

Gliederung

Vorlesung Wissensentdeckung **Apriori**

Katharina Morik, Claus Weihs

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

16.7.2009

Katharina Morik, Claus Weihs

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

technische universität

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

Lernen von Assoziationsregeln

Gegeben:

technische universität

- R eine Menge von Objekten, die binäre Werte haben
- t eine Transaktion, $t \subseteq R$
- r eine Menge von Transaktionen
- $S_{min} \in [0,1]$ die minimale Unterstützung,
- $Conf_{min} \in [0,1]$ die minimale Konfidenz

Finde alle Regeln c der Form $X \to Y$, wobei $X \subseteq R$, $Y \subseteq R$, $X \cap Y = \{\}$

$$s(r,c) = \frac{|\{t \in r \mid X \cup Y \in t\}|}{|r|} \ge s_{min}$$
 (1)

$$conf(r,c) = \frac{|\{t \in r \mid X \cup Y \in t\}|}{|\{t \in r \mid X \in r\}|} \ge conf_{min}$$
 (2)

Binäre Datenbanken

Sei R eine Menge von Objekten, die binäre Werte haben, und reine Menge von Transaktionen, dann ist $t \subseteq R$ eine Transaktion.

$$R = \{A, B, C\}$$
$$t = \{B, C\} \in R$$

Α	В	С	ID
0	1	1	1
1	1	0	2
0	1	1	3
1	0	0	4

Katharina Morik, Claus Weihs

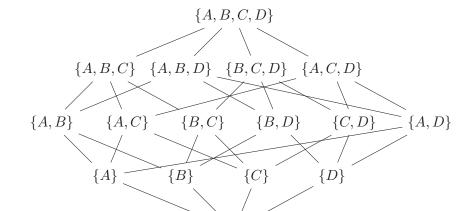
technische universität dortmund

Verband

Warenkorbanalyse

Aftershave	Bier	Chips	EinkaufsID
0	1	1	1
1	1	0	2
0	1	1	3
1	0	0	4

$$\begin{split} & \{ \text{Aftershave} \} \to \{ \text{Bier} \} & s = \frac{1}{4}, conf = \frac{1}{2} \\ & \{ \text{Aftershave} \} \to \{ \text{Chips} \} & s = 0 \\ & \{ \text{Bier} \} \to \{ \text{Chips} \} & s = \frac{1}{2}, conf = \frac{2}{3} \text{ (zusammen anbieten?)} \\ & \{ \text{Chips} \} \to \{ \text{Aftershave} \} & s = 0 \\ & \{ \text{Aftershave} \} \to \{ \text{Bier, Chips} \} & s = 0 \end{split}$$



Katharina Morik, Claus Weihs

DMV

tistik Dortmund technische universität LS 8 Informatik
Computergestützte Statistik
Technische Universität Dortmund

Apriori FP-Tr

technische universität dortmund LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

Apriori FP-Tree

Ordnungsrelation

- Hier ist die Ordnungsrelation die Teilmengenbeziehung.
- Eine Menge S_1 ist größer als eine Menge S_2 , wenn $S_1 \supseteq S_2$.
- Eine kleinere Menge ist allgemeiner.

LH: Assoziationsregeln sind keine logischen Regeln!

Katharina Morik, Claus Weihs

- In der Konklusion k\u00f6nnen mehrere Attribute stehen
- Attribute sind immer nur binär.
- Mehrere Assoziationsregeln zusammen ergeben kein Programm.

LE: Binärvektoren (Transaktionen)

Attribute sind eindeutig geordnet.

Aufgabe:

Assoziationsregeln

• Aus häufigen Mengen Assoziationsregeln herstellen

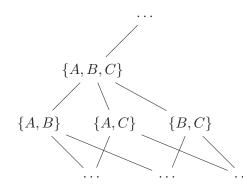
Beispiel

Apriori Algorithmus (Agrawal, Mannila, Srikant, Toivonen, Verkamo 1996)

LH des Zwischenschritts: Häufige Mengen $L_k = X \cup Y$ mit kObjekten (large itemsets, frequent sets)

- Wenn eine Menge häufig ist, so auch all ihre Teilmengen. (Anti-Monotonie)
- Wenn eine Menge selten ist, so auch all ihre Obermengen. (Monotonie)
- Wenn X in L_{k+1} dann alle $S_i \subset X$ in L_k (Anti-Monotonie)
- Alle Mengen L_k , die k-1 Objekte gemeinsam haben, werden vereinigt zu L_{k+1} .

Dies ist der Kern des Algorithmus, die Kandidatengenerierung.



- Wenn $\{A, B, C\}$ häufig ist, dann sind auch $\{A, B\}$, $\{A,C\},\{B,C\}$ häufig.
- Das bedeutet, daß $\{A, B\}$, $\{A,C\},\{B,C\}\ (k=2)$ häufig sein müssen, damit ${A, B, C} (k + 1 = 3)$ häufig sein kann.
- Also ergeben die häufigen Mengen aus L_k die Kandidaten C_{k+1}

Katharina Morik, Claus Weihs

technische universität

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

Beispiel

technische universität

Gesucht werden Kandidaten mit k+1=5 $L_4 = \{\{ABCD\}, \{ABCE\}, \{ABDE\}, \{ACDE\}, \{BCDE\}\}\}$

• k-1 Stellen gemeinsam vereinigen zu:

$$l = \{ABCDE\}$$

- Sind alle k langen Teilmengen von l in L_4 ? $\{ABCD\}\{ABCE\}\{ABDE\}\{ACDE\}\{BCDE\}$ - ja!
- Dann wird l Kandidat C_5 .

$$L4 = ABCD, ABCE$$

$$l = ABCDE$$

- Sind alle Teilmengen von l in L_4 ? $\{ABCD\}\{ABCE\}\{ABDE\}\{ACDE\}\{BCDE\}$ - nein!
- Dann wird l nicht zum Kandidaten.

Kandidatengenerierung

- Erzeuge-Kandidaten(L_k)
 - $C_{k+1} := \{ \}$
 - For all l_1, l_2 in L_k , sodass

Katharina Morik, Claus Weihs

$$l_1 = \{i_1, \cdots, i_{k-1}, i_k\}$$
 und

$$l_2 = \{i_1, \dots, i_{k-1}, i'_k\}i'_k < i_k$$

- $l := \{i_1, \cdots, i_{k-1}, i_k, i_k'\}$
- if alle k-elementigen Teilmengen von l in L_k sind, then

$$C_{k+1} := C_{k+1} cup\{l\}$$

- return C_{k+1}
- Prune (C_{k+1}, r) vergleicht Häufigkeit von Kandidaten mit s_{min} .

Katharina Morik, Claus Weihs

Katharina Morik, Claus Weihs

- Häufige-Mengen(R, r, s_{min})
 - \bullet $C_1 := \bigcup_{i \in \mathbb{R}} i, k = 1$
 - $L_1 := \mathsf{Prune}(C_1)$
 - while $L_k \neq \{\}$
 - $C_{k+1} := \text{Erzeuge-Kandidaten}(L_k)$
 - $L_{k+1} := \mathsf{Prune}(C_{k+1}, r)$
 - k := k + 1
 - return $cup_{i=2}^k L_i$

- Apriori($R, r, s_{min}, conf_{min}$)
 - $L := H \ddot{a}ufige-Mengen(R, r, s_{min})$
 - $c := \mathsf{RegeIn} (L, conf_{min})$
 - return c

Katharina Morik, Claus Weihs



Regelgenerierung

Aus den häufigen Mengen werden Regeln geformt. Wenn die Konklusion länger wird, kann die Konfidenz sinken. Die Ordnung der Attribute wird ausgenutzt:

$$l_{1} = \{i_{1}, \dots, i_{k-1}, i_{k}\} \quad c_{1} = \{i_{1}, \dots, i_{k-1}\} \rightarrow \{i_{k}\} \quad conf_{1}$$

$$l_{1} = \{i_{1}, \dots, i_{k-1}, i_{k}\} \quad c_{2} = \{i_{1}, \dots\} \rightarrow \{i_{k-1}, i_{k}\} \quad conf_{2}$$

$$\dots \quad \dots$$

$$l_{1} = \{i_{1}, \dots, i_{k-1}, i_{k}\} \quad c_{k} = \{i_{1}\} \rightarrow \{\dots, i_{k-1}, i_{k}\} \quad conf_{k}$$

$$con f_1 \ge con f_2 \ge \cdots \ge con f_k$$

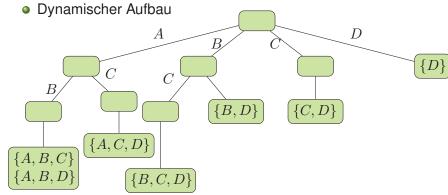
Katharina Morik, Claus Weihs

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

Implementierung

technische universität

- Hash-Tree für den Präfixbaum, der sich aus der Ordnung der Elemente in den Mengen ergibt.
- An jedem Knoten werden Schlüssel und Häufigkeit gespeichert.



Was wissen Sie jetzt?

- Assoziationsregeln sind keine logischen Regeln.
- Anti-Monotonie der Häufigkeit: Wenn eine Menge häufig ist, so auch all ihre Teilmengen.
- Man erzeugt häufige Mengen, indem man häufige Teilmengen zu einer Menge hinzufügt und diese Mengen dann auf Häufigkeit testet. Bottom-up Suche im Verband der Mengen.
- Monotonie der Seltenheit: Wenn eine Teilmenge selten ist, so auch jede Menge, die sie enthält.
- Man beschneidet die Suche, indem Mengen mit einer seltenen Teilmenge nicht weiter betrachtet werden.

Probleme von Apriori

- Im schlimmsten Fall ist Apriori exponentiell in R, weil womöglich alle Teilmengen gebildet würden. In der Praxis sind die Transaktionen aber spärlich besetzt. Die Beschneidung durch s_{min} und $conf_{min}$ reicht bei der Warenkorbanalyse meist aus.
- Apriori liefert unglaublich viele Regeln.

Katharina Morik, Claus Weihs

- Die Regeln sind höchst redundant.
- Die Regeln sind irreführend, weil die Kriterien die a priori Wahrscheinlichkeit nicht berücksichtigen. Wenn sowieso alle Cornflakes essen, dann essen auch hinreichend viele FuSSballer Cornflakes.

Katharina Morik, Claus Weihs

LS 8 Informatik Computergestützte Statistik Computergestützte Statistik
Technische Universität Dortmund

technische universität

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

Prinzipien für Regelbewertungen

- A und B sind unabhängig.
- 2 $RI(A \rightarrow B)$ steigt monoton mit $|A \rightarrow B|$.

Also:

technische universität

- RI > 0, wenn $|A \rightarrow B| > \frac{(|A||B|)}{|r|}$, d.h. wenn A positiv mit Bkorreliert ist.
- RI < 0, wenn $|A \rightarrow B| > \frac{(|A||B|)}{|r|}$, d.h. wenn A negativ mit B korreliert ist.

Wir wissen, dass immer $|A \rightarrow B| \leq |A| \leq |B|$ gilt, also

- RI_{min} , wenn $|A \rightarrow B| = |A|$ oder |A| = |B|
- \bullet RI_{max} , wenn $|A \rightarrow B| = |A| = |B|$

Piatetsky-Shapiro 1991

Konfidenz

- Die Konfidenz erfüllt die Prinzipien nicht! (Nur das 2.) Auch unabhängige Mengen A und B werden als hoch-konfident bewertet.
- Die USA-Census-Daten liefern die Regel

aktiv-militär → kein-Dienst-in-Vietnam

mit 90% Konfidenz. Tatsächlich ist s(kein-Dienst-in-Vietnam) = 95% Es wird also wahrscheinlicher, wenn aktiv-militär gegeben ist!

• Gegeben eine Umfrage unter 2000 Schülern, von denen 60% Basketball spielen, 75% Cornflakes essen. Die Regel

Basketball → Cornflakes

hat Konfidenz 66% Tatsächlich senkt aber Basketball die Cornflakes Häufigkeit!

Ein einfaches Maß, das die Prinzipien erfüllt, ist:

$$|A \to B| - \frac{|A||B|}{|r|}$$

• Die Signifikanz der Korrelation zwischen *A* und *B* ist:

$$\frac{|A \to B| - \frac{|A||B|}{|r|}}{\sqrt{|A||B|\left(1 - \frac{A}{r}\right)\left(1 - \frac{|B|}{|r|}\right)}}$$

Shortliffe, Buchanan 1990 führten ein SicherheitsmaßCF ein (für Regeln in Wissensbasen)

- Wenn $con f(A \rightarrow B) > s(B)$ $CF(A \to B) = conf(A \to B) - \frac{s(B)}{1 - s(B)}$
- Wenn $con f(A \rightarrow B) < s(B)$ $CF(A \rightarrow B) = con f(A \rightarrow B)$
- Sonst $CF(A \rightarrow B) = 0$

Das Sicherheitsmaßbefolgt die Prinzipien für Regelbewertung. Wendet man Signifikanztest oder Sicherheitsmaßan, erhält man weniger (irrelevante, irreführende) Assoziationsregeln.

Katharina Morik, Claus Weihs

LS 8 Informatik Computergestützte Statistik

Computergestützte Statistik
Technische Universität Dortmund

Katharina Morik, Claus Weihs

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

Was wissen Sie jetzt?

technische universität

- Sie haben drei Prinzipien f
 ür die Regelbewertung kennengelernt:
 - Unabhängige Mengen sollen mit 0 bewertet werden.
 - Der Wert soll höher werden, wenn die Regel mehr Belege hat.
 - Der Wert soll niedriger werden, wenn die Mengen weniger Belege haben.
- Sie haben drei Maße kennen gelernt, die den Prinzipien genügen:
 - Einfaches Maß
 - statistisches Maß und
 - Sicherheitsmaß

technische universität

Jiawei Han and Micheline Kamber

Data Mining: Concepts and Techniques

Slides for Textbook - Chapter 6 Intelligent Database Systems Research Lab.

School of Computing Science.

Simon Fraser University, Canada.

http://www.cs.sfu.ca

Katharina Morik, Claus Weihs

Katharina Morik, Claus Weihs

technische universität

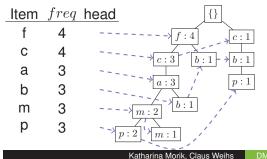
Mining Frequent Patterns Without Candidate Generation

- Compress a large database into a compact. Frequent-Pattern tree (FP-tree) structure
 - highly condensed, but complete for frequent pattern mining
 - avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only!

Construct FP-tree	from a Tr	ansaction DE	3
-------------------	-----------	--------------	---

TID	Items bought	(ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a,b,c,f,l,m,o\}$	$\{f,c,a,b,m\}$
300	$\{b, f, h, j, o\}$	$\{f,b\}$
400	$\{b, c, k, s, p\}$	$\{c,b,p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f,c,a,m,p\}$

 $support_{min} = 0.5$



Benefits of the FP-tree Structure

- Scan DB once, find frequent 1-itemset (single item pattern)
- 2 Order frequent items in frequency descending order
- 3 Scan DB again, construct FP-tree

Katharina Morik, Claus Weihs

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

technische universität

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

FP-Tree

technische universität

- Ein FP Tree ist nach Häufigkeiten (von oben nach unten) geordnet.
- Ein FP Tree fasst Transaktionen als Wörter auf und stellt gemeinsame Präfixe verschiedener Wörter dar.
- Für jede Transaktion lege einen Pfad im *FP* Tree an:
 - Pfade mit gemeinsamem Präfix Häufigkeit +1, Suffix darunter hängen.
 - Kein gemeinsamer Präfix vorhanden neuen Zweig anlegen.
- Header Tabelle verweist auf das Vorkommen der items im Baum. Auch die Tabelle ist nach Häufigkeit geordnet.

- never breaks a long pattern of any transaction
- preserves complete information for frequent pattern mining
- Compactness:

Completeness:

- reduce irrelevant information infrequent items are gone
- frequency descending ordering: more frequent items are more likely to be shared
- never be larger than the original database (if not count node-links and counts)
- Example: For Connect-4 DB, compression ratio could be over 100

Mining Frequent Patterns Using FP-tree

Major Steps to Mine FP-tree

- General idea (divide-and-conquer)
 - Recursively grow frequent pattern path using the FP-tree
- Method
 - For each item, construct its *conditional pattern-base*, and then its *conditional FP-tree*
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting *FP*-tree is *empty*, or it contains *only one path* (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

- Construct conditional pattern base for each node in the FP-tree
- Construct conditional FP-tree from each conditional pattern-base
- Recursively mine conditional FP-trees and grow frequent patterns obtained so far
 - If the conditional *FP*-tree contains a single path, simply enumerate all the patterns

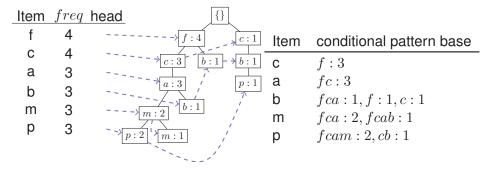
technische universität dortmund LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

Apriori FP-Tree

Vom FP Tree zur Cond. Pattern Base

Katharina Morik, Claus Weihs

- ullet Starting at the frequent header table in the FP-tree
- ullet Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base



- Die Header Tabelle von unten (selten) nach oben durchgehen. Die Verweise führen zu den Pfaden, in denen das item vorkommt.
 - Das item wird als Suffix betrachtet und alle Pr\u00e4fixe davon als Bedingungen f\u00fcr dies Suffix.
 - Die Häufigkeiten der Präfixe werden von unten nach oben propagiert.

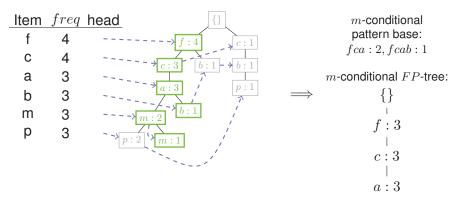
Properties of FP-tree for Conditional Pattern Base Construction

Node-link property

- For any frequent item a_i , all the possible frequent patterns that contain ai can be obtained by following a_i 's node-links, starting from a_i 's head in the FP-tree header
- Prefix path property
 - To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P need to be accumulated, and its frequency count should carry the same count as node a_i .

Step 2: Construct Conditional FP-tree

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base



Katharina Morik, Claus Weihs

Katharina Morik, Claus Weihs

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

technische universität

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

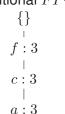
Mining Frequent Patterns by Creating Conditional Pattern-Bases

technische universität

m-conditional FP-tree

m-conditional

pattern base: fca: 2, fcab: 1All frequent patterns concerning mm-conditional FP-tree:



- \bullet fm, cm, am
- fcm, fam, cam
- fcam

• m

Item	Conditional pattern-base	conditional FP -tree
р	$\{(fcam:2),(cb:1)\}$	$\{(c:3)\} p$
m	$\{(fca:2),(fcab:1)\}$	$\{(f:3,c:3,a:3)\} m$
b	$\{(fca:1),(f:1),(c:1)\}$	Empty
а	$\{(fc:3)\}$	$\{((f:3,c:3)\} a$
С	$\{(f:3)\}$	$\{(f:3)\} c$
f	Empty	Empty

Cond. Pattern Base - Cond. FP Tree

- Präfixpfade eines Suffixes bilden die bedingte Basis.
- Diejenigen Präfixpfade, die häufiger als $support_{min}$ sind, bilden den bedingten FP Tree.
- Falls mehrere dieser Präfixpfade zu einem Suffix gleich sind (vom Anfang bis zu einer bestimmten Stelle), wird daraus ein Pfad bis zu dieser Stelle und die ursprünglichen Häufigkeiten werden addiert.
- Ansonsten gibt es mehrere Pfade im bedingten Baum.

	Cond. pattern base of " am ": $(fc:3)$	Cond. pattern base of " cm ": $(f:3)$	Cond. pattern base of " cam ": $(f:3)$
m-conditional FP -tree:	am-conditional FP -tree:	cm-conditional FP -tree:	cam-conditional FP -tree:
$\{\}$ $f:3$ $c:3$ $a:3$	$\Rightarrow \begin{array}{c} \{\}\\ f:3\\ c:3 \end{array}$	$\{\}$ $f:3$	$\{\}$ $f:3$

Step 3: Recursively mine the conditional FP-tree

Katharina Morik, Claus Weihs

Cond. FP Tree - frequent sets

Katharina Morik, Claus Weihs

DMV

LS 8 Informatik
Computergestützte Statistik
Technische Universität Dortmund

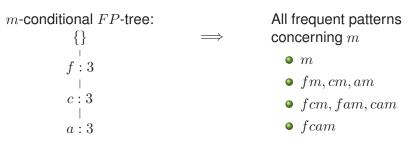
k ditzte Statistik uiversität Dortmund technische universität dortmund LS 8 Informatik Computergestützte Statistik

Computergestützte Statistik
Technische Universität Dortmund

Single FP-tree Path Generation

technische universität

- Suppose an FP-tree T has a single path P
- ullet The complete set of frequent pattern of T can be generated by enumeration of all the combinations of the sub-paths of P



- Alle Teilmuster im bedingten FP Baum, der nur ein Zweig ist, und des Suffixes bilden die Menge häufiger Muster.
- ullet Die gesuchte Menge der häufigen Mengen ist die Gesamtheit alles häufiger Muster aus allen bedingten FP Bäumen.

Principles of Frequent Pattern Growth

- Pattern growth property
 - Let α be a frequent itemset in DB, B be α 's conditional pattern base, and β be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.
- "abcdef" is a frequent pattern, if and only if
 - "abcde" is a frequent pattern, and
 - "f" is frequent in the set of transactions containing "abcde"

Input:

Algorithmus FP_growth

- D eine Transaktionsdatenbank
- support_{min} ein Schwellwert der Häufigkeit
- Scan von D, Erstellen der Menge F häufiger items und ihrer Häufigkeiten, Ordnen von F in absteigender Häufigkeit.
- ② Wurzel des FP Trees ist Null. Für jede Transaktion Trans in D:
 nach Häufigkeit gemäßF geordnete items in Trans werden zur Liste [p|P], wobei p das erste item und P die restlichen sind. $insert_tree([p|P],T)$
- \bigcirc $FP_growth(FP_tree, null)$

Katharina Morik, Claus Weihs DMV LS 8 Informatik Computergestützte Statistik Technische Universität dortmund Apriori FP-Tree $insert_tree([p|P],T)$

LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund

Apriori FP-Tree

$fp_growth(Tree, c)$

- Wenn T ein Kind N hat mit $N.item_name = p.item_name$ dann erhöhe Häufigkeit von N+1.
- Sonst bilde neuen Knoten N mit Häufigkeit =1 direkt unter T und füge Knotenverweise zu den Knoten mit dem selben item.name ein.
- Solange P nicht $\{\}$ ist, $insert_tree(P, N)$.

Wenn Tree ein einziger Pfad P ist,

Katharina Morik, Claus Weihs

- dann generiere für jede Kombination β von Knoten in P Muster $\beta \cup \alpha$ mit $support = support_{min}$ eines items in β .
- ullet Sonst für jedes a_i in header von Tree
 - generiere Muster $\beta = a_i \cup \alpha$ mit $s = a_i.s$
 - • konstruiere β cond. base und daraus β cond. FP tree $Tree_{\beta}$
 - Wenn $Tree_{\beta}$ nicht $\{\}$, dann $fp_growth(Tree_{\beta},\beta)$

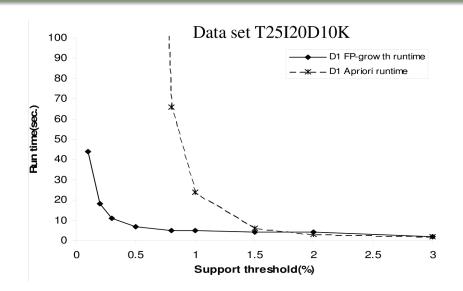
technische universität dortmund

Apriori FP-Tree

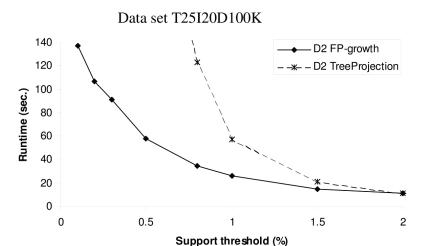
Why Is Frequent Pattern Growth Fast?

Our performance study shows

- FP-growth is an order of magnitude faster than Apriori, and is also faster than tree-projection
- Reasoning
 - No candidate generation, no candidate test
 - Use compact data structure
 - Eliminate repeated database scan
 - Basic operation is counting and FP-tree building



FP-growth vs. Apriori: Scalability With the Support Threshold



Katharina Morik, Claus Weihs

Ls 8 Informatik
Computergestitzte Statistik
Technische universität
dortmund

Apriori FP-Tree

Was wissen wir jetzt?

- FP-growth als Alternative zu Apriori
 - Schneller, weil keine Kandidaten generiert werden
 - Kompaktes Speichern
 - Basisoperation ist einfach Zählen.
- Der FP-Baum gibt Präfixbäume für ein Suffix an.
- Die Ordnungsrelation ist die Häufigkeit der items.
 - Der Baum wird vom häufigsten zum seltensten gebaut.
 - Die bedingte Basis wird vom seltensten Suffix zum häufigsten erstellt.