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1. Introduction   

The 1998 KDD-cup competition focused on building a
supervised classification model for selecting likely donors
to a charitable organization when solicited via mail.  The
model’s target, expected gift amount to a June 1997
donation campaign, was to be predicted from inputs
reflecting the status of potential donors prior to solicitation.
The models were built using a 95,412 case training data set
with known responses.  To judge model efficacy, expected
gift amounts were calculated for a ’validation’ data set with
concealed responses and submitted to competition
organizers.  Cases with an expected gift in excess of $0.68
were selected and the actual response amounts for these
cases (known only to the organizers) were summed. The
model corresponding to the largest response sum was
declared the winner.

In the 1999 KDD-cup competition, emphasis shifts from
producing a single prediction model to extracting
unspecified interesting findings of commercial value from
the 1998 competition data.  This paper discusses SAS
Institute’s findings.

In this paper, “interesting findings” are conceptual features
of the knowledge acquired in the process of revenue
maximization. The derived concepts enhance model
understanding and allow for better approaches in future
undertakings. To this end, Section 2 reports on a close
examination of the training data and presents patterns later
shown to enhance donation prediction. Section 3 uses these
findings to build a model with larger validation revenue
than the 1998 competition winners.
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Some analysts and managers are reluctant to deploy a
black-box model--like a neural network--in a direct
marketing campaign because they usually want to
understand of the segments targeted for solicitation.
Section 4 addresses this common concern by explaining, at
least approximately, the characteristics that define
individuals selected for solicitation by the model in Section
3. The technique is general in nature and therefore can, in
fact, be used with any classification model.

Before a model is deployed, an estimate of expected
revenue is usually obtained, often by scoring an
independent sample with known responses.  Typically, little
attention is paid to the variability in this estimate from one
independent sample (eg the validation data) to another (eg
the real world).  By making certain reasonable assumptions
about the probability distribution of an individual’s
response, estimates of the variability in total revenue for a
particular model can be calculated.  These calculations
provide a deeper understanding of the results possible in a
given campaign.  Section 5 develops this idea, provides a
lower-bound estimate for variability total revenue in direct
marketing models, and applies this estimate to the model of
Section 3.

2. Exploratory Data Analysis   

Successful statistical prediction models are built from a
combination of three elements: problem-specific
knowledge, historical data, and analytical savvy.  When an
analyst finds an irregularity in the data, additional problem-
specific knowledge (such as how the data were prepared) or
additional data (such as repairing defective data) may help
to rectify the anomaly. Unfortunately, the rules of
competition differ from those of real-world data analysis.
Discoveries made in an exploratory analysis may only be
reported and not clarified with authorities on the problem.
                                                



An innocuous example of a data anomaly can be seen in
Figure 1, which plots the distribution of birth date as
specified by the variable DOB.  Four anomalies are
immediately apparent.  First, the number of individuals
born on even years is twice that of odd years.  Second,
there are no individuals born before 1910.  Third, there are
spikes in the distributions on years ending in a zero (for
example 1970). Fourth, there are a surprising number of
extremely recent birth dates, some as late as 1997.

While DOB was not used in subsequent modeling,
problems in this variable could be indicative of larger
problems relating to dates in general.  Data integrity is vital
for worthwhile analysis and for obtaining meaningful
results.  Third-party providers of the data may be at fault or
the processes in place to handle data extraction,
transformation and loading (ETL) may be questionable.

A more serious data integrity concern relates to the
definition of the subpopulation composing the training data.
Recency coding for the campaign of interest indicates the
subpopulation consists exclusively of lapsing donors.
According to the documentation accompanying the data, a
lapsing donor is a previous donor who made his/her last
donation between 13 and 24 months ago inclusive.  For the
June 1997 campaign, no donations should have been
received after June 1, 1996.  The data, however, tell a
different story.

Figure 2 plots last gift amount (LASTGIFT) versus last gift
date (LASTDATE) from July 1996 to February 1997.
Almost 3,700 (4 percent) of the last gifts were received

after June 1996.  Clearly, not all of the subpopulation are
lapsing donors.

Plotting last gift date versus control number, as in Figure 3,
yields an even more interesting discovery: most of the gifts
received after March 1996 occur with cases assigned either
a low control number or a high control number.

Typically, control number is assigned sequentially as
donors enter the donor database. Alternatively, the numbers
may be assigned completely at random.  An association
between control number and one input suggests looking for
others.  The data provide several other examples.  As
Figure 4 illustrates, plots of gift amounts for the 96NK and
96TK campaigns versus control number give a similar
pattern.

Figure 2. A plot of last gift amount versus last gift date.

Figure 3.  A surprising association between last gift date and
control number.

Figure 1. Date-of-birth (DOB) distribution of even/odd years.

Date of Birth

0 500 1000 1500 2000 2500

1910

1919

1928

1937

1946

1955

1964

1973

1982

1991

Even Years Odd Years 19X0 Years

1990’s Births

0 100 200 300 400



Finally and most importantly, as Figure 5 shows, a plot of
the number of gifts in the 1997 NK campaign (that is, the
target variable) versus control number yields the same
pattern.   This implies that the control number is a
potentially significant predictor of the target variable.

Each horizontal bar in Figure 5 represents about 5,000
cases.  The vertical reference lines indicate the expected
number of responders out of 5000 (based on the marginal
response rate), plus and minus two standard deviations.

In a paid analysis, such a finding would typically result in
an interruption of analytic endeavors until an explanation
could be provided.  Here one may only speculate as to the
reason for the pattern.  It could simply be an artifact of sort
order of the data when extracted. Or the finding could
indicate a concatenation of data from at least two distinct
subpopulations in the database: one or more with strong
response properties, another with weak response properties.
Combined they would form a richer (and more challenging)
analysis data set. Another possibility is that the pattern
could reflect an effort to artificially diminish the signal
present in the data in order to make the competition more
interesting.  It is the authors’ hope that such issues will be
addressed as part of the results of this contest.  Independent
of cause, the exploratory analysis has revealed a surprising
predictor of donation propensity.

Figure 4.  Gift amounts for 96NK and 96TK campaigns
versus control number

Figure 5. 1997 NK response counts versus control number.



3. A Two-Stage Prediction Model

The main analytic objective for a charitable organization is
to accurately estimate the probability distribution of gift
amount for every solicitation to a potential donor. This
probability distribution can be envisioned as a mixture of a
point mass at zero (indicating no gift) and a continuous
distribution with positive support (indicating gift amount).
Analyst’s efforts are usually directed at predicting the
expected gift, the product of the gift probability and the gift
amount.  Typically, the prediction is done in one of two
ways: directly, by estimating a single quantity, the expected
gift itself, or indirectly, by first separately estimating the
expected donation probability and the expected gift
amount, and then multiplying the separate estimates.  SAS
Institute’s 1998 KDD-cup entry was an ensemble of both
direct and indirect models.

 In this analysis, an indirect or two-stage model is
considered.  Separate estimates of gift probability and gift
amount are obtained using two multi-layer perceptron
(MLP) neural networks.  The gift amount model is built
first using the cases where a gift actually occurred (about
5% of the data) and inputs reflecting historical patterns in
the gift amount. These inputs are selected from a list of
potential inputs by fitting a class-probability decision tree
to gift data and eliminating all inputs not used in the tree.
Then the gift probability model is built using all the cases
and inputs reflecting recency, frequency, amount (RFA),
and demographic characteristics as well as inputs reflecting
the patterns noted in the exploratory data analysis.  The
inputs for the gift probability model were again chosen
using a class-probability tree.  One of the selected inputs,
the output from the gift amount model (itself an RFA
measure), serves to couple the two models.

Similar two-stage approaches occur in the econometrics
literature, often referred to as limited-dependence models.
For example, Heckman’s two-step estimation procedure
(Greene [1993]) uses the transformed output from a probit
regression model (modeling the probability of an event) as
an input to an ordinary least squares regression model
(modeling the amount of response given the event).  This is
done to produce consistent parameter estimates in the
regression model.  While consistency in parameter
estimates is important for statistical inference, its benefit in
statistical prediction is less clear.   In fact, for flexible,
over-parameterized, highly sensitive models like neural
networks, the parameter estimates are inscrutable.  The
predicted values themselves are the focus.

The first stage MLP has an input layer with five inputs
fully connected to a hidden layer with 20 hidden units (with
linear combination and hyperbolic tangent activation).  The
hidden layer is fully connected to a single target unit (with
linear combination and identity activation).  Two inputs,
AVGGIFT and LASTGIFT, are as described in the data

documentation.  The other inputs, AMPERGFT, PGIFTH,
and MYAMNT are functions of several variables:

AMPERGFT is the average gift from 94NK to 96NK.
PGIFTH is the ratio of NGIFTALL to NUMPROM.
MYAMNT is the sum of RAMNT_8, 9, 12, and 14.

The training data for the first-stage model, 4843 cases with
TARGET_B=1, were split in half for training and
tuning/selecting.  Both early stopping and weight decay
were used to protect against overfitting.  Model weights
were estimated via the double-dogleg optimization
algorithm. Figure 6 shows predicted versus actual target.
The plot shows some overestimation for smaller gift
amounts and considerable under estimation for large gift
amounts.  Nevertheless, because these disagreements affect
few cases, the agreement is deemed adequate for this
analysis.

The second stage MLP has an input layer with eight inputs
fully connected to a hidden layer with 20 hidden units (with
linear combination and hyperbolic tangent activation).  The
hidden layer is fully connected to a single target unit (with
linear combination and logistic activation). Four of the
eight inputs, LASTDATE, FISTDATE, INCOME and
CONTROLN, are as described in the data documentation.
The remaining four inputs, PGIFTH, MYAMNT,
P_TARGET, and SUSPECT, are functions of several
variables:

• PGIFTH and MYAMNT are described above.

• P_TARGET is the predicted gift amount (from stage 1).

• SUSPECT estimates the ratio of gifts to solicitations
from June 1996 to June 1997 and is given by the
following equation:

SUSPECT = max (min ((NGIFTALL * ((NUMPRM12 + RDATE) /
NUMPROM) - RDATE) / NUMPRM12, 1), 0)

Figure 6. Predicted target versus actual target for first-stage
neural network.



where RDATE is the number of gifts specified by
RAMNT_3 through RAMNT_24.

The training data for the second-stage model were split for
training and tuning/selecting.  Both early stopping and
weight decay were used to protect against overfitting.
Model weights were estimated using the double-dogleg
optimization algorithm.

The expected gift amount for each case was calculated as
the product of predictions from the first- and second-stage
models.  Expected gift amounts in excess of $0.68 were
selected for mailing.  The net revenue of the model using
the now public validation data is $14,877.77.  This is
$165.53 more than the Gold-medal winner at KDD-98.

4. Understanding the Model

The two-stage model described in Section 3 has 341
parameters.  Trying to understand the model by examining
parameter values alone is probably impossible. One might
argue, however, that trying to understand a model strictly
from its parameters is analogous to trying to understand a
symphony by examining the individual notes in its score.
Just as a symphony is meant to be played, this model is
meant to make predictions. These predictions make the
model interesting, not the parameters.  Understanding the
predictions leads to understanding the model.

For database marketing models, two possible actions are
typical: mail or not mail. Each point in the input space can
be coded zero or one based on the model’s predicted gift
amount.    Under  reasonable regularity  conditions, regions
coded one can be separated from regions coded  zero  (to a

specified level of accuracy) by intersecting hyperplanes
orthogonal to carefully chosen axes in the input space.  It
may take only a few hyperplanes to approximately describe
the location of most of the ones and zeroes for a given
model.  While not a substitute for the original model, such
a description may give a reasonable idea of who is
receiving a solicitation.

The intersecting hyperplanes may be thought of as branches
and leaves of a decision tree. Many complicated models
can be approximately understood by using decision trees to
describe the regions in space where mail changes to not
mail (the decision boundary). Table 1 presents such a
description for the model discussed in Section 3.

The first column lists the fraction of individuals mailed in
the given segment.  The second describes the size of the
segment relative to the rest of the data.  Subsequent
columns describe the membership rules for the given
segment. For example, 94% of the population with amount
per gift in excess of $21.10, income category 4 and above
and control number less than 87,782 will receive a
solicitation.   Similarly 93% of the population with the
amount per gift in excess of $10.23, income category
greater than or equal to 4, and control number greater than
or equal to 87,882 will receive a solicitation.  These
segments account for almost 36% of the population and
more than half of the total  mailing.  Such descriptions
form the basis of business rules describing the targeted
subpopulation.  (A description of the mechanism used to
assign control numbers would also prove useful!).

Further scrutiny of the segment definitions reveals that the
targeted population forms a single continuous  region  with

Table 1. Solicitation Segments.

% Mailed % Pop AMPERGFT FISTDATE LASTDATE PGIFTH MYAMNT INCOME CONTROLN

94% 5.7% > 20.10 > 4 < 87782

93% 30.1% > 10.23 > 4 > 87782

82% 1.9% [7.56, 10.23) > 12/16/96 > 127828

77% 5.2% > 10.23 < 20.50 < 3

75% 3.0% > 10.23 > 10/16/95 < 20.50 < 3 > 127291

74% 1.0% [10.23, 20.50) > 3/16/94 > 6 < 87782

72% 1.4% [7.56, 10.23) > 0.245 < 127828

72% 11.7% [10.23, 20.50) < 3/16/94 > 4 < 87782

71% 0.9% > 10.23 > 2/15/96 > 0.144 < 20.50 < 3 < 127291

35% 3.0% [7.56, 10.23) < 0.245 < 127828

33% 1.7% > 10.23 < 10/16/95 < 20.50 < 3 > 127291

28% 7.4% [7.56, 10.23) < 12/16/96

27% 0.7% > 10.23 > 2/15/96 < 0.144 < 20.50 < 3 < 127291

23% 3.7% [10.23, 20.50) > 3/16/94 [4 , 6) < 87782

16% 10.9% > 10.23 < 2/15/96 < 20.50 < 3 < 127291

12% 11.6% < 7.56 < 12/16/96



respect to the input space. Solicitations are generally sent to
higher-income donors or lower-income donors who have
donated recently or donated larger amounts to card
promotions 96GK, 96XK, 95NK or calendar promotion
96CC.

The 16-leaf tree has overall accuracy of about 83 percent.
Accuracy may improve by increasing the number of
branches; improvements may increase slowly increasing
the number of leaves.  For the example above, a 230-leaf
tree achieves accuracy of only about 89 percent. Accuracy
generally improves slowly when the decision boundary is a
function of many variables.  In this case, many steps may
be needed to fit even a simple linear association.

5. Beyond Expectations

A more complete understanding of model performance may
be obtained by examining not only expected gift amount
but also the variability of gift amount between independent
samples. We will do this by showing that the sum of
individual gifts satisfies the Liapounov condition for the
central limit theorem (CLT), and therefore has an
asymptotically normal distribution.  Under the CLT, the
expected gift total is simply the sum of the expected gift
amounts for each solicitation and the variance of the
expected gift total is simply the sum gift variances for each
solicitation.  Using these facts, (and assuming correctly
specified models) rough prediction limits on total revenue
may be calculated for a given number of solicitations.

As mentioned earlier, the amount of gift Xi from an
individual for a given solicitation may be thought of as a
random variable whose distribution may be written as

where δ{0} is a point mass measure at zero, φi is normal
measure with parameters µi and σ2

i, and pi is a constant
representing the probability receiving a gift.

Assume that there is a negligible number of people who
always give when solicited and always give the same
amount of money (expressed as pi = 1 and σ2

i = 0) or people
who never give any money (expressed as pi = 0).  Both
cases imply var(Xi) = 0 and the CLT does not hold for sums
of such independent variables.  (This part of the sum, all
virtually constants, would contribute to the degenerate part
of the limit). Hence, the following (physically practical)
restrictions are put on the parameters:
0 << pi ≤ 1, σ2

i << ∞, (donors have positive probability of
making a gift and their gift amounts have finite variance)
and either σ2

i = 0 and pi << 1 (donors who give the same
amount do not always give) or σ2

i >> 0 (donors do not
always give the same amount).  (Note: the symbol >> is
read bounded away from, uniformly in i).  Moreover
assume that 0 << µi << ∞.

These assumptions imply that the third central moment of
Xi is bounded uniformly in i and var(Xi) is bounded away
from zero uniformly in i. Thus the CLT holds by the
Liapounov condition (Chung [1974]) and from the assumed
form of the distribution of Xi

 

, the random variable ΣXi has
expected value Σpiµi and variance Σ pi(σ

2
i + µi

2(1 - pi)).

As expected, variance associated with the sum increases
with the number of terms in the sum. In dollar terms,
assume N=58,000 (the approximate mailing size for the
model of Section 3),σ2

i = 0, pi=0.05 (the marginal gift
probability) and µi=$13.50.  Then the standard deviation of
this extremely simplified situation is more than $700.
Estimates from the two-stage model of Section 3 for µi and
σ2

i (respectively, the expected gift amount and estimated
mean squared error from the first stage model), and. pi (the
gift probability from the second-stage model), give more
realistic estimates of profit variance. Plugging these
estimates into the variance equation and taking the square
root yields a standard deviation of about $1,200. (Note that
both cases fail to include the variability of fitting the model
itself).  Coupling this result with the expected total gift
ΣpiµI ≈ $16,000 leads to a 95% prediction interval spanning
$13,600 to $18,400.  The wide interval suggests that there
is little statistical difference between the model of Section 3
and last year’s winning models (and even less between last
year’s top finishers).

A final comment: assume two models are of approximately
equal expected revenue but different mailing depths.
Smaller mailing size will, in general, lead to smaller
variability in expected total gift because the variance sum,
will have fewer terms.  A smaller variance in expected
return is usually identified as a better risk.  Therefore, for
models of equal expected revenue, the model with the
smaller mailing depth should be preferred.  This suggests as
an area for further development, a selection rule that
incorporates both profit maximization and risk
minimization as determinants of optimum mailing depth.
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