$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

■ Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T
= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

 $ightarrow ec{w}$ is incremented and classification is moved towards 1 \checkmark

■ Case 2:
$$y_i - \widehat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \widehat{f}_{old}(\vec{x}_i) = 1$$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} - \alpha \cdot 1 \cdot \vec{x}_i)^T$$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

■ Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\begin{aligned} \widehat{f}_{new}(\vec{x}_i) &= \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T \\ &= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2 \end{aligned}$$

 $ightarrow ec{w}$ is incremented and classification is moved towards 1 \checkmark

■ Case 2:
$$y_i - \hat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \hat{f}_{old}(\vec{x}_i) = 1$$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} - \alpha \cdot 1 \cdot \vec{x}_i)^T
= \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot ||\vec{x}_i||^2$$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Wrong classification:

■ Case 1: $y_i - \hat{f}_{old}(\vec{x}_i) = 1 \Rightarrow y_i = 1, \hat{f}_{old}(\vec{x}_i) = 0$

$$\widehat{f}_{new}(\vec{x}_i) = \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} + \alpha \cdot 1 \cdot \vec{x}_i)^T
= \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T + \alpha \cdot ||\vec{x}_i||^2$$

 $ightarrow ec{w}$ is incremented and classification is moved towards 1 \checkmark

■ Case 2:
$$y_i - \widehat{f}_{old}(\vec{x}_i) = -1 \Rightarrow y_i = 0, \widehat{f}_{old}(\vec{x}_i) = 1$$

$$\begin{split} \widehat{f}_{new}(\vec{x}_i) &= \vec{x}_i \cdot (\vec{w}_{new})^T = \vec{x}_i \cdot (\vec{w}_{old} - \alpha \cdot 1 \cdot \vec{x}_i)^T \\ &= \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot \vec{x}_i \cdot \vec{x}_i^T = \vec{x}_i \cdot \vec{w}_{old}^T - \alpha \cdot ||\vec{x}_i||^2 \end{split}$$

 $ightarrow \vec{w}$ is decremented and classification is moved towards $0 \checkmark$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$

Update rule: $\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$ Correct classification: $y_i - \hat{f}(\vec{x}_i) = 0$

lacksquare $ec{w}_{new}=ec{w}_{old}$, thus $ec{w}$ is unchanged \checkmark

Update rule:
$$\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$$

Correct classification: $y_i - \hat{f}(\vec{x}_i) = 0$

lacksquare $ec{w}_{new}=ec{w}_{old}$, thus $ec{w}$ is unchanged \checkmark

Rosenblatt 1958 showed:

- Algorithms converges if \mathcal{D} is linear separable
- Algorithm may have exponential runtime

Update rule:
$$\vec{w}_{new} = \vec{w}_{old} + \alpha \cdot \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$$

Correct classification: $y_i - \hat{f}(\vec{x}_i) = 0$

lacksquare $ec{w}_{new}=ec{w}_{old}$, thus $ec{w}$ is unchanged \checkmark

Rosenblatt 1958 showed:

- Algorithms converges if \mathcal{D} is linear separable
- Algorithm may have exponential runtime

Variation: Batch processing - Update \vec{w} after testing all examples

$$\vec{w}_{new} = \vec{w}_{old} + \alpha \sum_{(\vec{x}_i, y_i) \in \mathcal{D}_{wrong}} \vec{x}_i \cdot (y_i - \hat{f}_{old}(\vec{x}_i))$$

Usually: Faster convergence, but more memory needed

ANN: The XOR Problem

Question: What happens if data is not linear separable?

ANN: The XOR Problem

Question: What happens if data is not linear separable?

Data linear separable, but noisy

Data not linear separable

ANN: The XOR Problem

Question: What happens if data is not linear separable?

Data linear separable, but noisy

Data not linear separable

Answer: Algorithm will never converge, thus:

- Use fixed number of iterations
- Introduce some acceptable error margin

Recap: (Hand crafted) Feature transformation always possible

But: What about an automatic way?

Recap: (Hand crafted) Feature transformation always possible

But: What about an automatic way?

Idea: If all you have is a perceptron, use more perceptrons!

Recap: (Hand crafted) Feature transformation always possible

But: What about an automatic way?

Idea: If all you have is a perceptron, use more perceptrons!

Biology's view:

x_1 x_2 x_d input layer hidden layer output layer

Geometric view:

Recap: (Hand crafted) Feature transformation always possible

But: What about an automatic way?

Idea: If all you have is a perceptron, use more perceptrons!

Biology's view:

Geometric view:

Now outputs depends on layers: $\widehat{f}(\vec{x}) = f_K(\dots f_2(f_1(\vec{x})))$

Observation:

- 1 perceptron: Separates space into two sets
- Many perceptrons in 1 layer: Identifies convex sets
- Many perceptrons in 2 layer: Identifies arbitrary sets

Observation:

- 1 perceptron: Separates space into two sets
- Many perceptrons in 1 layer: Identifies convex sets
- Many perceptrons in 2 layer: Identifies arbitrary sets

Hornik et. al 1989: MLP is a universal approximator

 \rightarrow Given enough hidden units, a MLP is able to represent any "well-conditioned" function **perfectly**

Observation:

- 1 perceptron: Separates space into two sets
- Many perceptrons in 1 layer: Identifies convex sets
- Many perceptrons in 2 layer: Identifies arbitrary sets

Hornik et. al 1989: MLP is a universal approximator

→ Given enough hidden units, a MLP is able to represent any "well-conditioned" function perfectly

Barron 1993: Worst case needs exponential number of hidden units

Observation:

- 1 perceptron: Separates space into two sets
- Many perceptrons in 1 layer: Identifies convex sets
- Many perceptrons in 2 layer: Identifies arbitrary sets

Hornik et. al 1989: MLP is a universal approximator

→ Given enough hidden units, a MLP is able to represent any "well-conditioned" function **perfectly**

Barron 1993: Worst case needs exponential number of hidden units

But: That does not necessarily mean, that we will find it!

- Usually we cannot afford exponentially large networks
- Learning of \vec{w} might fail due to data or numerical reasons

Question: So how do we learn the weights of our MLP?

Unfortunately: We need some more background

Question: So how do we learn the weights of our MLP?

Unfortunately: We need some more background

So far: We formulated an **optimization** algorithm to find

perceptron weights that minimize classification error

Question: So how do we learn the weights of our MLP?

Unfortunately: We need some more background

So far: We formulated an **optimization** algorithm to find perceptron weights that minimize classification **error**

This is a common approach in Data Mining:

- Specify model family
- Specify optimization procedure
- Specify a cost / loss function

Question: So how do we learn the weights of our MLP?

Unfortunately: We need some more background

So far: We formulated an **optimization** algorithm to find perceptron weights that minimize classification **error**

This is a common approach in Data Mining:

- Specify model family
- Specify optimization procedure
- Specify a cost / loss function

Note: Loss function \neq Accuracy

- ightarrow The loss function is minimized during learning
- → Accuracy is used to measure the model's quality after learning

Data Mining: Loss function (1)

Question: Given a model \widehat{f} , some data \mathcal{D} , how good is \widehat{f} ?

Fact: There are many different ways to measure the quality of \widehat{f}

Data Mining: Loss function (1)

Question: Given a model \widehat{f} , some data \mathcal{D} , how good is \widehat{f} ?

Fact: There are many different ways to measure the quality of \widehat{f}

0-1-loss:

$$\ell(\mathcal{D}, \widehat{\theta}) = \sum_{i=1}^{N} |y_i - 1f_{\widehat{\theta}}(\vec{x}_i)|$$

Note: We implicitly used 0-1-loss for perceptron learning

Data Mining: Loss function (1)

Question: Given a model \widehat{f} , some data \mathcal{D} , how good is \widehat{f} ?

Fact: There are many different ways to measure the quality of \widehat{f}

0-1-loss:

$$\ell(\mathcal{D}, \widehat{\theta}) = \sum_{i=1}^{N} |y_i - 1f_{\widehat{\theta}}(\vec{x}_i)|$$

Note: We implicitly used 0-1-loss for perceptron learning

Root-Mean Squared Error (RMSE):

$$\ell(\mathcal{D}, \widehat{\theta}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\widehat{\theta}}(\vec{x}_i))^2}$$

Note: Well known, has been around for ~ 200 years

Data Mining: Loss function (2)

Let: $\mathcal{Y} = \{0, +1\}$ and $f_{\widehat{\theta}}(\vec{x}_i) \in [0, 1]$

Cross-entropy / log liklihood

$$\ell(\mathcal{D}, \widehat{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} \left(y_i \ln \left(f_{\widehat{\theta}}(\vec{x}_i) \right) + (1 - y_i) \ln \left(1 - f_{\widehat{\theta}}(\vec{x}_i) \right) \right)$$

Data Mining: Loss function (2)

Let: $\mathcal{Y} = \{0, +1\}$ and $f_{\widehat{\theta}}(\vec{x}_i) \in [0, 1]$

Cross-entropy / log liklihood

$$\ell(\mathcal{D}, \widehat{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} \left(y_i \ln \left(f_{\widehat{\theta}}(\vec{x}_i) \right) + (1 - y_i) \ln \left(1 - f_{\widehat{\theta}}(\vec{x}_i) \right) \right)$$

Observation 1: All values in logarithms are negative

Therefore: Minus sign for minimization

Data Mining: Loss function (2)

Let: $\mathcal{Y} = \{0, +1\}$ and $f_{\widehat{\theta}}(\vec{x}_i) \in [0, 1]$

Cross-entropy / log liklihood

$$\ell(\mathcal{D}, \widehat{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} \left(y_i \ln \left(f_{\widehat{\theta}}(\vec{x}_i) \right) + (1 - y_i) \ln \left(1 - f_{\widehat{\theta}}(\vec{x}_i) \right) \right)$$

Observation 1: All values in logarithms are negative

Therefore: Minus sign for minimization

Statistical interpretation: Given two distributions p and q

- how much entropy (\approx chaos) is present in p
- how similar are p and q to each other?

Usually: Faster learning convergence than RMSE

Question: Given loss ℓ , some data \mathcal{D} , how to find optimal θ ?

Question: Given loss ℓ , some data \mathcal{D} , how to find optimal θ ?

Mathematically:

$$\widehat{\boldsymbol{\theta}} = \mathop{\arg\min}_{\boldsymbol{\theta}} \ell(\mathcal{D}, \boldsymbol{\theta})$$

Question: Given loss ℓ , some data \mathcal{D} , how to find optimal θ ?

Mathematically:

$$\widehat{\theta} = \operatorname*{arg\,min}_{\theta} \ell(\mathcal{D}, \theta)$$

Gradient descent: Follow steepest descent of ℓ with stepsize α

Question: Given loss ℓ , some data \mathcal{D} , how to find optimal θ ?

Mathematically:

$$\widehat{\theta} = \operatorname*{arg\,min}_{\theta} \ell(\mathcal{D}, \theta)$$

Gradient descent: Follow steepest descent of ℓ with stepsize α

- o use 1st derivative $\nabla_{\theta}\ell(\mathcal{D},\theta) = (\frac{\partial \ell(\mathcal{D},\widehat{\theta})}{\partial \theta_1},\dots,\frac{\partial \ell(\mathcal{D},\widehat{\theta})}{\partial \theta_d})^T$
- \to make a step in direction of $\nabla_{\theta}\ell(\mathcal{D}, \dot{\theta})$ with stepsize $\alpha \in \mathbb{R}_{>0}$

Question: Given loss ℓ , some data \mathcal{D} , how to find optimal θ ?

Mathematically:

$$\widehat{\theta} = \operatorname*{arg\,min}_{\theta} \ell(\mathcal{D}, \theta)$$

Gradient descent: Follow steepest descent of ℓ with stepsize α

- \rightarrow use 1st derivative $\nabla_{\theta}\ell(\mathcal{D},\theta) = (\frac{\partial \ell(\mathcal{D},\widehat{\theta})}{\partial \theta_1},\dots,\frac{\partial \ell(\mathcal{D},\widehat{\theta})}{\partial \theta_d})^T$
- \to make a step in direction of $\nabla_{\theta}\ell(\mathcal{D}, \dot{\theta})$ with stepsize $\alpha \in \mathbb{R}_{>0}$
 - 1: $\widehat{\theta} = rand(1, \dots, d)$
 - 2: while NOT STOP do
 - 3: $\widehat{\theta} = \widehat{\theta} \alpha \cdot \nabla_{\theta} \ell(\mathcal{D}, \widehat{\theta})$
 - 4: end while

Question: Given loss ℓ , some data \mathcal{D} , how to find optimal θ ?

Mathematically:

$$\widehat{\theta} = \operatorname*{arg\,min}_{\theta} \ell(\mathcal{D}, \theta)$$

Gradient descent: Follow steepest descent of ℓ with stepsize α

- \rightarrow use 1st derivative $\nabla_{\theta}\ell(\mathcal{D},\theta) = (\frac{\partial \ell(\mathcal{D},\widehat{\theta})}{\partial \theta_1},\dots,\frac{\partial \ell(\mathcal{D},\widehat{\theta})}{\partial \theta_d})^T$
- \to make a step in direction of $\nabla_{\theta}\ell(\mathcal{D}, \dot{\theta})$ with stepsize $\alpha \in \mathbb{R}_{>0}$
 - 1: $\widehat{\theta} = rand(1, \dots, d)$
 - 2: while NOT STOP do
 - 3: $\widehat{\theta} = \widehat{\theta} \alpha \cdot \nabla_{\theta} \ell(\mathcal{D}, \widehat{\theta})$

- e.g. 100 iterations
- e.g. minimum change in $\boldsymbol{\theta}$

4: end while

Question: Given loss ℓ , some data \mathcal{D} , how to find optimal θ ?

Mathematically:

$$\widehat{\theta} = \operatorname*{arg\,min}_{\theta} \ell(\mathcal{D}, \theta)$$

Gradient descent: Follow steepest descent of ℓ with stepsize α

- \rightarrow use 1st derivative $\nabla_{\theta}\ell(\mathcal{D},\theta) = (\frac{\partial \ell(\mathcal{D},\widehat{\theta})}{\partial \theta_1},\dots,\frac{\partial \ell(\mathcal{D},\widehat{\theta})}{\partial \theta_d})^T$
- o make a step in direction of $\nabla_{\theta}\ell(\mathcal{D}, \theta)$ with stepsize $\alpha \in \mathbb{R}_{>0}$
 - 1: $\widehat{\theta} = rand(1, \dots, d)$
 - 2: while NOT STOP do
 - 3: $\widehat{\theta} = \widehat{\theta} \alpha \cdot \nabla_{\theta} \ell(\mathcal{D}, \widehat{\theta})$

- e.g. 100 iterations
- e.g. minimum change in θ

4: end while

Note: We implicitly used $\nabla_{\theta} \ell(\mathcal{D}, \widehat{\theta}) = -\vec{x}_i \cdot (y_i - \widehat{f}(\vec{x}_i))$

Summary

Important concepts:

- Feature Engineering is key to solve Data Mining tasks
- Deep Learning combines learning and Feature Engineering
- A perceptron is a simple linear model for classification
- **A multilayer perceptron** combine multiple perceptrons
- For parameter optimization we define a loss function
- For parameter optimization we use gradient descent
- The learning rule performs the actual optimization

Homework

Homework until next meeting

- Implement perceptron learning
- Test your implementation on the MNIST dataset
 - MNIST has 10 classes, so you'll need 10 perceptrons
 - Train one perceptron per class: corresponding perceptron has label 1 and remaining perceptrons label 0
 - Check predictions of all perceptrons: Predict corresponding number of perceptron with positive prediction
 - If multiple percpetrons predict 1, use that one with highest prediction value

Note 1: We will later use C, so please use C or a C-like language **Note 2:** Use the smaller split for development and the complete data set for testing \rightarrow What's your accuracy?