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Abstract The frequent string mining problem is to find all substrings of a collection
of string databases which satisfy database specific minimum and maximum frequency
constraints. Our contribution improves the existing linear-time algorithm for this prob-
lem in such a way that the peak memory consumption is a constant factor of the size
of the largest database of strings. We show how the results for each database can be
stored implicitly in space proportional to the size of the database, making it possible
to traverse the results in lexicographical order. Furthermore, we present a linear-time
algorithm which calculates the intersection of the results of different databases. This
algorithm is based on an algorithm to merge two suffix arrays, and our modifica-
tion allows us to also calculate the LCP table of the resulting suffix array during the
merging.

Keywords String mining · Enhanced suffix array

1 Introduction

In string mining problems, one is given m databases D1, . . . ,Dm of strings and
searches for the (unknown) strings that fulfill certain constraints, which are usu-
ally specified by the user. Here, we focus on the frequent string mining problem.
In this problem, the constraints consist of m pairs of frequency thresholds
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A space efficient solution to the frequent string mining problem 25

(minf 1,maxf 1), . . . , (minf m,maxf m) and one wants to find all strings φ that satisfy
minf i ≤ freq(φ,Di )≤ maxf i for all i with 1 ≤ i ≤ m, where freq(φ,Di )= |{ψ ∈ Di :φ
is asubstring of ψ}|.

We would like to give a medical example as a motivation to study the problem.
Suppose a genetic disease, e.g. Huntington’s disease, is suspected of being caused by
a defect on a certain locus of a certain chromosome, say on the short arm of chromo-
some 4. To find the cause of the disease, a possible approach would be to sequence that
segment of the DNA molecules of many healthy individuals and ill persons. Then one
database contains the DNA sequences of the healthy individuals, while the second
database contains the DNA sequences of the ill individuals. Now, one searches for
all strings (contiguous DNA subsequences) that occur frequently (or always) in one
of the databases and not too often (or never) in the other database. If one finds, for
example, that the string CAGCAGCAG. . .CAG, in which the codon CAG (coding for
the amino acid glutamine) is tandemly repeated more than 36 times, occurs frequently
(or always) in the database of ill persons but not too often (or never) in the database
of healthy persons, then this gives a hypothesis for the cause of the disease.

Fischer et al. (2006) presented an algorithm that solves the frequent string mining
problem in optimal time, that is, in time linear in the size of the input (the databases)
and the output (the strings that satisfy the constraints). Although their algorithm is a
breakthrough in string mining, it still has certain disadvantages. First, their method is
based on the construction of the suffix array of a very long string, namely the con-
catenation of all strings in all databases (the strings are separated by special separator
symbols). Thus, the space consumption of their algorithm is proportional to the space
occupied by all databases. It turned out that this space consumption is the bottleneck
of their algorithm (Fischer 2007, personal communication). Second, the method is not
very flexible if one is interested in different combinations of databases. For example,
if just one database is replaced with another database, then the whole procedure has
to be restarted again: One must construct the suffix array of the concatenation of all
strings in all databases, etc. Third, their result is based on the assumption that the
number of databases is treated as a constant.

In this paper, we presented an algorithm without these disadvantages. First, its peak
memory consumption is merely proportional to the size of the largest database. Sec-
ond, it is flexible in the sense that one of several databases can be replaced without
having to recalculate everything, that is, intermediate data can be stored on file and
be reused. Third, our algorithm has optimal worst case running time, regardless of the
number of databases.

2 Preliminaries

We will consider strings φ = φ1 . . . φn consisting of symbols φi from an ordered
alphabet � of constant size. The length of a string φ is the number of symbols it con-
tains, and is denoted by |φ|. A substring ranging from position n to m will be written
as φn...m . A substring φn...|φ| is also called a suffix of φ, and a substring φ1...m is also
called a prefix of φ.
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Let �∗ be the set of all strings over �, and φ,ψ ∈ �∗. If φ is a substring of ψ , we
write φ � ψ . We define lcp(φ,ψ) to be the length of the longest common prefix of φ
and ψ .

We will call D ⊆ �∗ a database of strings over �, and |D| denotes the number
of strings in D. The frequency of a string φ ∈ �∗ is then defined as the number
of strings of D which have φ as a substring. Formally, we can define it as follows:
freq(φ,D) := |{ψ ∈ D : φ � ψ}|. Note that we do not count duplicate occurrences
of φ within one string of D.

We will write A[i] to refer to the value at position i in an array A. Arrays will
be indexed starting from one (if not indicated otherwise). If we have an array A of
tuples, where the tuples consist of variables (for example (a, b)), we will refer to the
individual tuple entries as A[i]. <variable_name> (for example A[i].a).

We will use the notation [i, j] to denote an interval of natural numbers.
The suffix array SA of a string φ is an array of integers in the range 1 to n, which

describes the lexicographic order of the n suffixes of φ. More precisely, φSA[1]...n,
φSA[2]...n, . . . , φSA[n]...n is the sequence of suffixes of φ in ascending lexicographic
order; see Fig. 1.

We assume that we only calculate suffix arrays for strings of size <232, i.e. we can
store each number using 4 bytes of memory. The suffix array can be constructed in
linear time (Kärkkäinen and Sanders 2003; Ko and Aluru 2003; Kim et al. 2003).

In addition to the suffix array, we also need the inverse suffix array SA−1, which is
defined by SA−1[SA[i]] = i for all 1 ≤ i ≤ n.

The LCP table is an array of integers which is defined relative to the suffix array
of a string φ. It stores the length of the longest common prefix of two adjacent suffixes
in the lexicographically ordered list of suffixes. Formally, LCP[i] = lcp(φSA[i]...n,

Fig. 1 Suffix array, inverse
suffix array and LCP table for
the string φ= aaaa#baaab#aba#$
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φSA[i−1]...n) for 2 ≤ i ≤ n, and LCP[1] = 0. The LCP table can be calculated in O(n)
from the suffix array and the inverse suffix array (cf. Kasai et al. 2001).

The LCP table can also be used to determine the length of the longest common
prefix of several consecutive suffixes in the lexicographically ordered list of suffixes.
Let φSA[i]...n, . . . , φSA[ j]...n (1 ≤ i < j ≤ n) be these consecutive suffixes. The length
of the longest common prefix is mini<k≤ j {LCP[k]}.

We adopt the definition of lcp-intervals from Abouelhoda et al. (2004). Let 1 ≤
i < j ≤ n. The interval [i, j] is an lcp-interval of lcp-value l (also called l-interval),
if the following conditions hold:

1. LCP[i] < l and LCP[ j + 1] < l.
2. LCP[k] ≥ l for all k with i < k ≤ j .
3. LCP[k] = l for at least one i < k ≤ j .

Alternatively, for an l-interval [i, j] we may also write l-[i, j]. Indices p with
i < p ≤ j and LCP[p] = l are called l-indices. Informally, an l-interval is a maximal
set of lexicographically consecutive suffixes which have a longest common prefix of
length l.

Let [i, j] be an lcp-interval, and let ω be the longest common prefix of the suffixes
φSA[i]...n, . . . , φSA[ j]...n . Then [i, j] is also called the ω-interval.

We can define a parent–child relationship for lcp-intervals (cf. Abouelhoda et al.
2004): We say an l ′-interval [i ′, j ′] is embedded in an l-interval [i, j] if i ≤ i ′ ≤ j ′ ≤ j
and l < l ′. Consequently we say the l-interval [i, j] encloses the l ′-interval [i ′, j ′].
If there is no other lcp-interval [i ′′, j ′′] enclosing [i ′, j ′] embedded in [i, j], we say
that the lcp-interval [i ′, j ′] is a child interval of [i, j], and [i, j] is the parent interval
of [i ′, j ′]. This parent–child relationship defines a tree of all lcp-intervals, which we
will call the lcp-interval tree. We label each edge from an l-interval [i, j] to a child
interval l ′-[i ′, j ′] by the string φS A[i]+l...S A[i]+l ′−1. Note that this labelling is only for
ease of presentation and is not used in an actual implementation. If we concatenate
the edge labels from the root of the lcp-interval tree to some l-interval [i, j], we get
the string φS A[i]...S A[i]+l−1. This is exactly the longest common prefix of the suffixes
φS A[i]...n, . . . , φS A[ j]...n .

Let [i, j] be an l-interval, and p1, p2, . . . , pm be the l-indices. The child intervals
of [i, j] are [i, p1 − 1], [p1, p2 − 1], . . . , [pm, j]. Some of these intervals can be
singleton intervals, which are strictly speaking no lcp-intervals, but we can extend the
definition of lcp-intervals to also include singleton intervals. We assign an lcp-value
of n − S A[i] + 1 to the singleton interval [i, i].

For every aω-interval (a ∈ �) of lcp-value l there is anω-interval of lcp-value l −1.
We call the ω-interval the suffix link interval of the aω-interval. Since each l-index
belongs to exactly one lcp-interval, we can store the left and right boundary of the
suffix link interval of an lcp-interval at the first l-index.Suffix links can be constructed
in linear time (cf. Abouelhoda et al. 2004; Maaß 2007).

In order to be able to evaluate so-called range minimum queries of the form
RMQLCP(i, j) := arg mini<k≤ j {LC P[k]} in constant time we use the data struc-
ture presented in Fischer and Heun (2007) which can be calculated in O(n) time
using only o(n) bits of extra memory. This data structure returns the smallest index k
for a query if the answer is not unique. Therefore, it can also be used to traverse the

123
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lcp-interval tree. To determine the first l-index p1 of an lcp-interval [a, b], we evaluate
RMQLCP(a + 1, b). Given the position of some l-index pi , the position of the next
l-index can be found by evaluating RMQLCP(pi + 1, b). There is no next l-index if
pi = b or if LCP

[
RMQLCP(pi + 1, b)

]
> LCP[pi ].

3 Algorithm for the frequent string mining problem

The Frequent String Mining Problem is defined as follows (cf. Fischer et al. 2006):
Given m databases D1, . . . ,Dm of strings over � and m pairs of positive frequency
thresholds (minf 1,maxf 1), . . . , (minf m,maxf m), find all strings φ ∈ �∗ that satisfy
minf i ≤ freq(φ,Di ) ≤ maxf i for all 1 ≤ i ≤ m. We will call the strings φ ∈ �∗
which satisfy minf i ≤ freq(φ,Di ) ≤ maxf i for at least one 1 ≤ i ≤ m relevant
substrings. The solution to the Frequent String Mining Problem is the intersection of
the relevant substrings of each database Di .

We now give an overview of our algorithm, which is explained in more detail in
the following sections.

– For each database D from the set of databases {D1, . . . ,Dm} do:
• Preprocessing (as in Fischer et al. (2006), only for one database at a time):

• T D = s1# . . . si # . . . #s|D|#$, where D = {s1, . . . , si , . . . , s|D|} consists
of the strings si .

• Construct the suffix array SA and the LCP array of T D.
• Preprocess the LCP array so that range minimum queries can be answered

in constant time.
• Extraction phase:1

• Calculate array C ′
D as in Fischer et al. (2006).

• For each ω-interval [l, r ] compute freq(ω,D) = SD(ω) − CD(ω), where
SD(ω) = r − l + 1 and CD(ω) = ∑r

i=l+1 C ′
D[i] is a correction term, see

Sect. 3.2.
• Store each relevant substring φ (i.e. minf ≤ freq(φ,D) ≤ maxf ) at the

lexicographically smallest suffix which has φ as a prefix. For details how
to store these strings efficiently as results intervals, see Sect. 3.3.

• Remove all relevant substrings that contain the separator symbol #.
– Iteratively calculate the intersection of the relevant substrings of databases D1 and

D2, then the intersection of the result with the relevant substrings of D3, and so
on.
• Intersection of relevant substrings of two databases D1 and D2:

• Match the string T D2 against the suffix array of T D1 , and calculate values
which can be used to merge the suffix arrays of T D1 and T D2 .

• Process all suffixes of T D1 and T D2 in lexicographical order using the
information calculated during the matching.

• Reassign common relevant substrings to suffixes of T D1 .

1 Although the algorithm of Fischer et al. (2006) has a similar extraction phase, we want to stress that our
non-recursive calculation of the frequency freq(φ,D), as well as our implicit representation of the relevant
substrings, are new.
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3.1 Preprocessing step

We define T := s1#s2# · · · #s|D|#$, so T is a string consisting of the concatenation
of the strings in D, using # as a separation symbol and $ as termination symbol. Let n
denote the length of T . # and $ are selected in such a way that they do not occur in any
string of D. Note that it would be easier to use pairwise different separation symbols,
but this would mean that the alphabet size is not constant any more. We require it to be
constant, however, to obtain linear time complexity. We can work around this problem
by filtering out substrings which have been wrongly recognized as relevant substrings
at the end of the extraction phase.

In the preprocessing step we will set up data structures which are needed in later
steps of the algorithm. In particular, we calculate the suffix array SA and the LCP table
LCP for T . Furthermore, we calculate a data structure which supports range minimum
queries on the LCP table in O(1) time. These data structures can be calculated in linear
time.

3.2 Frequency calculation using correction terms

To solve the Frequent String Mining Problem, we need an efficient method to calculate
freq(φ,D) for D ∈ {D1, . . . ,Dm}, where φ is a string which occurs as substring in a
string of at least one of the databases. The idea used in Fischer et al. (2006) is to first
calculate the number of times that a string φ occurs in D and then subtract so called
correction terms which take care of multiple occurrences within the same string of D.
The method to calculate the correction terms is based on Hui’s color set size technique
(cf. Hui 1992). As in Fischer et al. (2006) we will use the following definitions:

Let D = {s1, . . . , s|D|} be a given database of strings si .

SD(φ) = |{( j, k): sk
j ... j+|φ|−1 = φ}| (1)

CD(φ) =
∑

sk∈D
φ�sk

(|{ j : sk
j ... j+|φ|−1 = φ}| − 1) (2)

Here, SD(φ) denotes the total number of occurrences of φ in D, and CD(φ) is the
correction term. Then, freq(φ,D) = SD(φ)− CD(φ).

As in Fischer et al. (2006), we will use an array C ′ of length n to store inter-
mediate values which can be used to calculate the correction terms. For each pair
TSA[i]...n, TSA[ j]...n of lexicographically adjacent suffixes from the same string, we
increase C ′[m] by one, where m = arg mini<m≤ j LCP[m]. The details of the algo-
rithm to calculate the array C ′ can be found in Fischer et al. (2006).

Lemma 1 Let {TSA[i]...n : l ≤ i ≤ r} be all suffixes which have φ as prefix. Then,
CD(φ) = ∑r

i=l+1 C ′[i].
Proof Since φ is a prefix of TSA[i]...n for l ≤ i ≤ r , LCP[i] ≥ |φ| for l < i ≤ r .
C ′[i] was increased only for pairs of lexicographically adjacent suffixes from the same
string which have a longest common prefix of TSA[i]...SA[i]+LCP[i]−1, so φ must be a
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prefix of their longest common prefix. Also, if two lexicographically adjacent suffixes
from the same string have a longest common prefix which in turn has φ as a prefix,
then both suffixes have φ as a prefix. Therefore some value C ′[i] has been increased,
where l < i ≤ r . Thus, it follows that CD(φ) = ∑r

i=l+1 C ′[i]. �	

3.3 Extraction of the relevant substrings

The extraction of the relevant substrings is done by a post-order traversal of the
lcp-interval tree. We can use the fact that for each ω-interval, the frequency of ω
is the same as the frequency of ω1...i (l < i ≤ |ω|), where l is the lcp-value of the
parent lcp-interval. Therefore, we only need to calculate the frequency of ω for each
ω-interval.

To determine the frequency freq(ω,D) of a longest common prefix ω of some
ω-interval [l . . . r ], we need to calculate SD(ω) and CD(ω). Since we process only
one database at a time, the value SD(ω) is just the size of the lcp-interval. Also,
according to Lemma 1, CD(ω) = ∑

i=l+1...r C ′[i]. In an array C ′′ we will store the
partial sums of the values C ′, formally, C ′′[i] = ∑

j=1...i C ′[ j]. We can evaluate∑
i=l+1...r C ′[i] as C ′′[r ] − C ′′[l]. In Fischer et al. (2006), a recursive calculation of

SD and CD is used. Our simplification to calculate CD could also be applied to their
algorithm.

In Fischer et al. (2006) the results are not printed in lexicographic order. For the
purpose of intersecting results of different string databases it would be better, however,
to obtain the results in lexicographic order. We have found a way to store the results
implicitly and process them later in lexicographic order.

All relevant substrings are prefix of at least one suffix, i.e. it is possible to assign
each relevant substring to exactly one suffix which has this substring as a prefix. We
will assign each relevant substring to the lexicographically smallest suffix which has
this substring as a prefix. This enables us to print all relevant substrings in lexico-
graphic order by processing the suffixes in lexicographic order, and print all relevant
substrings which are assigned to the current suffix in order of increasing lengths.

Lemma 2 Let Tp...n be a suffix with at least one assigned relevant substring. Let a be
the minimum length and b the maximum length of all relevant substrings assigned to
Tp...n. Then for each a ≤ i ≤ b there exists a relevant substring of length i which is
assigned to Tp...n.

Proof Assume there is an i ∈ [a, b] such that no relevant substring of length i was
assigned to Tp...n . The string Tp...p+i−1 must be a relevant substring, because minf ≤
freq(Tp...p+b−1,D) ≤ freq(Tp...p+i−1,D) ≤ freq(Tp...p+a−1,D) ≤ maxf . Obvi-
ously, Tp...p+i−1 is a prefix of Tp...n , so if it has not been assigned to Tp...n , it must
have been assigned to a lexicographically smaller suffix. But then, Tp...p+a−1 can
be assigned to the same suffix as Tp...p+i−1. This is a contradiction to the fact that
Tp...p+a−1 has already been assigned to the lexicographically smallest suffix which
has Tp...p+a−1 as a prefix. �	

In other words, for each suffix, the lengths of assigned relevant substrings form a
(possibly empty) interval [a, b]. Let us call this interval the results interval.
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The post-order traversal of the lcp-interval tree can be done as described in Kasai
et al. (2001). We go through the suffixes in lexicographic order. This means, in step
i we process suffix TSA[i]...n . We maintain a stack with values (l, h) where h is the
length of the longest common prefix of TSA[l]...n and TSA[i]...n , and LCP[l] < h. This
corresponds to an lcp-interval [l . . . r ] with r ≥ i . The tuples on the stack are sorted
by l and h, i.e. there is no tuple (l, h) on top of a tuple (l2, h2) with l ≤ l2 or h ≤ h2.

At the beginning of step i , the stack consists of tuples corresponding to ω-intervals
whereω is a prefix of TSA[i−1]...n . Now, if there is anω-interval on the stack with |ω| >
LC P[i], then ω is not a prefix of TSA[i]...n , because TSA[i]+LCP[i] 
= TSA[i−1]+LCP[i].
Therefore, we can remove all tuples with a value of h > LCP[i]. This means we have
found the right boundary of an h-interval, and we can now calculate the frequency
of the corresponding longest common prefix. We store the value l of the last tuple to
be removed; this is the smallest index such that ∀ j : l < j ≤ i,LCP[ j] ≥ LCP[i].
If no tuple has been removed, we set l to i − 1. All remaining tuples correspond to
lcp-intervals with longest common prefixes which are a prefix of TSA[i]...n . We add
another tuple (l,LCP[i]) to the stack if the tuple at the top of the stack has a value
of h < LCP[i]. This corresponds to the lcp-interval starting at l which has a longest
common prefix of length LCP[i].

We can improve memory usage by storing only the values l on the stack. The h
values can be calculated using the LCP table. This is very similar to the method used
in Abouelhoda et al. (2004) to calculate the child table. Let the stack contain the values
l1, l2, . . . , lk where lk is the tuple on top of the stack. We know that l1 < l2 < · · · < lk ,
and each value li (1 ≤ i ≤ k) is the left boundary of anωi -interval, whereωi is a prefix
of the currently processed suffix. Therefore, in the lcp-interval tree, the lcp-interval
with left boundary li is a parent of the lcp-interval with left boundary li+1 for each
i with 1 ≤ i < k. Moreover, li+1 must be an l-index of the lcp-interval with left
boundary li , and it follows that hi = LCP[li+1]. Since lk corresponds to the singleton
lcp-interval [lk, lk], we know that hk = n − SA[lk] + 1, thus we can calculate all h
values without having to store them on the stack.

To assign relevant substrings to suffixes, we also keep two arrays a and b of length
n. When removing a value l from the stack in step i , we calculate the frequency of ω
for theω-interval [l, i −1] as described above. If we find thatω1...LCP[l]+1, . . . , ω1...|ω|
are relevant substrings, we can update a[l] and b[l]. According to Lemma 2, we only
need to keep track of the minimum and maximum length of all relevant substrings
being assigned. a[l] will hold the minimum length, b[l] will hold the maximum length
of the relevant substrings assigned to the suffix Tl...n . Because we do a post-order tra-
versal of the lcp-interval tree, we know that for each suffix the first relevant substring
to be assigned is the one with maximum length, and the last relevant substring to be
assigned is the one with minimum length.

To remove wrongly recognized relevant substrings, we calculate for each suffix the
first occurrence of the separation symbol #, and reduce the size of the results intervals
such that they do not include any separation symbol. Let next(i) (1 ≤ i < n) point
to the first occurrence of the separation symbol # in suffix Ti ...n , and next(n) = 1.
Then, next(i) = 1 if Ti = #, otherwise next(i) = 1 + next(i + 1). Therefore, the
values next can be calculated by processing the suffixes of T in order of increas-
ing length. Using the next values, we adjust the b values of the results intervals to
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min{b[i], next(SA[i]) − 1}, thereby making sure that no results interval includes a
separation symbol.

We store n tuples (SA[i],LCP[i], a[i], b[i])which represent the information about
the relevant substrings. Suffixes TSA[i]...n to which no relevant substring has been
assigned will have a[i] > b[i]. The tuples with a[i] > b[i] do not have to be stored
explicitly, we just need to mark the corresponding suffixes that they do not have any
relevant substring assigned.

3.4 Intersection of results of several string databases

To find those substrings which satisfy the frequency conditions for all databases, we
need to intersect the relevant substrings of each database. The relevant substrings are
represented as a table of tuples, as described in the previous section. Let us call such
a table of tuples a result table. A result table is always linked to a certain database
of strings, and the tuple values refer to the string T representing a database D. This
means each tuple represents a suffix of T D.

We use a kind of merging algorithm to build the intersection of two result tables
and get a result table representing the intersection of the two input result tables. This
algorithm is a modified version of the algorithm of Jeon et al. (2005) which merges
two suffix arrays. The output result table will have the same format as the input result
table, assigning the relevant substrings which occur in both input result tables to the
lexicographically smallest suffix of the first input result table which has this substring
as a prefix. It can be seen that actually no relevant substring of the first result table is
reassigned, only the results intervals for some suffixes may be shortened. Therefore,
we can use the merging algorithm iteratively to produce the intersection of more than
two result tables.

Let L1 and L2 be result tables linked to databases D1 and D2, respectively. Let T D1

be the string representing D1 and T D2 be the string representing D2. Furthermore, let
n1 = |T D1 | and n2 = |T D2 |. Let SA be the suffix array and LCP be the LCP table for
the string T D1 .

In order to process the suffixes of T D1 and T D2 in lexicographical order, as in
Jeon et al. (2005) we calculate values c[i] for each suffix T D1

SA[i]...n1
, which indicate

how many suffixes of T D2 have to be placed between T D1
SA[i−1]...n1

and T D1
SA[i]...n1

. The
processing of the suffixes in lexicographical order can then be done easily: in step i
we select the next c[i] suffixes from the suffix array of T D2 , and then suffix T D1

SA[i]...n1
.

Note that in constrast to Jeon et al. (2005), we do not store the merged suffix array.
Calculating the c values can be done by matching the string T D2 against the

enhanced suffix array of T D1 . We calculate the index p(i) during the matching such
that T D1

SA[p(i)−1]...n1
≤ T D2

i ...n2
< T D1

SA[p(i)]...n1
, and then increase the counter c[p(i)] by

one.
We define the matching statistics ms(i) (1 ≤ i ≤ n2) to be the length of the lon-

gest prefix of T D2
i ...n2

which matches a substring of T D1 . Using suffix link intervals,
matching statistics can be calculated in O(n + m) time (see Chang and Lawler 1994;
Gusfield 1997).
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Let [l, r ] be the lcp-interval where the mismatch occurred when matching T D2
i ...n2

against the lcp interval tree of T D1 , and let x be the currently processed symbol of
T D2

i ...n2
which did not match. Also, letαβ be the prefix of T D2

i ...n2
which has been matched,

where α is the longest common prefix of {T D1
SA[l]...n1

, . . . , T D1
SA[r ]...n1

}. We already know

that T D1
SA[l−1]...n1

< T D2
i ...n2

< T D1
SA[r+1]...n1

, because otherwise we would be in a different
branch of the lcp-interval tree.

If |β| = 0 (i.e. there is no edge label to a child interval starting with x), we deter-
mine the child interval [l ′, r ′] with the smallest starting symbol y of its edge label
with y > x . If there is no such child interval, it follows that T D1

SA[r ]...n1
< T D2

i ...n2
, and

T D2
i ...n2

< T D1
SA[r+1]...n1

, i.e. p(i) = r + 1. Otherwise, we know that T D1
SA[l ′−1]...n1

<

T D2
i ...n2

< T D1
SA[l ′]...n1

, i.e. p(i) = l ′.
If |β| ≥ 1, β is a prefix of the edge label of a child interval [l ′, r ′] of [l, r ]. If x is

smaller than the next symbol of the edge label, T D2
i ...n2

< T D1
SA[l ′]...n1

, and T D1
SA[l ′−1]...n1

<

T D2
i ...n2

, i.e. p(i) = l ′. Otherwise, T D1
SA[r ′]...n1

< T D2
i ...n2

< T D1
SA[r ′+1]...n1

, i.e. p(i) =
r ′ + 1.

In our algorithm we also need information about the length of the longest com-
mon prefix between suffixes of T D1 and suffixes of T D2 . This is needed to determine
the intersection of the results intervals of two suffixes. Therefore, for each pair of
consecutively processed suffixes, we calculate the length of their longest common
prefix (which is in fact the LCP table of the merged suffix arrays). Whenever two
consecutively processed suffixes are from the same string, we can use the value of the
corresponding LCP table of this string. But if these two suffixes belong to two differ-
ent strings, we do not know the length of their longest common prefix. Since suffix
T D2

i ...n2
is placed between T D1

SA[p(i)−1]...n1
and T D1

SA[p(i)]...n1
, we also need to calculate

lcp(T D1
SA[p(i)]...n1

, T D2
i ...n2

) and lcp(T D1
SA[p(i)−1]...n1

, T D2
i ...n2

).
There are two cases:

(1) lcp(T D1
SA[p(i)−1]...n1

, T D2
i ...n2

) = LCP[p(i)], lcp(T D2
i ...n2

, T D1
SA[p(i)]...n1

) = ms(i)

(2) lcp(T D1
SA[p(i)−1]...n1

, T D2
i ...n2

) = ms(i), lcp(T D2
i ...n2

, T D1
SA[p(i)]...n1

) = LCP[p(i)]

Case (1) applies if l ≤ p(i) ≤ r , and case (2) occurs only if p(i) = r + 1. We can
use the sign bit of ms(i) to indicate which case applies; a positive sign indicates case
(1), a negative sign indicates case (2).

We process the suffixes of T D1 and T D2 in reverse lexicographical order, i.e. we
start with the lexicographically largest suffixes. For each relevant substring φ of T D2

we need to find the lexicographically smallest suffix of T D1 for which φ is a prefix
(if there is such a suffix of T D1 ). We maintain a set of relevant substrings of T D2

which are a prefix of the currently processed suffix T D1
SA[i]...n1

. This set will consist of

all such relevant substrings assigned to suffixes of T D2 which are lexicographically
larger than T D1

SA[i]...n1
, and the set can be represented as a results interval of T D1

SA[i]...n1
,

which can be proved similar to Lemma 2. We will denote this results interval by
[acur, bcur].
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Lemma 3 Let p(i) be defined such that T D1
SA[p(i)−1]...n1

≤ T D2
i ...n2

< T D1
SA[p(i)]...n1

. The

suffix T D2
i ...n2

(1 ≤ i ≤ n2) can only have common relevant substrings with suffixes at

positions ≤ p(i) in the suffix array of T D1 .

Proof Suppose that there exists a suffix T D1
S A[k]...n1

(k > p( j)) to which a relevant

substring φ was assigned, which was also assigned to T D2
j ...n2

. Since φ is a common

relevant substring, |φ| ≤ lcp(T D2
i ...n2

, T D1
SA[k]...n1

). From the definition of p(i) it fol-

lows that lcp(T D2
i ...n2

, T D1
SA[k]...n1

) ≤ lcp(T D2
i ...n2

, T D1
SA[p(i)]...n1

). This means φ can also be

assigned to T D1
SA[p(i)]...n1

, which is a contradiction to the condition that each relevant

suffix of L1 was assigned to the lexicographically smallest suffix of T D1 . �	

It follows that in addition to the relevant substrings in the results interval [acur, bcur],
the suffix T D1

SA[i]...n1
can only have common relevant substrings with suffixes from T D2

which are processed between T D1
SA[i]...n1

and T D1
SA[i−1]...n1

. Therefore, when we process

the suffixes from T D2 which would be placed between T D1
SA[i]...n1

and T D1
SA[i−1]...n1

in the

merged suffix array, we update [acur, bcur]. Before processing T D1
SA[i−1]...n1

, we can then

calculate the intersection of [acur, bcur] and the results interval assigned to T D1
SA[i]...n1

.

When processing the suffixes of T D2 that would be placed between T D1
SA[i]...n1

and

T D1
SA[i−1]...n1

in the merged suffix array, we also need to calculate the results interval

[aprev, bprev] representing relevant substrings of T D2 which are a prefix of T D1
SA[i−1]...n1

.
If LCP[i] ≥ acur, [aprev, bprev] can be initialized to [acur,min{LCP[i], bcur}]. Other-
wise, we start with an empty results interval.

Now we will show how to handle the case in which one of the minimum frequency
thresholds minf D1

or minf D2
is zero. This case is also supported by the algorithm

of Fischer et al. (2006). We can assume that not both minf D1
= 0 and minf D2

= 0,
because there must be at least one database Di with minf i > 0 (otherwise, there would
be infinitely many solutions), and we can select the order in which we merge result
tables such that always the result table linked to Di is involved.

Without loss of generality, assume minf D2
= 0. This means, we want to keep all

relevant substrings from L1 whose frequency in D2 do not exceed maxf D2
. Therefore,

we only adjust the a values of the tuples of L1, but leave the b values untouched. Note
that since minf D2

= 0, the relevant substrings φ with freq(φ,D2) > maxf D2
are all

substrings φ of T D2 which do not belong to any results interval of L2. This means
that if for some tuple in L1 there are no common relevant substrings with tuples in
L2, we have to remove those relevant substrings which are also substrings of T D2 .
This can be done by setting L1[i].a to max{L1[i].a,maxlcp+1}, where maxlcp is the
maximum length of a common prefix of T D1

i ...n1
with a suffix of T D2 .

The time complexity to intersect the result tables of all databases D1,D2, . . . ,Dm

can be determined as follows: We will successively intersect D2 with D1, then D3 with
D1, and so on until we have intersected Dm with D1. Since intersecting the result table
of database Di with the result table of the database D1 takes O(n1 + ni ), the overall
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time complexity is O((m − 1) · n1 + ∑m
i=2 ni ). If all values minf i are positive, we

may assume D1 is the smallest database (i.e. n1 is smaller than or equal to ni for all
1 < i ≤ m), and it follows that (m − 1) · n1 + ∑m

i=2 ni ≤ 2 · ∑m
i=1 ni , so the overall

time complexity to intersect all databases is linear in the total size of all databases.
Otherwise, if some value minf i is zero, we reorder the databases such that minf 1 >

0. Now the database D1 may be the largest database. However, the time complex-
ity in this case is not worse than the complexity of Fischer et al. (2006), since
(m − 1) · n1 + ∑m

i=2 ni ≤ (m − 1) · ∑m
i=1 ni + ∑m

i=1 ni = O(m · ∑m
i=1 ni ).

4 Implementation

4.1 Program overview

We have compared performance results of the implementation of our algorithm
described in Sect. 3 with performance results of the implementation of Fischer et al.
(2006), which is available at Fischer (2007). We have made a small modification to
the implementation of Fischer (2007) to be able to evaluate the approximate peak
memory consumption. We wrote a function which keeps track of the total amount of
memory which is currently allocated. We will refer to the program of Fischer (2007)
as frequent_linear.

Our own program is written in C, and we use low-level I/O functions in order to
obtain high performance. For example, we use the function mmap to be able to quickly
read and write to a file. This functionality is necessary because we try to keep only
those values in memory which are currently needed in order to reduce peak memory
consumption as much as possible. In fact, peak memory consumption for our program
will be at most 25 times the size of the largest database. We refer to our program as
slink_merge.

In our program, we use the suffix array construction algorithm of Manzini and
Ferragina (2004) instead of one of the linear time algorithms, because it performs
better for non-degenerate test cases. This suffix array construction algorithm is also
used in Fischer (2007). Our implementation and the pseudocode of our algorithm are
available at http://www.uni-ulm.de/in/theo/mitarbeiter/kuegel.html.

The implementation of Fischer (2007) handles exactly two databases of strings,
and uses a fixed value ∞ for maxf 1, and 0 for minf 2. Therefore, we have created a
modified version of the code which handles a variable number m of databases, and
supports arbitrary, valid minf i and maxf i values. In this version, we also included our
idea to save memory by using the cumulative sums of the array C ′. We will refer to
this program as frequent_linear2.

4.2 Test data

As in Fischer et al. (2006), we use the proteins of human and mouse, obtained from
Swissprot using the NEWT taxonomy browser (NEWT taxonomy browser 2007)
as one dataset. One database consists of the primary structure of 70747 proteins of
humans, the other database consists of 61716 proteins of mice. Each protein represents

123

http://www.uni-ulm.de/in/theo/mitarbeiter/kuegel.html


36 A. Kügel, E. Ohlebusch

one entry in the database. The total size of the databases is about 28 and 27 MB, respec-
tively.

The second dataset consists of two databases, each containing 10000 random bit-
strings of a length between 10000 and 20000. The total size of each database is about
150 MB.

For the first two datasets, we use fixed values maxf 1 = ∞ and minf 2 = 0 in order
to be able to compare our results with the results of the program frequent_linear.

The third dataset consists of four databases, the first two are identical to the second
dataset, the third and fourth also contain 10000 random bitstrings of a length between
10000 and 20000.

The fourth dataset consists of twelve databases, each containing 10000 random
strings consisting of between 100 and 3000 lowercase letters, i.e. the alphabet size is
26. The total size of each database is about 15 MB.

4.3 Test results

All given time intervals are measured in seconds, and are calculated on a computer
with a 2.8 GHz processor and 16 GB of RAM. We used fixed values of maxf 1 = ∞
and minf 2 = 0 to be able to compare our results to the results of frequent_linear. We
picked different parameter combinations for minf 1 and maxf 2.

We can see by looking at Tables 1 and 2 that the program frequent_linear is the
fastest. Our modified version frequent_linear2 is a little bit slower, because it does not
have the number of databases hard-coded. Our own program slink_merge is slower by

Table 1 Runtimes (in seconds) and memory consumption on the first dataset

Test parameters slink_merge frequent_linear frequent_linear2

minf 1 maxf 2

10 1000 216.88 264.19 296.67
500 1000 195.71 77.24 109.45
3000 57950 205.85 76.94 111.84
10000 57950 194.02 77.72 100.53
30000 57950 206.21 76.31 101.14
Max. memory 703 MB 1307 MB 1307 MB

Table 2 Runtimes (in seconds) and memory consumption on the second dataset

Test parameters slink_merge slink_merge reuse
of results

frequent_linear frequent_linear2

minf 1 maxf 2

200 1000 1056.72 – 397.86 595.34
1000 9500 961.12 – 397.31 536.33
3000 9500 878.89 575.57 398.66 586.01
5000 9500 830.01 617.39 400.27 577.08
Max. memory 3745 MB 3745 MB 7193 MB 7193 MB
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Table 3 Runtimes (in seconds)
and memory consumption on the
third dataset

Test parameters slink_merge frequent_linear2

minf i maxf i

50 1000 2050.73 –
200 1500 1988.32 –
500 1000 1888.98 –
Max. memory 3745 MB >12 GB

Table 4 Runtimes (in seconds)
and memory consumption on the
fourth dataset

Test parameters slink_merge frequent_linear2

minf i maxf i

2 3 855.91 392.44
10 1000 855.00 390.52
Max. memory 386 MB 10614 MB

a factor of less than 2, which is caused by the string matching during the intersection
of the relevant substrings of the two databases. The slower runtime of frequent_linear
and frequent_linear2 in line 1 of Table 1 can be explained by the large amount of out-
put, which is optimized in our program slink_merge. Note that even for two databases,
the memory consumption of frequent_linear and frequent_linear2 is worse than the
memory consumption of our program.

Also, our algorithm gives us the possibility to reuse the calculated relevant sub-
strings for individual databases if another test contains these databases with the same
minf and maxf parameters. With our second dataset, for example, we use three times
minf 2 = 0, maxf 2 = 9500 as parameter for the second database, and minf 1 = 1000,
2000, and 3000 for the first database, respectively. The column “slink_merge reuse of
results” gives the runtimes if we reuse the results of previous test runs, or “-” if the
relevant substrings are calculated for the first time.

Table 3 only shows the results of our program. We tried to run frequent_linear2 on
this dataset, but it needed more memory than we had available.

Table 4 shows that with a higher number of databases, the advantage of our algo-
rithm becomes more apparent. Note that on this dataset, frequent_linear2 needs about
27 times more memory than our program.

Although the program frequent_linear performs faster on all our tests, the runtime
of our program slink_merge is still competitive. Moreover, for large databases, mem-
ory consumption is the bottleneck, and it becomes more important to save memory
than to save time. Thus, we conclude that our algorithm improves the possibility to
solve large problem instances, especially when more than two databases are used.
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