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Recap: Multilayer-Perceptrons
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Backpropagation for sigmoid activation / RMSE loss

Gradient step:
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Image classification

Our goal: Classify images with Deep learning
Recap: Neuronal Networks need vector input ~x

Question: How are images represented?
Most simple representation: Bitmap of pixels

Image has fixed number if pixels (height × width)

Image has fixed number of color channels (e.g. RGB)

Every pixel saves the color values of all color channels

Thus: An image is a matrix of pixels with multiple values
(=vector) per entry
Sidenote: Mathematically this is called a tensor

Idea: Map every entry in the pixel matrix to exactly 1 input neuron
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Image Representation: Example
width

height

Image: Matrix M = [~pij ]ij
Entry: ~pij = (rij , gij , bij)

T

ri,j gi,j bi,j

Input neurons:
~x = (r11, g11, b11, r12, g12, . . . )

T

Example: 256× 256 RGB image
⇒ 3 · 256 · 256 = 196.608 input
neurons
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Image Representation

Observation 1: Even smaller images need a lot of neurons

width ≈ 256− 1920

height ≈ 256− 1080

rij , gij , bij ∈ {0, 1, . . . , 255}

Observation 2: This gets worse, if the neural network is “deep”

Input-Layer: 196.608 neurons

First hidden-layer: 1000 neurons

Second hidden-layer: 100 neurons

Output layer: 1 neuron

⇒ 196.608 · 1000 + 1000 · 100 + 100 · 1 = 196.708.100 weights
Thus: Even for small images we need to learn a lot of weights
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Image Representation: Making images smaller

Obviously: Images need to be smaller!

Merge a r × r grid of pixels into a single pixel by applying
reduction kernel channel-wise kc : Nr → N over all pixels

By defining appropriate kernels, we can achieve smoothing,
anti-alising etc.

Note: Pixel values are integers (e.g. 0− 255). Reduction kernels
can be defined over R, meaning kc : Rr → R. Then values need to
be mapped to integers again:

k̃c = max(0,min(255, bkcc))

Thus: Assume appropriate mapping and use kc : Rr → R
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Reduction kernel: Example

Simple and fast: Averaging kc =
1
r

∑r
i=1 ci

100 66 88 93

110 240 10 120

88 39 70 130

160 210 133 111

b(110 + 240 + 100 + 66) · 0.25c = 86b(10 + 120 + 88 + 93) · 0.25c = 120b(160 + 210 + 88 + 39) · 0.25c = 81b(133 + 111 + 70 + 130) · 0.25c = 153

86 120

81 153

Padding: The way you handle unknown inputs (e.g. image-border)
Overlapping: The way you move the grid over the image
Here: Kernel is applied non-overlapping with no padding
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Image Representation: Making images smaller (2)

Observation 1: We can apply the same kernel in many different
ways → Pixel-padding and/or overlapping might occur1

For now: We assume non-overlapping application with no padding
But: Other application schemes can obviously be implemented

1Animations see: https://github.com/vdumoulin/conv_arithmetic
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Image Representation: Making images smaller (3)

Observation 2: The average kernel uses the same coefficient 1
r

kc =
1

r

r∑

i=1

ci =

r∑

i=1

1

r
· ci

More general: Convolution using arbitrary weights wi

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

Note: This is basically a weighted sum!
But name-overloading here: Convolution is a well-known
operation in signal processing and statistics

DeepLearning on FPGAs 10



Convolution: Some intuitions

In system theory: Given a system with a transfer-function f we
can compute its reaction to an input signal g by computing the
convolution f ∗ g =

∫
f(τ)g(t− τ)dτ

In statistics: Given two time series as continuous functions f and
g, we can measure the similarity of these two functions by
computing the cross-correlation f ? g =

∫
f(τ)g(t+ τ)dτ

Note: Both are basically the same with different perspective and a
slightly different index-shift
Bottom-Line: A kernel reacts to specific parts of a function /
signal / image, thus filtering out important features
⇒ This is some kind of feature extraction
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Convolution: Example

Note: In discrete convolution integrals become summation:

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 25010 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138 255

image kernel / weights / filter result

DeepLearning on FPGAs 12



Convolution: Example

Note: In discrete convolution integrals become summation:

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 250

10 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250

67

138 255

image kernel / weights / filter result

DeepLearning on FPGAs 12



Convolution: Example

Note: In discrete convolution integrals become summation:

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 250

10 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67

170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138 255

image kernel / weights / filter result

DeepLearning on FPGAs 12



Convolution: Example

Note: In discrete convolution integrals become summation:

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 25010 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67

170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138

153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138

255

image kernel / weights / filter result

DeepLearning on FPGAs 12



Convolution: Example

Note: In discrete convolution integrals become summation:

kc =

r∑

i=1

wi · ci = ~w ∗ ~c

20 120 45 140

180 80 10 120

122 39 70 200

170 20 153 11

∗
−0.5 1

1 −0.5
=

180 · 1− 80 · 0.5− 20 · 0.5 + 120 · 1 = 25010 · 1− 120 · 0.5− 45 · 0.5 + 140 · 1 = 67170 · 1− 20 · 0.5− 122 · 0.5 + 39 · 1 = 138

153 · 1− 11 · 0.5− 70 · 0.5 + 200 · 1 = 255

250 67

138 255

image kernel / weights / filter result

DeepLearning on FPGAs 12



Convolutional neural networks (CNN)

Observation 1: Convolution can reduce the size of images
Observation 2: Convolution can perform feature extraction
Observation 3: Neural networks can learn weights ~w
⇒ Convolutional neural networks (CNN) (∼ LeCun, 1989)

Idea: Every convolutional layer has its own weight matrix

Move convolution kernel over input data (with padding etc.)

Apply activation function to create another (smaller) image

Once the images are small enough, use fully connected layers

During backpropagation, compute errors for the kernel weights

Question: How do we compute the kernel weights?
Short: Use backpropagation - Long: We need some more notation
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CNNs: Some remarks

Note 1: Since convolution is used internally, there is no need for
mapping values inside the net → use computed values directly

Note 2: The size of the resulting image depends on the size of
your convolution kernel and your padding / overlapping approach

Note 3: The kernel matrix is shared between multiple input
neurons → A 5× 5 convolutional layer only has 25 parameters!

Note 4: Since the kernel is moved over the whole input image, we
can extract features in every location

Note 5: CNNs somewhat model receptive fields in biology
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CNN: Notation and weight sharing

f00 f01 f02

f10 f11 f12

f20 f21 f22
∗

w00 w01

w10 w11

=
w00f00 + w01f01
+w10f10 +w11f11

w00f01 + w01f02
+w10f11 +w11f12

w00f10 + w01f11
+w10f20 +w11f21

w00f11 + w01f12
+w10f21 +w11f22

input ~f weights ~w output ~y

f00 f01 f02 f10 f11 f12 f20 f21 f22

y00 y01 y10 y11
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CNN: How to compute ∂E
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Backpropagation for sigmoid activation

Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ

(l) ∗ rot180(f)(l−1)f
(l−1)
i,j

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ(l+1) = δ(l) ∗ rot180(w(l+1)) · f (l)i,j (1− fi,j)
l

rot180
w00 w01

w10 w11

=

w11 w10

w01 w00
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Backpropagation for activation h

Gradient step:

w
(l)
i,j = w

(l)
i,j − α · δ

(l) ∗ rot180(f)(l−1)f
(l−1)
i,j

b
(l)
j = b

(l)
j − α · δ

(l)
j

Recursion:

δ(l+1) = δ(l) ∗ rot180(w(l+1)) ·
∂h(y

(l)
i )

∂y
(l)
i

Observation: A convolution during forward-step results in
cross-correlation on the backward step and vice-versa
Note: The values (and thus positions) of the weights are learnt
Thus: Does not matter if we implement convolution or
corss-correlation. Just need to “reverse” it during backprop.
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CNN: Some architectural remarks
So far: We assumed 1 color channel - what about 3 channels?
Idea 1: Merge color channels into single value

Average: (ri,j + gi,j + bi,j) /3

Lightness: (max (ri,j , gi,j , bi,j)−min (ri,j , gi,j , bi,j)) /2
Luminosity: 0.21ri,j + 0.72gi,j + 0.07ri,j

Observation: Average and Luminosity look like weighted sums...
→ Given k(l) input channels in layer l, for every pixel j do:

f
(l)
j = h




k(l)∑

k=1

f
(l−1)
j · w(l)

k,j + bj




Thus: Use standard backprop. to learn weights
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CNN: Some architectural remarks (2)

Idea 2: Use 1 weight matrix per channel and extract 1 feature
More general: Perform k(l) convolutions per layer

Use and learn k(l) weight matrices per layer

Generating k(l) smaller images per layer

So that multiple features are extracted per layer

⇒ Build a tree-like convolution structure, where more sophisticated
features are extracted based on already extracted features
Finally: Use fully connected layers to perform classification

Usually: A combination is used between feature extraction and
channel reduction

DeepLearning on FPGAs 22



CNN: Example2

2Source: http:
//www.ais.uni-bonn.de/deep_learning/images/Convolutional_NN.jpg
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CNN: Some architectural remarks (3)

Sometimes: We want to reduce the image size even further
without too much computation
Downsampling/Pooling: Merge a r × r grid into a single pixel

Max: f
(l)
i,j = max (pi,j , pi,j+1, . . . pi+r,j+r)

Avg: f
(l)
i,j = 1

r·r
∑r

i′=0

∑r
j′=0 pi+i′,j+j′

Sum: f
(l)
i,j =

∑r
i′=0

∑r
j′=0 pi+i′,j+j′

Note: This is the same as convolution, but without parameters
Thus: No backpropagation-step needed for this layer
⇒ Just “upsample” delta-values from next layer and backward
upsampled values to the previous layer
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Neural Networks and generalization

Recap: Overfitting can happen if we learn the training data
without any generalization
Typicall approach: Force the model to generalise from the data
by limiting the number of parameters to be used
Formal: This is called regularization

Per construction: Define network with less parameters
Per dropout: Randomly ignore values of certain neurons

During forward computation, set output of random neuron to 0
Network has now to deal with missing neurons and thus will
include some redundancy

Per loss function: Use loss function that punishes overfitting
Obviously 1: If a parameter is near 0, it is not used
Obviously 2: Fewer parameters means less overfitting
Thus: Punish large absolute parameter values ||w(l)||
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Neural Networks and generalization (2)

`(D, θ̂) =

√√√√ 1

N

N∑

i=1

(
yi − fθ̂(~xi)

)2
+ λ

∑

l

||~w(l)||

`(D, θ̂) = − 1

N

N∑

i=1

(
yi ln

(
fθ̂(~xi)

)
+ (1− yi) ln

(
1− fθ̂(~xi)

))
+ λ

∑

l

||~w(l)||

Note 1: You’ll need to re-compute the derivative for backprop.
Note 2: This form of regularization is mathematically sound, but
computationally intensive → we have to go over all matrices
Note 3: Here we used `2 norm - more general p−Norm

||x||p =

(
n∑

i=0

|xi|

) 1
p
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CNN: Some implementation remarks

Obviously 1: Convolution is a special kind of layer
→ implementation should be freely combinable with activation
function and other layers
Note: Size of input is problem specific, size of kernel is a user
parameter, number of kernels is also a user parameter
But: Size of output also depends on padding / striding approach
→ For convienience layer-sizes should be automatically computed
→ For compilers layer-sizes should be known at compile time
⇒ Define a compile-time macro / template for easier
programming, but high speed implementation

Obviously 2: Pooling is a special kind of layer
Note: Backprop. is not required here, but just correct sampling
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CNN: Some implementation remarks (2)

Parallelism: Neural network offer three kind of parallism
First: On feature-extraction level
→ We can perform every convolution per layer in full parallel
Note: This requires some form of synchronization once we reach
the fully-connected layer

Second: On computational level
→ A convolution requires r × r independent multiplications

M(l)∑

i′=0

M(l)∑

j′=0

w
(l)
i,j · f

(l−1)
i+i′,j+j′ + b

(l)
i,j = w(l) ∗ f (l−1) + b(l)

Additionally: Activation function needs to be evaluated
independently for every pixel
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CNN: Some implementation remarks (3)

Question: On gradient level
→ Perform gradient computations in parallel on parts of the data
→ Compute mini-batchs in parallel
Note:

1) is always possible for convolutional networks

2) is usally done by the compiler, if the system supports
vectorization instructions (More later)

3) is always possible, but will result in stochastic gradient
descent. Thus we dont have a theoretical guarantee for
convergence anymore, but it works well in practice.
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CNN: Network architecture

Question: So whats a good network architecture?
Answer: As always, depends on the problem. But the same
general ideas as with MLPs still hold.
Additionally for image classification:

Grayscaled images usually give already a fair performance

Input images should have the same dimension

Convolution kernels should be large enough to capture
features, but small enough to be fast to compute. Usually we
use 3× 3− 7× 7

Convolution tends to overfit, so regularization should be used

Deeper architectures usually perform well with pooling
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Summary

Important concepts:
Convolution is an important concept in image classification

We can extract image features on every part of the image
We share parameters in small kernel matrices

For image classification we combine convolution layers and
fully-connected layers with backpropagation
Sometimes pooling is necessary
Sometimes regularization is necessary

Homework until next meeting

Extend your backpropagation implementation to a more
general approach → variable number of neurons etc.
Design a neurnal network for the MNIST data-set
(Note: convolution is not required yet)

Whats you accuracy?
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