

DeepLearning on FPGAs

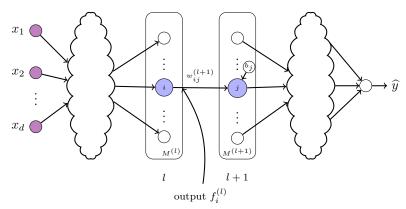
Artifical Neuronal Networks: Image classification

Sebastian Buschjäger

Technische Universität Dortmund - Fakultät Informatik - Lehrstuhl 8

November 9, 2016

Recap: Multilayer-Perceptrons



 $\mathbf{w_{i,i}^{(l+1)}} \widehat{=}$ Weight from neuron i in layer l to neuron j in layer l+1



Backpropagation for sigmoid activation / RMSE loss

Gradient step:

$$w_{i,j}^{(l)} = w_{i,j}^{(l)} - \alpha \cdot \delta_j^{(l)} f_i^{(l-1)}$$

$$b_j^{(l)} = b_j^{(l)} - \alpha \cdot \delta_j^{(l)}$$

Recursion:

$$\delta_j^{(l-1)} = f_j^{(l-1)} \left(1 - f_j^{(l-1)} \right) \sum_{k=1}^{M^{(l)}} \delta_k^{(l)} w_{j,k}^{(l)}$$

$$\delta_j^{(L)} = - \left(y_i - f_j^{(L)} \right) f_j^{(L)} \left(1 - f_j^{(L)} \right)$$

Backpropagation for sigmoid activation / RMSE loss

Gradient step:

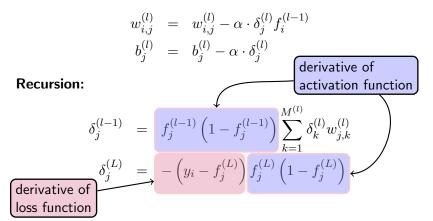


Image classification

Our goal: Classify images with Deep learning **Recap:** Neuronal Networks need vector input \vec{x}

Question: How are images represented?

Most simple representation: Bitmap of pixels

- Image has fixed number if pixels (height × width)
- Image has fixed number of color channels (e.g. RGB)
- Every pixel saves the color values of all color channels

Thus: An image is a matrix of pixels with multiple values (=vector) per entry

Sidenote: Mathematically this is called a tensor

Idea: Map every entry in the pixel matrix to exactly 1 input neuron

Image Representation: Example

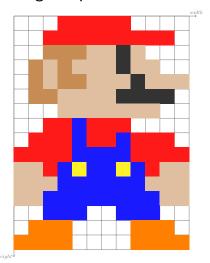
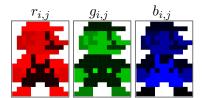


Image: Matrix $M = [\vec{p}_{ij}]_{ij}$ Entry: $\vec{p}_{ij} = (r_{ij}, g_{ij}, b_{ij})^T$



Input neurons:

$$\vec{x} = (r_{11}, g_{11}, b_{11}, r_{12}, g_{12}, \dots)^T$$

Example: 256×256 RGB image $\Rightarrow 3 \cdot 256 \cdot 256 = 196.608$ input neurons

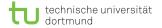


Image Representation

Observation 1: Even smaller images need a lot of neurons

- $width \approx 256 1920$
- $height \approx 256 1080$
- $r_{ij}, g_{ij}, b_{ij} \in \{0, 1, \dots, 255\}$

Observation 2: This gets worse, if the neural network is "deep"

- Input-Layer: 196.608 neurons
- First hidden-layer: 1000 neurons
- Second hidden-layer: 100 neurons
- Output layer: 1 neuron
- $\Rightarrow 196.608 \cdot 1000 + 1000 \cdot 100 + 100 \cdot 1 = 196.708.100$ weights

Thus: Even for small images we need to learn a lot of weights

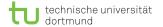


Image Representation: Making images smaller

Obviously: Images need to be smaller!

- Merge a $r \times r$ grid of pixels into a single pixel by applying reduction kernel channel-wise $k_c : \mathbb{N}^r \to \mathbb{N}$ over all pixels
- By defining appropriate kernels, we can achieve smoothing, anti-alising etc.

Note: Pixel values are integers (e.g. 0-255). Reduction kernels can be defined over \mathbb{R} , meaning $k_c: \mathbb{R}^r \to \mathbb{R}$. Then values need to be mapped to integers again:

$$\tilde{k}_c = max(0, min(255, \lfloor k_c \rfloor))$$

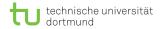
Thus: Assume appropriate mapping and use $k_c : \mathbb{R}^r \to \mathbb{R}$

Simple and fast: Averaging $k_c = \frac{1}{r} \sum_{i=1}^r c_i$

160	210	133	111
88	39	70	130
110	240	10	120
100	66	88	93

Padding: The way you handle unknown inputs (e.g. image-border)

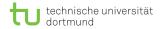
Overlapping: The way you move the grid over the image



Simple and fast: Averaging $k_c = \frac{1}{r} \sum_{i=1}^{r} c_i$

160	210	133	111				
88	39	70	130				
110	240	10	120		86		
100	66	88	93	$\lfloor (110 + 24) \rfloor$	40 + 1	.00+	$66) \cdot 0.25 \rfloor = 86$

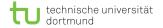
Padding: The way you handle unknown inputs (e.g. image-border) **Overlapping:** The way you move the grid over the image



Simple and fast: Averaging $k_c = \frac{1}{r} \sum_{i=1}^{r} c_i$

160	210	133	111				
88	39	70	130				
110	240	10	120		86)	120	
100	66	88	93	[(10 + 12	0 + 8	8 + 95	$3) \cdot 0.25 \rfloor = 120$

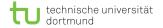
Padding: The way you handle unknown inputs (e.g. image-border) **Overlapping:** The way you move the grid over the image



Simple and fast: Averaging $k_c = \frac{1}{r} \sum_{i=1}^{r} c_i$

110	66	10 88	120 93	86	120	
88				81		
160	210	133	111		_	

Padding: The way you handle unknown inputs (e.g. image-border) **Overlapping:** The way you move the grid over the image **Here:** Kernel is applied non-overlapping with no padding



Simple and fast: Averaging $k_c = \frac{1}{r} \sum_{i=1}^{r} c_i$

160	210	133	111				
88	39	70	130		81	153	
110	240	10	120		86	120	
100	66	88	93	[(133 + 11	1 + 7	0 + 13	$(30) \cdot 0.25 \rfloor = 153$

Padding: The way you handle unknown inputs (e.g. image-border) **Overlapping:** The way you move the grid over the image

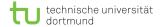


Image Representation: Making images smaller (2)

Observation 1: We can apply the same kernel in many different ways \rightarrow Pixel-padding and/or overlapping might occur¹

For now: We assume non-overlapping application with no padding **But:** Other application schemes can obviously be implemented

¹Animations see: https://github.com/vdumoulin/conv_arithmetic

Image Representation: Making images smaller (3)

Observation 2: The average kernel uses the same coefficient $\frac{1}{r}$

$$k_c = \frac{1}{r} \sum_{i=1}^{r} c_i = \sum_{i=1}^{r} \frac{1}{r} \cdot c_i$$

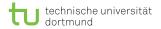
More general: Convolution using arbitrary weights w_i

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

Note: This is basically a weighted sum!

But name-overloading here: Convolution is a well-known

operation in signal processing and statistics



Convolution: Some intuitions

In system theory: Given a system with a transfer-function f we can compute its reaction to an input signal g by computing the convolution $f*g=\int f(\tau)g(t-\tau)d\tau$

In statistics: Given two time series as continuous functions f and g, we can measure the similarity of these two functions by computing the cross-correlation $f\star g=\int f(\tau)g(t+\tau)d\tau$

Note: Both are basically the same with different perspective and a slightly different index-shift

Bottom-Line: A kernel reacts to specific parts of a function / signal / image, thus **filtering** out important features

This is some kind of feature outraction

 \Rightarrow This is some kind of feature extraction

Note: In discrete convolution integrals become summation:

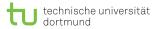
$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

image

kernel / weights / filter

result

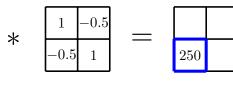


Note: In discrete convolution integrals become summation:

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

image



$$180 \cdot 1 - 80 \cdot 0.5 - 20 \cdot 0.5 + 120 \cdot 1 = 250$$

kernel / weights / filter

result

Note: In discrete convolution integrals become summation:

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

image

 $10 \cdot 1 - 120 \cdot 0.5 - 45 \cdot 0.5 + 140 \cdot 1 = 67$

kernel / weights / filter

result

DeepLearning on FPGAs

Note: In discrete convolution integrals become summation:

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

$$170 \cdot 1 - 20 \cdot 0.5 - 122 \cdot 0.5 + 39 \cdot 1 = 138$$

kernel / weights / filter

result

Note: In discrete convolution integrals become summation:

$$k_c = \sum_{i=1}^r w_i \cdot c_i = \vec{w} * \vec{c}$$

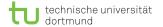
170	20	153	11
122	39	70	200
180	80	10	120
20	120	45	140

image

$$153 \cdot 1 - 11 \cdot 0.5 - 70 \cdot 0.5 + 200 \cdot 1 = 255$$

kernel / weights / filter

result



Convolutional neural networks (CNN)

Observation 1: Convolution can reduce the size of images

Observation 2: Convolution can perform feature extraction

Observation 3: Neural networks can learn weights \vec{w}

 \Rightarrow Convolutional neural networks (CNN) (\sim LeCun, 1989)

Idea: Every convolutional layer has its own weight matrix

- Move convolution kernel over input data (with padding etc.)
- Apply activation function to create another (smaller) image
- Once the images are small enough, use fully connected layers
- During backpropagation, compute errors for the kernel weights

Question: How do we compute the kernel weights?

Short: Use backpropagation - Long: We need some more notation

CNNs: Some remarks

Note 1: Since convolution is used internally, there is no need for mapping values **inside** the net \rightarrow use computed values directly

Note 2: The size of the resulting image depends on the size of your convolution kernel **and** your padding / overlapping approach

Note 3: The kernel matrix is **shared** between multiple input neurons \rightarrow A 5×5 convolutional layer only has 25 parameters!

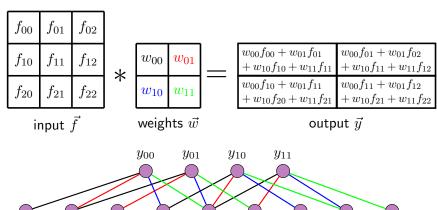
Note 4: Since the kernel is moved over the whole input image, we can extract features in every location

Note 5: CNNs somewhat model receptive fields in biology

CNN: Notation and weight sharing

 f_{02}

 f_{10}



 f_{11}

 f_{12}

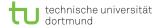
 f_{20}

 f_{21}

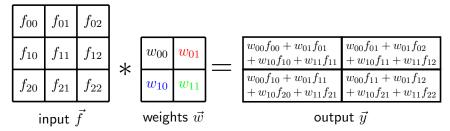
 f_{01}

 f_{00}

 f_{22}



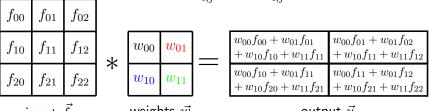
CNN: Notation and weight sharing



Mathematically (here with cross-correlation):

$$\begin{array}{lcl} y_{i,j}^{(l)} & = & \sum_{i'=0}^{M^{(l)}} \sum_{j'=0}^{M^{(l)}} w_{i,j}^{(l)} \cdot f_{i+i',j+j'}^{(l-1)} + b_{i,j}^{(l)} = w^{(l)} * f^{(l-1)} + b^{(l)} \\ f_{i,j}^{(l)} & = & \sigma(y_{i,j}^{(l)}) \\ \hline & & & & & \\ M^{(l)} \times M^{(l)} \text{ bias matrix!} \end{array}$$

CNN: How to compute $\frac{\partial E}{\partial w_{i,j}^{(l)}}$ and $\frac{\partial E}{\partial b_{i,j}^{(l)}}$?



input \vec{f}

weights $ec{w}$

output \vec{y}

Mathematically (here with cross-correlation):

$$\begin{array}{lll} y_{i,j}^{(l)} & = & \displaystyle\sum_{i'=0}^{M^{(l)}} \sum_{j'=0}^{M^{(l)}} w_{i,j}^{(l)} \cdot f_{i+i',j+j'}^{(l-1)} + b_{i,j}^{(l)} = w^{(l)} * f^{(l-1)} + b^{(l)} \\ f_{i,j}^{(l)} & = & \sigma(y_{i,j}^{(l)}) \\ \hline & & M^{(l)} \times M^{(l)} \text{ bias matrix!} \end{array}$$

. . .

. . .

. . .

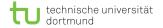
Backpropagation for sigmoid activation

Gradient step:

$$\begin{array}{rcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot 180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_j^{(l)} & = & b_j^{(l)} - \alpha \cdot \delta_j^{(l)} \end{array}$$

Recursion:

$$\delta^{(l+1)} = \delta^{(l)} * rot180(w^{(l+1)}) \cdot f_{i,j}^{(l)} (1 - f_{i,j})^{l}$$

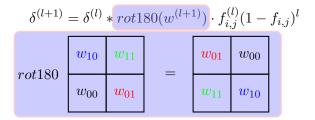


Backpropagation for sigmoid activation

Gradient step:

$$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * \underbrace{rot180(f)^{(l-1)}}_{f_{i,j}} f_{i,j}^{(l-1)} \\ b_{j}^{(l)} & = & b_{j}^{(l)} - \alpha \cdot \delta_{j}^{(l)} \end{array}$$

Recursion:



Backpropagation for activation h

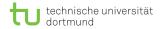
Gradient step:

$$\begin{array}{lcl} w_{i,j}^{(l)} & = & w_{i,j}^{(l)} - \alpha \cdot \delta^{(l)} * rot 180(f)^{(l-1)} f_{i,j}^{(l-1)} \\ b_j^{(l)} & = & b_j^{(l)} - \alpha \cdot \delta_j^{(l)} \end{array}$$

Recursion:

$$\delta^{(l+1)} = \delta^{(l)} * rot180(w^{(l+1)}) \cdot \frac{\partial h(y_i^{(l)})}{\partial y_i^{(l)}}$$

Observation: A convolution during forward-step results in cross-correlation on the backward step and vice-versa **Note:** The values (and thus positions) of the weights are learnt **Thus:** Does not matter if we implement convolution or corss-correlation. Just need to "reverse" it during backprop.



CNN: Some architectural remarks

So far: We assumed 1 color channel - what about 3 channels? **Idea 1:** Merge color channels into single value

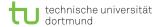
- **Average:** $(r_{i,j} + g_{i,j} + b_{i,j})/3$
- **Lightness:** $(max(r_{i,j}, g_{i,j}, b_{i,j}) min(r_{i,j}, g_{i,j}, b_{i,j}))/2$
- **Luminosity:** $0.21r_{i,j} + 0.72g_{i,j} + 0.07r_{i,j}$

Observation: Average and Luminosity look like weighted sums...

 \rightarrow Given $k^{(l)}$ input channels in layer l, for every pixel j do:

$$f_j^{(l)} = h \left(\sum_{k=1}^{k^{(l)}} f_j^{(l-1)} \cdot w_{k,j}^{(l)} + b_j \right)$$

Thus: Use standard backprop. to learn weights



CNN: Some architectural remarks (2)

Idea 2: Use 1 weight matrix per channel and extract 1 feature **More general:** Perform $k^{(l)}$ convolutions per layer

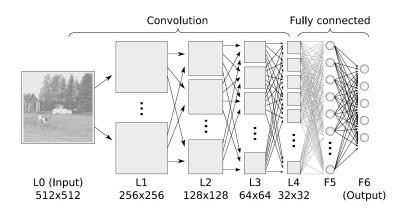
- lacktriangle Use and learn $k^{(l)}$ weight matrices per layer
- Generating $k^{(l)}$ smaller images per layer
- So that multiple features are extracted per layer

⇒ Build a tree-like convolution structure, where more sophisticated features are extracted based on already extracted features

Finally: Use fully connected layers to perform classification

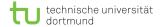
Usually: A combination is used between feature extraction and channel reduction

CNN: Example²



²Source: http:

^{//}www.ais.uni-bonn.de/deep_learning/images/Convolutional_NN.jpg



CNN: Some architectural remarks (3)

Sometimes: We want to reduce the image size even further without too much computation

Downsampling/Pooling: Merge a $r \times r$ grid into a single pixel

- Max: $f_{i,j}^{(l)} = max(p_{i,j}, p_{i,j+1}, \dots p_{i+r,j+r})$
- Avg: $f_{i,j}^{(l)} = \frac{1}{r \cdot r} \sum_{i'=0}^{r} \sum_{j'=0}^{r} p_{i+i',j+j'}$
- Sum: $f_{i,j}^{(l)} = \sum_{i'=0}^{r} \sum_{j'=0}^{r} p_{i+i',j+j'}$

Note: This is the same as convolution, but without parameters **Thus:** No backpropagation-step needed for this layer ⇒ Just "upsample" delta-values from next layer and backward upsampled values to the previous layer

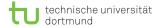
Neural Networks and generalization

Recap: Overfitting can happen if we learn the training data without any generalization

Typicall approach: Force the model to generalise from the data by limiting the number of parameters to be used

Formal: This is called regularization

- **Per construction:** Define network with less parameters
- Per dropout: Randomly ignore values of certain neurons
 - \blacksquare During forward computation, set output of random neuron to $\boldsymbol{0}$
 - Network has now to deal with missing neurons and thus will include some redundancy
- Per loss function: Use loss function that punishes overfitting
 - **Obviously 1:** If a parameter is near 0, it is not used
 - Obviously 2: Fewer parameters means less overfitting
 - **Thus:** Punish large absolute parameter values $||w^{(l)}||$



Neural Networks and generalization (2)

$$\ell(\mathcal{D}, \widehat{\theta}) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - f_{\widehat{\theta}}(\vec{x}_i))^2 + \lambda \sum_{l} ||\vec{w}^{(l)}||}$$

$$\ell(\mathcal{D}, \widehat{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} (y_i \ln (f_{\widehat{\theta}}(\vec{x}_i)) + (1 - y_i) \ln (1 - f_{\widehat{\theta}}(\vec{x}_i))) + \lambda \sum_{l} ||\vec{w}^{(l)}||$$

Note 1: You'll need to re-compute the derivative for backprop.

Note 2: This form of regularization is mathematically sound, but computationally intensive \to we have to go over all matrices

Note 3: Here we used ℓ_2 norm - more general $p-{\sf Norm}$

$$||x||_p = \left(\sum_{i=0}^n |x_i|\right)^{\frac{1}{p}}$$

CNN: Some implementation remarks

Obviously 1: Convolution is a special kind of layer

 \rightarrow implementation should be freely combinable with activation function and other layers

Note: Size of input is problem specific, size of kernel is a user parameter, number of kernels is also a user parameter

But: Size of output also depends on padding / striding approach

- \rightarrow For convienience layer-sizes should be automatically computed
- ightarrow For compilers layer-sizes should be known at compile time
- ⇒ Define a compile-time macro / template for easier programming, but high speed implementation

Obviously 2: Pooling is a special kind of layer

Note: Backprop. is not required here, but just correct sampling

CNN: Some implementation remarks (2)

Parallelism: Neural network offer three kind of parallism

First: On feature-extraction level

 \rightarrow We can perform every convolution per layer in full parallel

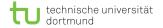
Note: This requires some form of synchronization once we reach the fully-connected layer

Second: On computational level

 \rightarrow A convolution requires $r \times r$ independent multiplications

$$\sum_{i'=0}^{M^{(l)}} \sum_{j'=0}^{M^{(l)}} w_{i,j}^{(l)} \cdot f_{i+i',j+j'}^{(l-1)} + b_{i,j}^{(l)} = w^{(l)} * f^{(l-1)} + b^{(l)}$$

Additionally: Activation function needs to be evaluated independently for every pixel



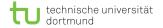
CNN: Some implementation remarks (3)

Question: On gradient level

- → Perform gradient computations in parallel on parts of the data
- \rightarrow Compute mini-batchs in parallel

Note:

- 1) is always possible for convolutional networks
- 2) is usally done by the compiler, if the system supports vectorization instructions (More later)
- 3) is always possible, but will result in stochastic gradient descent. Thus we dont have a theoretical guarantee for convergence anymore, but it works well in practice.



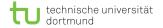
CNN: Network architecture

Question: So whats a good network architecture?

Answer: As always, depends on the problem. But the same general ideas as with MLPs still hold.

Additionally for image classification:

- Grayscaled images usually give already a fair performance
- Input images should have the same dimension
- \blacksquare Convolution kernels should be large enough to capture features, but small enough to be fast to compute. Usually we use $3\times 3-7\times 7$
- Convolution tends to overfit, so regularization should be used
- Deeper architectures usually perform well with pooling



Summary

Important concepts:

- Convolution is an important concept in image classification
 - We can extract image features on every part of the image
 - We share parameters in small kernel matrices
- For image classification we combine convolution layers and fully-connected layers with backpropagation
- Sometimes pooling is necessary
- Sometimes regularization is necessary

Homework until next meeting

- Extend your backpropagation implementation to a more general approach → variable number of neurons etc.
- Design a neurnal network for the MNIST data-set (Note: convolution is not required yet)

Whats you accuracy?