Frequent String Mining in mehreren Datenbanken

Peter Fricke

5. Mai 2009

Adrian Kügel, Enno Ohlebusch (2008): "A space efficient solution to the frequent string mining problem for many databases."

Überblick Einführung: Was, warum und vie? Datenstruktur und Basisalgorithmus Speicherplatzeffiziente Erweiterung des Basisalgorithmus Ergebnisse

Ordnung ist das halbe Leben! (Graf Lexiko, Anno 1234)

Einführung: Was, warum und wie?

Problemdefinition ("Was?") Motivation ("Warum?") Grundidee ("Wie?")

Datenstruktur und Basisalgorithmus

Struktur in den Daten Datenstruktur Der Basisalgorithmus

Speicherplatzeffiziente Erweiterung des Basisalgorithmus

Gemeinsame Sortierung berechnen Partnersuche

Schneiden

Ergebnisse

Problemdefinition: Begriffe

- ▶ m Datenbanken $D_1, \dots D_m$ sind Mengen von Strings über Σ
- ightharpoonup Elemente der Datenbank sind die "Originalstrings" ψ

Problemdefinition: Begriffe

- ▶ m Datenbanken $D_1, \dots D_m$ sind Mengen von Strings über Σ
- lacktriangle Elemente der Datenbank sind die "Originalstrings" ψ
- ▶ Häufigkeit eines Strings ϕ : $freq(\phi, D) := |\{\psi \in D : \phi \text{ ist Teilstring von } \psi\}|$

Problemdefinition: Frequent String Mining Problem

Frequent String Mining Problem Gegeben:

- ▶ m Datenbanken $D_1, \dots D_m$ sind Mengen von Strings über Σ
- ► m Paare von Häufigkeitsschwellwerten $(minf_1, maxf_1), \dots (minf_m, maxf_m)$

Problemdefinition: Frequent String Mining Problem

Frequent String Mining Problem Gegeben:

- ▶ m Datenbanken $D_1, \dots D_m$ sind Mengen von Strings über Σ
- ▶ m Paare von Häufigkeitsschwellwerten $(minf_1, maxf_1), \dots (minf_m, maxf_m)$
- ▶ Definition: Ein *relevanter Substring* ist ein beliebiger String, dessen Häufigkeit in mindestens einer Datenbank zwischen den Häufigkeitsschwellwerten liegt: $minf_i \le freq(\phi, D_i) \le maxf_i$
- Definition Frequent String Mining Problem: Finde Schnittmenge der relevanten Substrings der einzelnen Datenbanken.

Motivation: Huntington's disease

- ▶ Beispiel: Huntintons's Disease
- ▶ Vermutung: Ursache ist Gendefekt in bestimmtem Bereich
- Gensequenzen (=Strings) gesunder Individuen in einer Datenbank
- ► Gensequenzen kranker Individuen in anderer Datenbank
- ► Welche Strings kommen in einer Datenbank sehr häufig, in der anderen sehr selten vor?
- ► → Frequent String Mining Problem mit Häufigkeitsschwellwerten $(minf_1, maxf_1) = (n_{groß}, \infty),$ $(minf_2, maxf_2) = (0, n_{klein})$

Grundidee

- ► Es gibt schon einen Linearzeitalgorithmus (!)
- ▶ Platzbedarf proportional zur Gesamtgröße der Datenbanken
- ▶ Idee für Verbesserung: Löse Problem mit diesem Algorithmus für jede Datenbank einzeln...
- ...und konstruiere Gesamtlösung durch Schneiden der Teillösungen
- Platzbedarf dann proportional zur Größe der größten Datenbank

Grundidee

- Es gibt schon einen Linearzeitalgorithmus (!)
- ▶ Platzbedarf proportional zur Gesamtgröße der Datenbanken
- ▶ Idee für Verbesserung: Löse Problem mit diesem Algorithmus für jede Datenbank einzeln...
- ...und konstruiere Gesamtlösung durch Schneiden der Teillösungen
- Platzbedarf dann proportional zur Größe der größten Datenbank
- ► ToDo:
- Effizienten Schneidealgorithmus entwickeln

Grundidee

- ► Es gibt schon einen Linearzeitalgorithmus (!)
- ▶ Platzbedarf proportional zur Gesamtgröße der Datenbanken
- ▶ Idee für Verbesserung: Löse Problem mit diesem Algorithmus für jede Datenbank einzeln...
- ...und konstruiere Gesamtlösung durch Schneiden der Teillösungen
- Platzbedarf dann proportional zur Größe der größten Datenbank
- ▶ ToDo:
- Effizienten Schneidealgorithmus entwickeln
- ▶ Implizite Darstellung der Teillösungen (Größe nicht beschränkt!)

Einordnung

Das ist genau wie...

- Wir haben diskutiert:
- ► Terabyte Daten kann man nicht verschicken
- ► → Lokal Modelle aus *Teilen* der Daten extrahieren, Modelle verschicken, zusammen nutzen oder zusammensetzen.
- ▶ Hier: Daten passen nicht in den Hauptspeicher, Informationen aus *Teilen* der Daten extrahieren, zusammensetzen.
- Anderer Grund, ähnliches Vorgehen.

Vorverarbeitung

- Vorverarbeitung für jede Datenbank:
- ▶ Verketten der Elemente der Datenbank zu einem String
- ▶ Trennsymbol zwischen den Originalstrings der Datenbank: #
- ▶ Abschlusssymbol \$, beide nicht im Alphabet Σ enthalten.

Vorverarbeitung

- Vorverarbeitung für jede Datenbank:
- Verketten der Elemente der Datenbank zu einem String
- ▶ Trennsymbol zwischen den Originalstrings der Datenbank: #
- ▶ Abschlusssymbol \$, beide nicht im Alphabet Σ enthalten.
- ▶ Eine Datenbank D ist also eine Menge von Originalstrings ψ und wird dargestellt als Gesamtstring $T^D = aaaa\#baaab\#aba\#\$$, der eine Verkettung von Originalstrings ist.

Ein Beispiel

- ► Was sind die relevanten Substrings in der Datenbank D, die durch T^D = aaaa#baaab#aba#\$ dargestellt wird, für die Häufigkeitsschwellwerte (4,9)?
- ▶ \emptyset ! Warum? $freq(\phi, D) := |\{\psi \in D : \phi \text{ ist Teilstring von } \psi\}|$
- ▶ Alle Vorkommen insgesamt zu berechnen ist einfacher!
- Idee Basisalgorithmus: Berechne alle Vorkommen $S_D(\phi)$ von ϕ insgesamt und ziehe Korrekturterme $C_D(\phi)$ ab für Vorkommen in demselben Originalstring der Datenbank. Hier: Korrekturterm 6 für freq(a, D), weil a im ersten Originalstring vierfach, im zweiten dreifach und im dritten Originalstring doppelt vorkommt.

$$freq(a, D) = S_D(a) - C_D(a) = 9 - 6 = 3 < 4$$

Ein Beispiel

- ► Was sind die relevanten Substrings in der Datenbank D, die durch T^D = aaaa#baaab#aba#\$ dargestellt wird, für die Häufigkeitsschwellwerte (4,9)?
- ▶ \emptyset ! Warum? $freq(\phi, D) := |\{\psi \in D : \phi \text{ ist Teilstring von } \psi\}|$
- ▶ Alle Vorkommen insgesamt zu berechnen ist einfacher!
- Idee Basisalgorithmus: Berechne alle Vorkommen $S_D(\phi)$ von ϕ insgesamt und ziehe Korrekturterme $C_D(\phi)$ ab für Vorkommen in demselben Originalstring der Datenbank. Hier: Korrekturterm 6 für freq(a, D), weil a im ersten Originalstring vierfach, im zweiten dreifach und im dritten Originalstring doppelt vorkommt.

$$freq(a, D) = S_D(a) - C_D(a) = 9 - 6 = 3 < 4$$

Für alle ϕ ? Problem: Quadratisch viele. Später lösen!

Suche nach Struktur in den Daten

► Eine Datenbank wird dargestellt als String $T^D = aaaa\#baaab\#aba\#\$$

Suche nach Struktur in den Daten

- ► Eine Datenbank wird dargestellt als String $T^D = aaaa\#baaab\#aba\#\$$
- ► Erster Versuch: Schreibe die *n* Suffixe von *T*^D untereinander
- Ist das Struktur?
- Keine ausreichend interessante Struktur!

Startposition	Suffix
1	aaaa#baaab#aba#\$
2	aaa#baaab#aba#\$
3	aa#baaab#aba#\$
4	a#baaab#aba#\$
5	#baaab#aba#\$
6	baaab#aba#\$
7	aaab#aba#\$
8	aab#aba#\$
9	ab#aba#\$
10	b#aba#\$
11	#aba#\$
12	aba#\$
13	ba#\$
14	a#\$
15	#\$
16	\$

Index	Startposition	Suffix
1	16	\$
2	15	#\$
3	11	#aba#\$
4	5	#baaab#aba#\$
5	14	a#\$
6	4	a#baaab#aba#\$
7	3	aa#baaab#aba#\$
8	2	aaa#baaab#aba#\$
9	1	aaaa#baaab#aba#\$
10	7	aaab#aba#\$
11	8	aab#aba#\$
12	9	ab#aba#\$
13	12	aba#\$
14	10	b#aba#\$
15	13	ba#\$
16	6	baaab#aba#\$

Ähnlichkeit

- Sortieren hilft!
- ▶ Identifiziere Suffix mit seiner Position i in der Liste der sortierten Suffixe
- Mit der Startposition ("SA[i]") kann ich wieder auf das Suffix selbst zugreifen:
- $ightharpoonup T^D_{SA[i]...n}$ ist das lexikografisch *i*-te Suffix
- ► SA nennt man auch Suffix Array.
- ▶ Ähnlichkeit von Suffixen ist Länge des längsten gemeinsamen Präfixes: lcp(x, y) ("length of longest common prefix")
- Ähnlichkeit zum lexikografischen Vorgänger: LCP[i]

Index	SA	LCP	Suffix
1	16	0	\$
2	15	0	#\$
3	11	1	#aba#\$
4	5	1	#baaab#aba#\$
5	14	0	a#\$
6	4	2	a#baaab#aba#\$
7	3	1	aa#baaab#aba#\$
8	2	2	aaa#baaab#aba#\$
9	1	3	aaaa#baaab#aba#
10	7	3	aaab#aba#\$
11	8	2	aab#aba#\$
12	9	1	ab#aba#\$
13	12	2	aba#\$
14	10	0	b#aba#\$
15	13	1	ba#\$
16	6	2	baaab#aba#\$

Struktur!

- "Ähnlichkeit mindestens I" definiert Äquivalenzrelation auf Suffixen
- Äquivalenzklassen entsprechen Intervallen in der sortierten Suffixliste
- ▶ Jede Äquivalenzklasse kann ich mit dem gemeinsamen Präfix der Mitglieder markieren. ("Das ω -Intervall")

Struktur!

- "Ähnlichkeit mindestens I" definiert Äquivalenzrelation auf Suffixen
- Äquivalenzklassen entsprechen Intervallen in der sortierten Suffixliste
- ▶ Jede Äquivalenzklasse kann ich mit dem gemeinsamen Präfix der Mitglieder markieren. ("Das ω -Intervall")
- ► Ich kann I variieren: Neue Äquivalenzrelation, neue Partitionierung. Also Hierarchie von Äquivalenzklassen.

Struktur!

- "Ähnlichkeit mindestens I" definiert Äquivalenzrelation auf Suffixen
- Äquivalenzklassen entsprechen Intervallen in der sortierten Suffixliste
- ▶ Jede Äquivalenzklasse kann ich mit dem gemeinsamen Präfix der Mitglieder markieren. ("Das ω -Intervall")
- ► Ich kann I variieren: Neue Äquivalenzrelation, neue Partitionierung. Also Hierarchie von Äquivalenzklassen.
- ► Erhöhe ich / auf / + 1, werden die Intervalle an den Positionen mit LCP[i]=I gespalten, die neuen Intervalle sind Teilintervall des alten Intervalls. Elter-Kind-Beziehung definierbar.

Icp-Intervall

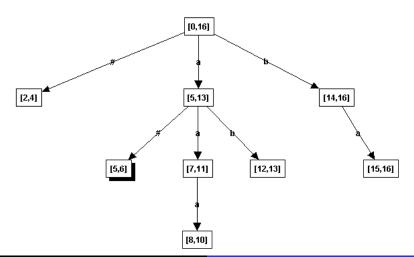
Sei $1 \le i < j \le n$. Ein Icp-Intervall [i,j] vom Wert I (auch I-Intervall genannt) erfüllt folgende Bedingungen:

- ▶ LCP[i] < I und LCP[j+1] < I
- ▶ $LCP[k] \ge I$ für alle k mit $i < k \le j$
- ▶ LCP[k] = I für mindestens ein $i < k \le j$ ("I-Index")

Icp-Intervall

- ▶ Ein l'-Intervall [i', j'] ist *eingebettet* in ein l-Intervall [i, j], wenn i < i' < j' < j und l < l'.
- ▶ [i,j] umschließt dann [i',j'].
- ▶ Wenn es kein anderes lcp-Intervall [i'', j''] gibt, das von [i, j] eingebettet ist und [i', j'] umschließt, ist [i', j'] Kind von [i, j].

lcp-Intervall-Baum



Icp-Intervall-Baum

- Präfixbaum wie bei FPgrowth.
- ► Einzufügende Daten (Suffixe, geordnete Mengen) sind Pfade.
- Naiver Aufbau: Pfade übereinanderlegen.
- Struktur: Gemeinsamkeiten sind als gemeinsame Teilpfade zu erkennen
- ► Hier kompaktere Darstellung: Bei FPgrowth wurde pro Kante ein Item abgearbeitet, hier können pro Kante auch mehrere Buchstaben abgearbeitet werden (Hinweis: Im Bild auf der vorigen Seite wurden die ursprünglichen Blätter (=Intervalle der Länge eins) gestrichen, um eine noch kompaktere Darstellung zu erreichen).

Verwenden effizienter Algorithmen

- ▶ Wir müssen nicht alle Teilprobleme selbst lösen, sondern können existierende Algorithmen verwenden:
- ► Algorithmus für "Konstruktion" des lcp-Intervall-Baums: Linear in Zeit und Raum.
- ▶ Virtuelle Datenstruktur/Kapselung, intern Arrays/Tabellen.
- ▶ Intervallgrenzen lassen sich sehr effizient finden: Range Minimum Queries $RMQ_{LCP}(i,j) := \arg\min_{i < m \le j} LCP[m]$ sind nach linearer Vorverarbeitung in konstanter Zeit ausführbar. Später nützlich.

Quadratisch viele Häufigkeiten in Linearzeit berechnen?

- ▶ Häufigkeit $freq(\omega, D)$ müssen wir nur für die ω berechnen, die einem Knoten des Intervallbaums zugeordnet sind (dem Knoten, der das ω -Intervall repräsentiert). Warum?
- ▶ Beispiel: Suffix 16. Es reicht, die Häufigkeit des Gesamtstrings zu kennen, schon kenne ich die Häufigkeiten für alle Präfixe mit Länge mindestens 3 (Häufigkeit: 1).
- Jeder Knoten, der nicht Blatt ist, hat mindestens zwei Kinder (Intervalle der Länge 1 sind Blätter).
- n Blätter, also hat Baum lineare Größe.
- ► Also berechnen wir nur linear viele Häufigkeiten.
- Platzsparend speichern. Später!

Wo sind wir?

Das waren Datenstruktur und Vorüberlegungen. Folgendes ist noch zu tun:

- ▶ Wir müssen für jeden Knoten im lcp-Intervallbaum, der ein ω -Intervall repräsentiert, die Anzahl $S_D(\omega)$ der Vorkommen von ω in T^D insgesamt berechnen.
- ▶ Die eigentlich gesuchten Häufigkeiten berechnen wir so nicht ganz korrekt, weil wir Strings, die in einem Originalstring mehrfach vorkommen, fälschlich mehrfach zählen. Wir müssen also für jedes dieser ω einen Korrekturterm $C_D(\omega)$ berechnen, so dass wir $freq(\omega, D) = S_D(\omega) C_D(\omega)$ berechnen können.
- ▶ Wir müssen die Ergebnisse, die (möglicherweise quadratisch vielen) relevanten Substrings platzsparend darstellen.

Häufigkeiten berechnen

Berechne alle Vorkommen $S_D(\phi)$ von ϕ insgesamt und ziehe Korrekturterme $C_D(\phi)$ ab für mehrfaches Vorkommen in demselben Originalstring der Datenbank.

Erinnerung:
$$T^D = aaaa \# baaab \# aba \# \$$$
,

$$freq(a, D) = S_D(a) - C_D(a) = 9 - 6 = 3$$

Häufigkeiten berechnen

Berechne alle Vorkommen $S_D(\phi)$ von ϕ insgesamt und ziehe Korrekturterme $C_D(\phi)$ ab für mehrfaches Vorkommen in demselben Originalstring der Datenbank.

Erinnerung: $T^D = aaaa\#baaab\#aba\#\$$,

$$freq(a, D) = S_D(a) - C_D(a) = 9 - 6 = 3$$

- \triangleright s^k ist der k-te Originalstring.
- ► $C_D(\phi) = \sum_{s^k \in D: \phi \leq s^k} (|\{j : s^k_{j \dots j + |\phi| 1} = \phi\}| 1)$
- $freq(\phi, D) = S_D(\phi) C_D(\phi)$

Häufigkeiten berechnen

Berechne alle Vorkommen $S_D(\phi)$ von ϕ insgesamt und ziehe Korrekturterme $C_D(\phi)$ ab für mehrfaches Vorkommen in demselben Originalstring der Datenbank.

Erinnerung: $T^D = aaaa\#baaab\#aba\#\$$,

$$freq(a, D) = S_D(a) - C_D(a) = 9 - 6 = 3$$

- \triangleright s^k ist der k-te Originalstring.
- $ightharpoonup S_D(\phi) = |\{(j,k) : s_{j\cdots j+|\phi|-1}^k = \phi\}|$
- $C_D(\phi) = \sum_{s^k \in D: \phi \leq s^k} (|\{j: s^k_{j \dots j + |\phi| 1} = \phi\}| 1)$
- $freq(\phi, D) = S_D(\phi) C_D(\phi)$
- ▶ Für ϕ -Intervall [I,r] ist $S_D(\phi) = r l + 1$

Korrekturterme berechnen 1

Korrekturterme berechnen - Idee:

- Mehrfaches Auftreten von Strings in demselben Originalstring soll gezählt werden.
- Jedes Auftreten des Strings ordnen wir dem Suffix zu, dessen Präfix er ist.
- ▶ Uns interessieren also Paare von Suffixen, die in demselben Originalstring beginnen und ein gemeinsames Präfix ϕ der Länge k>0 haben.

Korrekturterme berechnen - Idee:

- Mehrfaches Auftreten von Strings in demselben Originalstring soll gezählt werden.
- Jedes Auftreten des Strings ordnen wir dem Suffix zu, dessen Präfix er ist.
- ▶ Uns interessieren also Paare von Suffixen, die in demselben Originalstring beginnen und ein gemeinsames Präfix ϕ der Länge k > 0 haben.
- Wenn wir ein solches Paar gefunden haben, wollen wir alle Probleme, die dieses Paar verursacht (auch kürzere Präfixe des gemeinsamen Präfixes), "notieren".
- Suffixpaar mit Präfix ϕ hat Mehrfachzählungen nur für Strings der Länge $\leq k$ verursacht, also soll die Notierung für genau diese sichtbar sein.

- ▶ Benutze Hilfsarray C' der Länge n
- Iteriere lexikografisch aufsteigend über Suffixe
- Finde heraus, in welchem Originalstring ψ das aktuelle Suffix $T_{SA[e]...n}$ beginnt (Zeilen färben im Beispiel auf S. 42)
- Finde den gespeicherten Index d des letzten Vorkommens eines im Originalstring ψ beginnenden Präfixes.
- ▶ Für dieses Paar $T_{SA[d]...n}$, $T_{SA[e]...n}$ von lexikografisch adjazenten Suffixen, die im selben Originalstring beginnen, erhöhe C'[m] um eins für $m = \arg\min_{i < m \le j} LCP[m]$

- ▶ Benutze Hilfsarray *C'* der Länge *n*
- Iteriere lexikografisch aufsteigend über Suffixe
- Finde heraus, in welchem Originalstring ψ das aktuelle Suffix $T_{SA[e]...n}$ beginnt (Zeilen färben im Beispiel auf S. 42)
- Finde den gespeicherten Index d des letzten Vorkommens eines im Originalstring ψ beginnenden Präfixes.
- ▶ Für dieses Paar $T_{SA[d]...n}$, $T_{SA[e]...n}$ von lexikografisch adjazenten Suffixen, die im selben Originalstring beginnen, erhöhe C'[m] um eins für $m = \arg\min_{i < m \le j} LCP[m]$
- ▶ Sei $\{T_{SA[i]...n}: I \leq i \leq r\}$ die Menge der Suffixe, die ϕ als Präfix haben:
- $C_D(\phi) = \sum_{i=l+1}^r C'[i]$

Berechnung des Hilfsarrays C'

- Wir können nun berechnen: $C_D(\phi) = \sum_{i=l+1}^r C'[i]$
- ▶ Zweites Hilfsarray C'' mit $C''[i] = \sum_{j=1...i} C'[j]$
- ▶ Nun ist $C_D(\phi) = \sum_{i=l+1}^r C'[i] = C''[r] C''[l]$
- ► Speicher sparen: *C'* wieder verwenden.
- ▶ Das Beispiel auf der nächsten Seite zeigt den Ablauf des Algorithmus. Der Algorithmus berechnet nur C' und C", die drei bunten Spalten werden nicht explizit berechnet.

i	LCP	Suffix	aba#\$	baaab#	aaaa#	C'	<i>C''</i>
1	0	\$					0
2	0	#\$	X			1	1
3	1	#aba#\$					1
4	1	#baaab#aba#\$					1
5	0	a#\$	X	X	X	3	4
6	2	a#baaab#aba#\$					4
7	1	aa#baaab#aba#\$	X		X	2	6
8	2	aaa#baaab#aba#\$			X	1	7
9	3	aaaa#baaab#aba#\$			X	1	8
10	3	aaab#aba#\$					8
11	2	aab#aba#\$		X		1	9
12	1	ab#aba#\$		X		1	10
13	2	aba#\$					10
14	0	b#aba#\$	Х	Х		2	12
15	1	ba#\$		Х		1	13
16	2	baaab#aba#\$				→ 를	13

Ergebnisse implizit speichern

Ergebnisse implizit speichern:

- Wir speichern relevante Strings an dem lexikografisch kleinsten Suffix, dessen Präfix sie sind.
- ▶ Die Mengen von relevanten Strings an einem Suffix sind nicht zersplittert, sondern bilden ein Intervall. Grund: Apriori-Eigenschaft.
- Wir speichern nur die Mindestlänge f und die Maximallänge g des Präfixes des Suffixes.

$$[f,g]_{T^D_{SA[i]}}_{n}:=\{T^D_{SA[i]...SA[i]+k-1}: f \le k \le g\}$$

Ergebnisse implizit speichern

Ergebnisse implizit speichern:

$$ightharpoonup T^D = aaaa\#baaab\#aba\#\$$$

•
$$(SA[i] = 6, f = 2, g = 6)$$
 ergibt?

Ergebnisse implizit speichern

Ergebnisse implizit speichern:

- $ightharpoonup T^D = aaaa\#baaab\#aba\#\$$
- (SA[i] = 6, f = 2, g = 6) ergibt?
- $[2,6]_{T_6^D} = \{ba, baa, baaa, baaab, baaab\#\}$
- ▶ (Relevante Mengen mit Trennsymbol werden in der Nachverarbeitung beschnitten: f = 2, g = 5)

Basisalgorithmus

- Vorverarbeitung: Verkette die Originalstrings der Datenbank zu Gesamtstring T, berechne Suffixarray, LCP-Array und Informationen zum schnellen Berechnen von RMQ_{LCP}
- ▶ Berechne Array C'
- ▶ Durchlaufe den Icp-Intervall-Baum (Postorder): Für jedes ω -Intervall [I,r] berechne $freq(\omega, D) = S_D(\omega) C_D(\omega)$
- Speichere jeden relevanten String am lexikografisch kleinsten Suffix, dessen Präfix er ist.
- ▶ Entferne alle relevanten Strings mit Trennsymbol #

Speichern der relevanten Substrings

- ▶ Initialisiere Arrays der Intervallgrenzen: $f[i] = \infty$, g[i] = 0 für $1 \le i \le n$
- "Postorder-Durchlauf" durch den virtuellen Icp-Intervallbaum
- ▶ Für jeden Knoten, der (l,r)-Intervall (ω -Intervall) darstellt:

Wo sind wir?

- ► Das war der Basisalgorithmus.
- ▶ Der Basisalgorithmus wird für jede der m Datenbanken mit jeweils eigenem Parametersatz (minf_i, maxf_i) ausgeführt. Ergebnis ist jeweils eine Ergebnistabelle, die die relevanten Substrings in impliziter Darstellung enthält.
- ▶ Das Gesamtergebnis ergibt sich durch Schneiden dieser Ergebnistabellen. Gesucht sind die relevanten Substrings, die in allen m Ergebnistabellen vorkommen.
- Weil wir eine implizite Darstellung gewählt haben, ist das nicht trivial.

Überblick

Ausgabe des Basisalgorithmus ist eine Tabelle von Tupeln (SA[i], LCP[i], f[i], g[i]).

Überblick

- Ausgabe des Basisalgorithmus ist eine Tabelle von Tupeln (SA[i], LCP[i], f[i], g[i]).
- ▶ Wir schneiden die Ergebnistabelle L₁ von D₁ mit der Ergebnistabelle L₂ von D₂, die entstehende Ergebnistabelle mit der Ergebnistabelle von D₃ usw.

Überblick

- Ausgabe des Basisalgorithmus ist eine Tabelle von Tupeln (SA[i], LCP[i], f[i], g[i]).
- Wir schneiden die Ergebnistabelle L₁ von D₁ mit der Ergebnistabelle L₂ von D₂, die entstehende Ergebnistabelle mit der Ergebnistabelle von D₃ usw.
- ▶ Keine neue Tabelle, sondern L_1 behalten und bei Bedarf Ergebnisintervalle verkleinern. Schnitt bedeutet: Elemente entfernen, die keinen Partner in einem Ergebnisintervall in L_2 finden. Wegen Apriori-Eigenschaft keine Löcher!

Überblick

- Ausgabe des Basisalgorithmus ist eine Tabelle von Tupeln (SA[i], LCP[i], f[i], g[i]).
- Wir schneiden die Ergebnistabelle L₁ von D₁ mit der Ergebnistabelle L₂ von D₂, die entstehende Ergebnistabelle mit der Ergebnistabelle von D₃ usw.
- ▶ Keine neue Tabelle, sondern L_1 behalten und bei Bedarf Ergebnisintervalle verkleinern. Schnitt bedeutet: Elemente entfernen, die keinen Partner in einem Ergebnisintervall in L_2 finden. Wegen Apriori-Eigenschaft keine Löcher!
- ► Suche für Ergebnisintervall eines Suffixes aus L₁ Partner in L₂. Verwalte dazu Menge(n) von Partnerkandidaten.
- ▶ Bearbeite die Tupel der beiden Tabellen in der Reihenfolge ihrer gemeinsamen lexikografischen Sortierung

Vorarbeiten: Alles bitte linear in $n_1 + n_2$ $(n_1 = |T^{D_1}|, n_2 = |T^{D_2}|)$.

- Wir berechnen Hilfsvariablen, die wir für den Schnittvorgang benötigen.
- ▶ Beim Berechnen dieser Hilfsvariablen fallen Informationen an, die wir zum Bearbeiten der Suffixe von T^{D1} und T^{D2} in der Reihenfolge ihrer gemeinsamen lexikografischen Sortierung benutzen.
- ▶ Reihenfolge der gemeinsamen lexikografischen Sortierung ergibt sich aus dem Ablauf des Algorithmus, keine neuen Indizes!

Gemeinsame Sortierung berechnen

- ▶ Für Suffix $T_{i...n_2}^{D_2}$ $(1 \le i \le n_2)$ ist das Suffix $T_{SA[p(i)]...n_1}^{D_1}$ der lexikografisch kleinste Nachfolger aus T^{D_1} : $T_{SA[p(i)-1]...n_1}^{D_1} \le T_{i...n_2}^{D_2} < T_{SA[p(i)]...n_1}^{D_1}$
- $ightharpoonup T^{D_1}_{SA[p(i)]...n_1}$ ist "Anker" von $T^{D_2}_{i...n_2}$.
- ▶ Für $1 \le j \le n_1$ ist c[j] die Anzahl der Suffixe von T^{D_2} , die in der gemeinsamen Sortierung zwischen Suffix $T^{D_1}_{SA[j]...n_1}$ und dessen lexikografischem Vorgänger (in der L_1 -Sortierung) $T^{D_1}_{SA[j-1]...n_1}$ eingeordnet werden ("Größe der Lücke").

Gemeinsame Sortierung berechnen

- ▶ Für Suffix $T_{i...n_2}^{D_2}$ $(1 \le i \le n_2)$ ist das Suffix $T_{SA[p(i)]...n_1}^{D_1}$ der lexikografisch kleinste Nachfolger aus T^{D_1} : $T_{SA[p(i)-1]...n_1}^{D_1} \le T_{i...n_2}^{D_2} < T_{SA[p(i)]...n_1}^{D_1}$
- $ightharpoonup T^{D_1}_{SA[p(i)]...n_1}$ ist "Anker" von $T^{D_2}_{i...n_2}$.
- ▶ Für $1 \le j \le n_1$ ist c[j] die Anzahl der Suffixe von T^{D_2} , die in der gemeinsamen Sortierung zwischen Suffix $T^{D_1}_{SA[j]...n_1}$ und dessen lexikografischem Vorgänger (in der L_1 -Sortierung) $T^{D_1}_{SA[j-1]...n_1}$ eingeordnet werden ("Größe der Lücke").
- ▶ Berechnung: Sobald p(i) gefunden erhöhe c[p(i)] um eins.

Ablauf des Schnittvorgangs

$$T^{D_1}$$
 T^{D_2} $T^{D_1}_{SA[j-1]...n_1} = \operatorname{abcd}$ $[1,4]$ abcdx $[2,5]$ abce $[4,4]$ abcex $[\infty,0]$ abcfe $[4,5]$

Hilfsvariablen:

▶ Berechne für jedes Suffix von T^{D_2} die Ähnlichkeit des ähnlichsten Substrings aus T^{D_1}

Hilfsvariablen:

- ▶ Berechne für jedes Suffix von T^{D_2} die Ähnlichkeit des ähnlichsten Substrings aus T^{D_1}
- Man nennt das: Matching statistics ms(i) :=Länge des längsten Präfixes des Suffixes $T_{i...n_2}^{D_2}$, das einem Substring von T^{D_1} entspricht.
- Naiv: Lege jedes Suffix von T^{D_2} entlang passender Pfade von der Wurzel aus in den Icp-Intervallbaum für T^{D_1} , bis es keine passende Fortsetzung mehr gibt (mismatch).

Hilfsvariablen:

- ▶ Berechne für jedes Suffix von T^{D_2} die Ähnlichkeit des ähnlichsten Substrings aus T^{D_1}
- Man nennt das: Matching statistics ms(i) :=Länge des längsten Präfixes des Suffixes $T_{i...n_2}^{D_2}$, das einem Substring von T^{D_1} entspricht.
- Naiv: Lege jedes Suffix von T^{D_2} entlang passender Pfade von der Wurzel aus in den Icp-Intervallbaum für T^{D_1} , bis es keine passende Fortsetzung mehr gibt (mismatch).
- Die Arbeit erledigt ein cleverer Matchingalgorithmus für uns, wir lehnen uns zurück, sehen zu und erkennen den Anker des Suffixes.

Wir beobachten das Matching von Suffix $T_{i...n_2}^{D_2}$ und warten auf Mismatch, um p(i) zu erkennen:

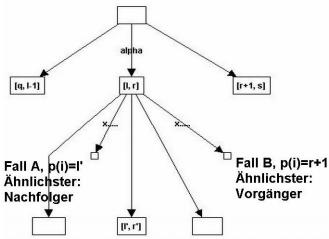
Wir beobachten das Matching von Suffix $T_{i...n_2}^{D_2}$ und warten auf Mismatch, um p(i) zu erkennen:

- ▶ Sei (I,r) das α -Intervall nach Matching von $\alpha\beta$, wenn beim nächsten Zeichen x der Mismatch auftritt.
- ▶ Entweder ist $|\beta| = 0$: Wir sind am Knoten
- ▶ Fall A: Es gibt ein Kind (l', r'), so dass auf der Kante zum Kind das erste Zeichen y ist mit $y > x \Rightarrow p(i) = l'$
- ▶ Fall B: Es gibt kein solches Kind: $\Rightarrow p(i) = r + 1$

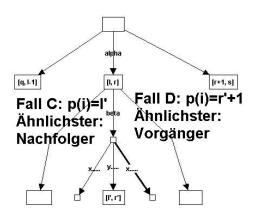
Wir beobachten das Matching von Suffix $T_{i...n_2}^{D_2}$ und warten auf Mismatch, um p(i) zu erkennen:

- ▶ Sei (I,r) das α -Intervall nach Matching von $\alpha\beta$, wenn beim nächsten Zeichen x der Mismatch auftritt.
- ▶ Entweder ist $|\beta| = 0$: Wir sind am Knoten
- ▶ Fall A: Es gibt ein Kind (l', r'), so dass auf der Kante zum Kind das erste Zeichen y ist mit $y > x \Rightarrow p(i) = l'$
- ▶ Fall B: Es gibt kein solches Kind: $\Rightarrow p(i) = r + 1$
- ▶ Oder es ist $|\beta| \ge 1$: Wir sind auf einer Kante, β ist Präfix einer Kantenbeschriftung zu Kind (I', r'), das nächste Zeichen auf der Kante ist y
- ▶ Fall C: $x < y \Rightarrow p(i) = l'$
- Fall D: $x > y \Rightarrow p(i) = r' + 1$

Vorarbeiten - Fälle A und B



Vorarbeiten - Fälle C und D



Ähnlichkeiten zwischen Suffixen von T^{D_1} und T^{D_2}

▶ Wie man leicht sieht, gilt für Fall B und D:

$$lcp(T_{SA[p(i)-1]...n_1}^{D_1}, T_{i...n_2}^{D_2}) = ms(i)$$

$$lcp(T_{i...n_2}^{D_2}, T_{SA[p(i)]...n_1}^{D_1}) = LCP[p(i)]$$

Sowie für Fall A und C (auch am linken Intervallrand): $lcp(T_{SA[p(i)-1]...n_1}^{D_1}, T_{i...n_2}^{D_2}) = LCP[p(i)]$ $lcp(T_{i...n_2}^{D_2}, T_{SA[p(i)]...n_1}^{D_1}) = ms(i)$

▶ Welcher Fall vorliegt, können wir im Vorzeichenbit von ms(i) speichern.

Partnersuche: Wer kommt in Frage?

Lemma: Sei p(i) so definiert, dass $T_{SA[p(i)-1]...n_1}^{D_1} \leq T_{i...n_2}^{D_2} < T_{SA[p(i)]...n_1}^{D_1}$. Suffix $T_{i...n_2}^{D_2} (1 \leq i \leq n_2)$ kann nur gemeinsame relevante Strings mit Suffixen an Positionen $\leq p(i)$ im Suffixarray von T^{D_1} haben.

- ▶ Wenn wir in absteigender lexikografischer Reihenfolge die Suffixe T^{D_1} bearbeiten, sind wir mit $T^{D_1}_{SA[p(i)]...n_1}$ fertig, sobald wir $T^{D_1}_{SA[p(i-1)]...n_1}$ erreichen.
- ▶ Berechne gleichzeitig alle Informationen, die unsere lexikografischen Vorgänger über diese gerade bearbeiteten Suffixe aus T^{D_2} benötigen → zwei Kandidatenmengen, eine für $T^{D_1}_{SA[p(i)]...n_1}$, eine für alle Vorgänger.

Partnersuche: Wer kommt in Frage?

▶ Wir suchen Partner für die relevanten Substrings von T^{D_1} , die in einem Ergebnisintervall an Suffix $T^{D_1}_{SA[p(i)]...n_1}$ gespeichert werden:

$$[f,g]_{T^{D_1}_{SA[p(i)]...n_1}}=\{T^{D_1}_{SA[p(i)]...SA[p(i)]+k-1}:f\leq k\leq g\}.$$
 Diese Partner sind relevante Substrings von T^{D_2} , die wir in einem

Partner sind relevante Substrings von T^{D_2} , die wir in einem Ergebnisintervall $[f_{cur}, g_{cur}]_{T^{D_1}_{SA[p(i)]...n_1}}$ verwalten.

Zusätzlich suchen wir vorsorglich Partner für die relevanten Substrings von T^{D_1} , die in Ergebnisintervallen an Suffixen $T^{D_1}_{m...n_1}$ mit $T^{D_1}_{m...n_1} < T^{D_1}_{SA[p(i)]...n_1}$ gespeichert werden. Diese Partner sind relevante Substrings von T^{D_2} , die wir in einem Ergebnisintervall $[f_{prev}, g_{prev}]_{T^{D_1}_{SA[p(i)-1]...n_1}}$ an Suffix

Der Schnittvorgang: Bezeichnungen

Notation Pseudocode:

- ▶ Wir haben zwei Ergebnislisten L_1 und L_2 , Einträge sind Tupel (SA[i], LCP[i], f[i], g[i])
- $ightharpoonup p_1$: Position in der lexikografisch sortierten Ergebnisliste L_1
- \triangleright p_2 : Position in der lexikografisch sortierten Ergebnisliste L_2
- ▶ Zugriff auf die Tupel in der Ergebnisliste: $L_i[p_i].f = f[p_i]$ aus $L_i, 1 \le i \le 2$, andere Einträge analog.

Weitergabe der Kandidatenmengen

Wir betrachten die Abarbeitung des Tupels aus $L_1[p_1]$ und der Tupel aus L_2 , die zwischen $L_1[p_1]$ und $L_1[p_1-1]$ liegen. Zunächst übernehmen wir die Kandidatenmengen des Nachfolgers (der bereits bearbeitet wurde).

Algorithm 2: Fragment - Weitergabe der Kandidatenmengen

else

$$f_{prev} = f_{cur}, g_{prev} = min\{g_{cur}, L_1[p_1].lcp\}$$

Der Schnittvorgang

Algorithm 3: Fragment - Erweitern der Kandidatenmengen

```
\begin{array}{ll} \mbox{if } L_{2}[p_{2}].f \leq L_{2}[p_{2}].g \ \mbox{then} \\ & \mbox{if } lcp_{1} \geq L_{2}[p_{2}].f \ \mbox{then} \\ & \mbox{} f_{prev} = min\{f_{prev}, L_{2}[p_{2}].f\} \\ & \mbox{} g_{prev} = max\{g_{prev}, min\{lcp_{1}, L_{2}[p_{2}].g\}\} \\ & \mbox{if } lcp_{2} \geq L_{2}[p_{2}].f \ \mbox{then} \\ & \mbox{} f_{cur} = min\{f_{cur}, L_{2}[p_{2}].f\} \\ & \mbox{} g_{cur} = max\{g_{cur}, min\{lcp_{2}, L_{2}[p_{2}].g\}\} \end{array}
```

$$\begin{split} lcp_1 := lcp(T^{D_2}_{SA_{D_2}[p_2]...n_2}, T^{D_1}_{SA_{D_1}[p(SA_{D_2}[p_2])-1]...n_1}) \\ lcp_2 := lcp(T^{D_2}_{SA_{D_2}[p_2]...n_2}, T^{D_1}_{SA_{D_1}[p(SA_{D_2}[p_2])]...n_1}) \end{split}$$

Der Schnittvorgang

Algorithm 4: Fragment - Der Schnitt

$$L_{out}[p_1].f = max\{f_{cur}, L_1[p_1].f\}$$

 $L_{out}[p_1].g = min\{g_{cur}, L_1[p_1].g\}$

Ergebnisse

Kurze Zusammenfassung der Ergebnisse

- Alles wie erwartet:
- Speicherbedarf nur noch von der größten Datenbank abhängig, Konstanten ähnlich.
- Speicherersparnis steigt mit Anzahl der Datenbanken.
- Aber: Etwa verdoppelte Laufzeit.