
 1

Frequent Item set Mining Methods

Jiawei Han und Micheline Kamber. Data Mining – Concepts and

Techniques. Chapter 5.2

 Julianna Katalin Sipos

 2

Content

Content... 2

Introduction... 3

The Apriori algorithm .. 5

Generating association rules from frequent itemsets .. 8

Improving the efficiency of Apriori... 9

Mining frequent itemsets using vertical data format .. 14

Conclusions.. 15

References.. 18

 3

Introduction

Frequent sets play an essential role in many Data Mining tasks that try to find

interesting patterns from databases, such as association rules, correlations, sequences,

episodes, classifiers and clusters. The mining of association rules is one of the most

popular problems of all these. The identification of sets of items, products, symptoms and

characteristics, which often occur together in the given database, can be seen as one of

the most basic tasks in Data Mining.

The original motivation for searching frequent sets came from the need to analyze

so called supermarket transaction data, that is, to examine customer behavior in terms of

the purchased products (Agrawal et al., 1993). Frequent sets of products describe how

often items are purchased together.

Formally let I be the set of items.

A transaction over I is a couple T = (tid, I) where tid is the transaction identifier

and I is the set of items from I.

A database D over I is a set of transactions over I such that each transaction has a

unique identifier. We omit I whenever it is clear from the context

A transaction T = (tid, I) is said to support a set X, if X C I. The cover of a set X

in D consists of the set of transaction identifiers of transactions in D that support X. The

support of a set X in D is the number of transactions in the cover of X in D. The

frequency of a set X in D is the probability that X occurs in a transaction, or in other

words, the support of X divided by the total number of transactions in the database. We

omit D whenever it is clear from the context.

A set is called frequent if its support is no less than a given absolute minimal

support threshold min_sup with 0≤min_supabs≤|D|. When working with frequencies of

sets instead of their support, we use the relative minimal frequency threshold min_suprel,

with 0≤min_suprel≤1. Obviously min_supabs = [min_suprel * |D|]. In this paper we will

mostly use the absolute minimal support threshold and omit the subscript abs.

Let D be a database of transactions over a set of items I, and min_sup the minimal

support threshold. The collection of frequent sets in D with respect to min_sup is denoted

 4

by F(D, min_sup):={X C I | support(X, D)≥min_sup} or simply F if D and min_sup are

clear from the context.

Given a set of items I, a database of transactions D over I, and a minimal support

threshold min_sup, find F (D, min_sup).

In practice we are not only interested in the set of sets F, but also in the actual supports of

these sets.

For example, consider the database shown in the following table over the set of items

I = {beer, chips, pizza, wine}:

Tid Set of items

100 {beer, chips, wine}

200 {beer, chips}

300 {pizza, wine}

400 {chips, pizza}

Table 1

The following table shows all frequent sets in D with respect to a minimal support

threshold equal to 1, their cover in D, plus their support and frequency:

Set Cover Support Frequency

{} {100, 200, 300, 400} 4 100%

{beer} {100, 200} 2 50%

{chips} {100, 200, 400} 3 75%

{pizza} {300, 400} 2 50%

{wine} {100, 300} 2 50%

{beer, chips} {100, 200} 2 50%

{beer, wine} {100} 1 25%

{chips, pizza} {400} 1 25%

{chips, wine} {100} 1 25%

{pizza, wine} {300} 1 25%

{beer, chips, wine} {100} 1 25%

Table 2

If we are given the support threshold min_sup, then every frequent set X also represents

the trivial rule X=> {} which holds with 100% confidence.

 5

The task of discovering all frequent sets is quite challenging. The search space is

exponential in the number of items occurring in the database and the targeted databases

tend to be massive, containing millions of transactions. Both these characteristics make it

a worthwhile effort to seek the most efficient techniques to solve this task.

The Apriori algorithm

Together with the introduction of the frequent set mining problem, also the first

algorithm to solve it was proposed, later denoted as AIS. Shortly after that the algorithm

was improved by R. Agrawal and R. Srikant and called Apriori. It is a seminal algorithm,

which uses an iterative approach known as a level-wise search, where k-itemsets are used

to explore (k+1)-itemsets.

It uses the Apriori property to reduce the search space: All nonempty subsets of a

frequent itemset must also be frequent.

l P(I)<min_sup => I is not frequent

l P(I+A)<min_sup => I+A is not frequent either

l Antimonotone property – if a set cannot pass a test, all of its supersets will fail the

same test as well

In the next section we will see how the apriori property is used in the Apriori

algorithm: Let us look at how Lk-1 is used to find Lk, for k>=2. We can distinct two

steps: join and prune.

1. Join

l finding Lk, a set of candidate k-itemsets is generated by joining Lk-1 with

itself

l The items within a transaction or itemset are sorted in lexicographic order

l For the (k-1) itemset: li[1]<li[2]<…<li[k-1]

l The members of Lk-1 are joinable if their first(k-2) items are in common

l Members l1, l2 of Lk-1 are joined if (l1[1]=l2[1]) and (l1[2]=l2[2]) and …

and (l1[k-2]=l2[k-2]) and (l1[k-1]<l2[k-1]) – no duplicates

l The resulting itemset formed by joining l1 and l2 is l1[1], l1[2],…, l1[k-2],

l1[k-1], l2[k-1]

 6

2. Prune

• Ck is a superset of Lk, Lk contain those candidates from Ck, which are

frequent

• Scanning the database to determine the count of each candidate in Ck –

heavy computation

• To reduce the size of Ck the Apriori property is used: if any (k-1) subset

of a candidate k-itemset is not in Lk-1, then the candidate cannot be

frequent either,so it can be removed from Ck. – subset testing (hash tree)

Let us take the following example:

TID List of item_IDs

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

Table 3

The join and prune steps for this example:

l Scan D for count of each candidate

¡ C1: I1 – 6, I2 – 7, I3 -6, I4 – 2, I5 - 2

l Compare candidate support count with minimum support count (min_sup=2)

¡ L1: I1 – 6, I2 – 7, I3 -6, I4 – 2, I5 - 2

l Generate C2 candidates from L1 and scan D for count of each candidate

¡ C2: {I1,I2} – 4, {I1, I3} – 4, {I1, I4} – 1, …

l Compare candidate support count with minimum support count

¡ L2: {I1,I2} – 4, {I1, I3} – 4, {I1, I5} – 2, {I2, I3} – 4, {I2, I4} - 2, {I2, I5}

– 2

l Generate C3 candidates from L2 using the join and prune steps:

 7

¡ Join: C3=L2xL2={{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2,

I3, I5}, {I2, I4, I5}}

¡ Prune: C3: {I1, I2, I3}, {I1, I2, I5}

l Scan D for count of each candidate

¡ C3: {I1, I2, I3} - 2, {I1, I2, I5} – 2

l Compare candidate support count with minimum support count

¡ L3: {I1, I2, I3} – 2, {I1, I2, I5} – 2

l Generate C4 candidates from L3

¡ C4=L3xL3={I1, I2, I3, I5}

¡ This itemset is pruned, because its subset {{I2, I3, I5}} is not frequent =>

C4=null

The Apriori algorithm:

Input:

§ D, database of transactions;

§ min_sup, the minimum support count threshold

Output: L, frequent itemsets in D

Method:

(1) L1=find_frequent_1-itemsets(D);

(2) for(k=2; Lk-1!=null;k++){

(3) Ck=apriori_gen(Lk-1);

(4) for each transaction t Є D{ // scan D for counts

(5) Ct = subset(Ck, t); // get the subsets of t that are candidates

(6) for each candidate c Є Ct

(7) c.count++;

(8) }

(9) Lk={c Є Ck | c.count≥min_sup}

(10) }

(11) Return L=UkLk

procedure apriori_gen(Lk-1: frequent(k-1)-itemsets)

(1) for each itemset l1 Є Lk-1

(2) for each itemset l2 Є Lk-1

(3) if(l1[1]=l2[1])^(l1[2]=l2[2])^…^(l1[k-2]=l2[k-2])^(l1[k-1]<l2[k-1]) then{

(4) c=l1xl2; //join step: generate candidates

(5) if has_infrequent_subset(c,Lk-1) then

(6) delete c; //prune step: remove unfruitful candidate

(7) else add c to Ck;

(8) }

(9) Return Ck;

procedure has_infrequent_subset(c: candidate k-itemset; Lk-1: frequent (k-1)-itemsets);

//use priori knowledge

(1) for each (k-1)-subset s of c

(2) if s !Є Lk-1 then

(3) Return TRUE;

(4) Return FALSE;

 8

Generating association rules from frequent itemsets

Once the frequent itemsets from transactions in a database D have been found, it

is straightforward to generate strong association rules from them, where strong

association rules satisfy both minimum support and minimum confidence. This can be

done using the following equation:

confidence(A=>B)=P(B|A) = support_count(AUB) / support_count(A)

The conditional probability is expressed in terms of itemset support count, where:

support_count(AUB) is the number of transactions containing the itemsets AUB and

support_count(A) is the number of transactions containing the itemset A. Based on this

equation, association rules can be generated as follows:

§ For each frequent itemset l, generate all nonempty subsets of l.

§ For every nonempty subset s of l, output the rule “s => (l-s)” if support_count(l) /

support_count(s)>=min_conf, where min_conf is the minimm confidence

threshold.

Let’s try an example based on the transactional data shown on Table 3. Suppose the data

contain the frequent itemset l = {l1, l2, l5}. The nonempty subsets of l are: {l1, l2}, {l1,

l5}, {l2, l5}, {l1}, {l2} and {l5}. The resulting association rules are as shown below,

each listed with its confidence:

I1 and I2=>I5 Conf=2/4=50%

I1 and I5=>I2 Conf=2/2=100%

I2 and I5=> I1 Conf=2/2=100%

I1=>I2 and I5 Conf=2/6=33%

I2=>I1 and I5 Conf=2/7=29%

I5=>I1 and I2 Conf=2/2=100%

If the minimum confidence threshold is 70%, then only the second, third and last rules

above are output, because these are the only ones generated that are strong.

 9

Improving the efficiency of Apriori

Many variations of the Apriori algorithm have been proposed that focus on improving the

efficiency of the ariginal algorithm. Several of these variations are summarized as

follows:

1. Hash-based technique can be used to reduce the size of the candidate k-itemsets,

Ck, for k>1. For example when scanning each transaction in the database to generate

the frequent 1-itemsetes, L1, from the candidate 1-itemsets in C1, we can generate all

of the 2-itemsets for each transaction, hash them into a different buckets of a hash

table structure and increase the corresponding bucket counts:

a. H(x,y)=((order of x)X10+(order of y)) mod 7

b. A 2-itemset whose corresponding bucket count in the hash table is below

the threshold cannot be frequent and thus should be removed from the

candidate set.

2. Transaction reduction – a transaction that does not contain any frequent k-

itemsets cannot contain any frequent k+1 itemsets. Therefore, such a transaction can

be marked or removed from further consideration because subsequent scans of the

database for j-itemsets, where j>k, will not require it.

3. Partitioning (partitioning the data to find candidate itemsets): A partitioning

technique can be used that requires just two database scans to mine the frequent

itemsets. It consists of two phases. In phase I, the algorithm subdivides the

transactions of D into n non-overlapping partitions. If the minimum support threshold

for transactions in D is min_sup, then the minimum support count for a partition is

min_sup X the number of transactions in that partition. For each partition, all frequent

itemsets within the partition are found. These are referred to as local frequent itemsets.

A local frequent itemset may or may not be frequent with respect to the entire

database, D. Any itemset that is potentially frequent with respect to D must occur as a

frequent itemset in at least one of the partitions. Therefore all local frequent itemsets

are candidate itemsets with respect to D. The collection of frequent itemsets from all

partitions forms the global candidate itemsets with respect to D. In phase II, a second

 10

scan of D is conducted in which the actual support of each candidate is assessed in

order to determine the global frequent itemsets

4. Sampling (mining on a subset of a given data): The basic idea of the sampling

approach is to pick a random sample S of the given data D, and then search for

frequent itemsets in S instead of D. In this way, we trade off some degree of accuracy

against efficiency. The sample size of S is such that the search for frequent itemsets in

S can be done in main memory, and so only one scan of the transactions in S in

required overall. Because we are searching for frequent itemsets in S rather than in D,

it is possible that we will miss some of the global frequent itemsets. To lessen this

possibility, we use a lower support threshold than minimum support to find the

frequent itemsets local to S.

5. Dynamic itemset counting (adding candidate itemsets at different points during a

scan): A dynamic itemset counting technique was proposed in which the database is

partitioned into blocks marked by start points. In this variation new candidate itemsets

can be added at any start point, which determines new candidate itemsets only

immediately before each complete database scan. The resulting algorithm requires

fewer database scan than Apriori.

Mining frequent itemsets without candidate generation

In many cases the Apriori candidate generate-and-test method significantly reduces

the size of candidate sets, leading to good performance gain. However it can suffer

from two nontrivial costs:

Transactions

in D

Divide D

into n

partitions

Find the

frequent

itemsets

local to

each

partition

(1 scan)

Combine

all local

frequent

itemsets to

form

candidate

itemset

Find global

frequent

itemsets

among

candidates

(1 scan)

Frequent

itemsets in

D

 11

Ø It may need to generate a huge number of candidate sets. For example if there

are 10^4 frequent 1-itemsets, the Apriori algorithm will need to generate more

than 10^7 candidate 2-itemsets.

Ø It may need to repeatedly scan the database and check a large set of candidates

by pattern matching.

The solution is the frequent-pattern growth, or simply FP-growth, which mines

the complete set of frequent itemsets without candidate generation. This method adopts a

divide-and-conquer strategy as follows: first it compresses the database representing

frequent items into frequent-pattern tree, or FP-tree, which retains the itemset association

information. It then divides the compressed database into a set of conditional database,

each associated with one frequent item or pattern fragment, and mines each such database

separately.

Let us create the FP-tree for the example from Table 3:

• First we scan the database and determine the set of frequent items (1-itemsets)

and their support counts(frequencies): L={{I2:7},{I1:6},{I3:6},{I4:2},{I5:2}}

• Then we create the root of the FP-tree and label it with “null”

• We take each transaction, sort the items according to descending support count,

and create a branch for it. For example the scan of the first transaction “T100:I1,

I2, I5”, which contain tree items: I2, I1 and I5 in sorted descending, leads to the

construction of the first branch of the tree: (I2:1), (I1:1), (I5:1).

• The second transaction T200 contains the items I2 and I4. This would result a

branch where I2 is linked to the root and I4 is linked to I2. However this branch

would share a common prefix, i2, with the existing path for T100. Therefore we

instead increment the count of the 12 node by 1 and create a new node (I4:1),

which is linked as a child of (I2:2).

In general when considering the branch to be added for a transaction, the count of

each node along a common prefix is incremented by 1 and nodes for the items

following the prefix are created and linked accordingly.

 12

To facilitate tree traversal, an item header table is built so that each item points to its

occurrences in the tree via a chain of node-links. In this way the problem of mining

frequent pattern in database is transformed to that of mining the FP-tree.

The FP-tree is mined as follows: Start from each frequent length-1 pattern, as an

initial suffix pattern, construct its conditional pattern base, a sub-database, which

consists of the set of prefix paths in the FP-tree co-occurring with the suffix pattern,

then construct its conditional FP-tree and perform mining recursively on such a tree.

The pattern growth is achieved by the concatenation of the suffix pattern with the

frequent patterns generated from a conditional FP-tree.

l Let us consider I5, which is the last item in L. I5 occurs in two branches of the

FP-tree:

¡ (I2, I1, I5:1)

¡ (I2, I1, I3, I5:1)

l I5 is a suffix, so its corresponding two prefix paths are

¡ (I2, I1:1)

¡ (I2, I1, I3:1)

l Its conditional FP-tree contains only a single path: (I2:2, I1:2); I3 is removed

because its support count of 1 is less than the minimum support count

l The single path generates all the combinations of frequent patterns:

¡ {I2,I5:2}

¡ {I1,I5:2}

 13

¡ {I2, I1, I5:2}

l For I4 exist 2 prefix path, which form the conditional pattern base:

¡ {{I2, I1:1},{I2:1}}

l This generates a single-node conditional FP-tree:

¡ (I2:2)

l The frequent pattern: {I2, I1:2}

The following table shows the frequent pattern generated for each node:

Item Conditional Pattern

Base

Conditional FP-tree Frequent Pattern Generated

I5 {{I2, I1:1}, {I2, I1,

I3:1}}

(I2:2, I1:2) {I2, I5:2}, {I1, I5:2}, {I2,

I1, I5:2}

I4 {{I2, I1:2}, {I2:1}} (I2:2) {I2, I4:2}

I3 {{I2, I1:2}, {I2:2},

{I1:2}}

(I2:4, I1:2), (I1:2),

(I2:4)

{I2, I3:4}, {I1, I3:4}, {I2,

I1, I3:2}, {I2, I1:4}

I1 {{I2:4}} (I2:4) {I2, I1:4}

The FP-growth method transforms the problem of finding long frequent patterns

to searching for shorter ones recursively and then concatenating the suffix. It uses the

least frequent items as a suffix, offering good selectivity. The method substantially

reduces the search costs.

The FP-growth algorithm: mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:
§ D, a transaction database

§ min_sup, the minimum support count threshold

Output: the complete set of frequent patterns.

Method:
(1) the FP-tree is constructed

(2) The FP-tree is mined by calling FP-growth(FP_tree, null):

procedure FP_growth(Tree, α)
 if Tree contains a single path P then

 for each combination (denoted as β) of the nodes in the path P

 generate pattern βUα with support_count = minimum support count of nodes in β;

 else for each ai in the header of Tree{

 generate pattern β=aiUα with support_count = ai.support_count

 construct β’s conditional pattern base and then β’s conditional FP_tree Treeβ;

 if Treeβ != 0 then

 call FP_growth(Treeβ, β); }

 14

Mining frequent itemsets using vertical data format

The Apriori and the FP-growth methods mine frequent patterns from a set of

transactions in TID-itemset format, where TIS is a transaction id and itemset is the set of

items bought in transaction TID. This data format is known as horizontal data format.

Alternatively data can also be presented in item-TID_set format, where item is an item

name and TID_set is the set of transaction identifiers containing the item. This format is

known as vertical data format. In the following table you can see the vertical data format

of the example, shown in table 3:

Itemset TID_set

I1 {T100, T400, T500, T700, T800, T900}

I2 {T100, T200, T300, T400, T600, T800, T900}

I3 {T300, T500, T600, T700, T800, T900}

I4 {T200, T400}

I5 {T100, T800}

The 2-itemsets in vertical data format:

Itemset TID_set

{I1, I2} {T100, T400, T800, T900}

{I1, I3} {T300, T700, T800, T900}

{I1, I4} {T400}

{I1, I5} {T100, T800}

{I2, I3} {T300, T600, T800, T900}

{I2, I4} {T200, T400}

{I2, I5} {T100, T800}

{I3, I5} {T800}

The 3itemsets in vertical data format:

Itemset TID_set

 15

{I1, I2, I3} {T800, T900}

{I1, I2, I5} {T100, T800}

First we transform the horizontally formatted data to the vertical format by

scanning the data set once. The support count of an itemset is simply the length of the

TID_set of the itemset. Starting with k=1 the frequent k-itemsets can be used to construct

the candidate (k+1)-itemsets. This process repeats with k incremented by 1 each time

until no frequent itemsets or no candidate itemsets can be found.

Advantages of this algorithm:

- Better than Apriori in the generation of candidate (k+1)-itemset from frequent k-

itemsets

- There is no need to scan the database to find the support (k+1) itemsets (for

k>=1). This is because the TID_set of each k-itemset carries the complete

information required for counting such support.

The disadvantage of this algorithm consist in the TID_set being to long, taking

substantial memory space as well as computation time for intersecting the long sets.

Conclusions

The major problem with frequent set mining methods presented previews is the

explosion of the number of results, it is difficult to find the most interesting frequent item

sets. We are facing the following disadvantages: many transactions, huge database, many

data and not enough information. Large sets of frequent item sets describe essentially the

same set of transactions. This problem was approached in the paper ‘Item Sets That

Compress’, It uses the MDL principle to reduce the number of the item sets: the best set

of frequent item sets is that set that compresses the database set. The following four

heuristic algorithms give a dramatic reduction in the number of frequent item sets:

1. Naive compression

2. Naive compression & Pruning

3. Naive compression + Sanitize

4. Naive compression & Pruning + Sanitize

 16

The experiments were made on both the closed and all frequent item sets for

min_sup = 724 on the mushroom database, which was taken from the FIMI web site.

The results on the closed frequent item sets were impressive; they ended up with less than

2% of the closed frequent item sets. The results for all frequent items sets were even

more impressive with 0,035%. This small subset gives a much better compression than

the one constructed from closed frequent item sets.

A special case of the frequent item set mining problem is the frequent string

mining, where the main goal is to find all substrings of a collection of string databases

which satisfy database specific minimum and maximum frequency constraints. An

algorithm was presented in the paper “Optimal string mining under frequency constraint”

from J. Fischer, which solves the frequent string mining problem in linear time under the

assumption that the number of databases is treated as a constant. The space consumption

of this algorithm is proportional to the total size of all databases. Adrian Kügel and Enno

Ohlebusch improved this algorithm in such way that its space consumption is

proportional to the size of the largest database and it takes linear time regardless of the

number of databases. This algorithm is more flexible, because one of several databases

can be replaced without having to recalculate everything; the intermediate data can be

stored on file and be reused.

The problem of frequent item set mining was extended to sequential pattern

mining. By the issue of finding frequent sequences we are facing with the problem of

having a big number of frequent sequences and many redundancies. The article “Mining

conjunctive sequential patterns” presents an algorithm for non-derivable conjunctive

sequential patterns and shows its use in mining association rules for sequences. The

experiments show the efficiency of this algorithm.

The next group of articles handled the data mining problem having as basis the

decision tree, which is a decision support tool that uses a tree-like graph or model of

decisions and their possible consequences. In data mining a decision tree is a predictive

model; that is a mapping from observations about an item to conclusions about its target

value. In this tree structure leaves represent classifications and branches represent

conjunctions of features that lead to those classifications.

 17

The paper “Distributed decision tree induction in peer-to-peer systems” offers a

scalable and robust distributed algorithm for decision tree induction in large P2P

environments. The algorithm is called PeDiT algorithm and it uses a misclassification

gain as a splitting criteria and a stopping rule the depth of the tree. The optimal depth of

the tree is three, a higher depth decreases the efficiency of the algorithm.

The SVM provides a new approach to the problem of pattern recognition together

with regression estimation and linear operator inversion with clear connections to the

underlying statistical learning theory. Advantage of the algorithm is that the SVM

training always finds the global minimum and their simple geometric interpretation

provides fertile ground for further investigation. The main challenge is the choice of its

kernel. Different methods were worked out for training support vector machines. One of

it is the sequential minimal optimization (SMO), where the main idea is to break the

quadratic programming (QP) problem into a series of smallest possible QP problems,

which are solved analytically. Its advantages are: the algorithm is easy to implement, the

amount of memory required for the algorithm is linear in the training set size, which

allows SMO to handle very large training sets, lower execution time.

The next group of papers handles the problem of community mining. The

traditional bipartite model of ontologies was extended with the social dimension, leading

to a tripartite model of actors, concepts and instances. We have seen a fast algorithm for

finding overlapping communities in networks: CONGA and a modification of it called

CONGO, which is more efficient and faster than the first one. The next algorithm

presented was the context-specific cluster tree (CCT) for community exploration on large

bipartite graphs. The resulting CCT can provide a compressed representation of the graph

and facilitate visualization. The experiments showed that both space and computational

efficiency are achieved in several large real graphs.

Data mining is about analyzing data; for information about extracting information

out of data. It is a very actual and interesting issue having more and more data stored in

database. The most important usage: customer segmentation in marketing, shopping cart

analyzes, management of customer relationship, campaign management, Web usage

mining, text mining, player tracking and so on.

 18

References

Jiawei Han, Micheline Kamber. Data Mining – Concepts and Techniques. Morgan

Kaufmann, 2 edition, 2006.

Agrawal R, Imielinski T and Swami A. Mining association rules between sets of

items in large databases. In Buneman P. and Jajodia S., editors, Processing of the 1993

ACM SIGMOD International Conference on Management of Data

Adrian Kügel and Enno Ohlebusch. A space efficient solution to the frequent string

mining problem for many databases. Data mining knowledge discovery, 2008.

Manila, H. Local and global methods in Data Mining: Basic techniques and open

problems. In Widmayer, P., Ruiz, F., Morales, R., Hennessy, M., Eidenbenz, S., and

Conejo, R., editors, Proceedings of the 29
th

 International Colloquium on Automata,

Languages and Programming.

Han, J., Pei, J., Yin, Y., and Mao, R Mining frequent pattern without candidate

generation. A frequent-tree approach. Data Mining and Knowledge discovery, 2004

