

Nico Piatkowski und Uwe Ligges

Informatik—Künstliche Intelligenz Computergestützte Statistik Technische Universität Dortmund

11.07.2017

Zusammenfassung: Merkmalsauswahl

Sowohl bei Regressions- als auch bei Klassifikationsproblemen, kann es helfen unwichtige Variablen vor dem Lernen auszuschließen.

- \bullet Eine Greedy-Merkmalsauswahl verwaltet eine Menge von Variablen M
- ullet Das Verfahren paßt die Menge M iterativ an indem Variablen (basierend auf einer **Verlustfunktion**) hinzugeügt/entfernt werden
 - Forward-Selection: Die Menge M ist zu Anfang leer und wird in jeder Iteration großer
 - Backward-Selection: Die Menge M enthält zu Anfang alle Variablen und wird in jeder Iteration kleiner

ALGORITHMS BY COMPLEXITY

Zusammenfassung: Merkmalsauswahl (II)

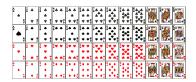
Sowohl bei Regressions- als auch bei Klassifikationsproblemen, kann es helfen unwichtige Variablen **vor dem Lernen** auszuschließen.

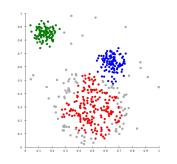
- Eine regularisierungsbasierte Merkmalsauswahl bevorzugt Modelle mit kleiner Norm
- Im Falle der l₁-Norm (LASSO regression) werden Modelle bevorzugt bei denen einige Modellparameter = 0 sind
- Im Falle linearer Modelle entspricht dies direkt einer Auswahl an Variablen
- Nachdem die Merkmale ausgewählt wurden, wird das eigentliche Modell gelernt

ALGORITHMS BY COMPLEXITY

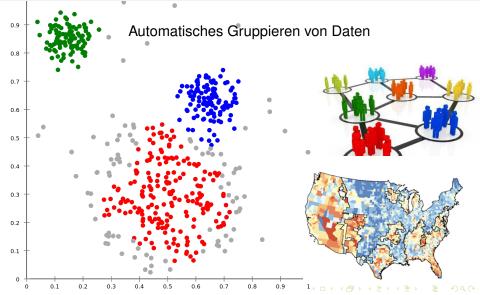
Überblick

- Wiederholung: Problemstellung
- Wiederholung: k-Means
- DBSCAN
- LDA





Clusteranalyse



Eingabe: Daten \mathcal{D} , Anzahl Cluster k, Metrik/Distanzmaß $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \cup \{0\}$

- (1) Weise jedem Punkt in D einen zufälligen Gluster zu
- (2) Bestimme Clusterzentrum c ("Mittelpunkt") jedes Clusters
- (3) Weise jedem Punkt x den Cluster zu, dessen Mittelpunkt c am nächsten zu x ist (mittels f)
- (4) Wiederhole Schritte 2 und 3 so lange, bis sich die Clusterzuweisung nicht mehr ändert oder Zeit aufgebraucht

Eingabe: Daten \mathcal{D} , Anzahl Cluster k, Metrik/Distanzmaß $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \cup \{0\}$

- (1) Weise jedem Punkt in D einen zufälligen Cluster zu
- (2) Bestimme Clusterzentrum c ("Mittelpunkt") jedes Clusters
- (3) Weise jedem Punkt x den Cluster zu, dessen Mittelpunkt c am nächsten zu x ist (mittels f)
- (4) Wiederhole Schritte 2 und 3 so lange, bis sich die Clusterzuweisung nicht mehr ändert oder Zeit aufgebraucht

Eingabe: Daten \mathcal{D} , Anzahl Cluster k, Metrik/Distanzmaß $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \cup \{0\}$

- (1) Weise jedem Punkt in D einen zufälligen Cluster zu
- (2) Bestimme Clusterzentrum c ("Mittelpunkt") jedes Clusters
- (3) Weise jedem Punkt x den Cluster zu, dessen Mittelpunkt c am nächsten zu x ist (mittels f)
- (4) Wiederhole Schritte 2 und 3 so lange, bis sich die Clusterzuweisung nicht mehr ändert oder Zeit aufgebraucht

Eingabe: Daten \mathcal{D} , Anzahl Cluster k, Metrik/Distanzmaß $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \cup \{0\}$

- (1) Weise jedem Punkt in D einen zufälligen Cluster zu
- (2) Bestimme Clusterzentrum c ("Mittelpunkt") jedes Clusters
- (3) Weise jedem Punkt x den Cluster zu, dessen Mittelpunkt c am nächsten zu x ist (mittels f)
- (4) Wiederhole Schritte 2 und 3 so lange, bis sich die Clusterzuweisung nicht mehr ändert oder Zeit aufgebraucht

Eingabe: Daten \mathcal{D} , Anzahl Cluster k, Metrik/Distanzmaß $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \cup \{0\}$

- (1) Weise jedem Punkt in D einen zufälligen Cluster zu
- (2) Bestimme Clusterzentrum c ("Mittelpunkt") jedes Clusters
- (3) Weise jedem Punkt x den Cluster zu, dessen Mittelpunkt c am nächsten zu x ist (mittels f)
- (4) Wiederhole Schritte 2 und 3 so lange, bis sich die Clusterzuweisung nicht mehr ändert oder Zeit aufgebraucht

Eingabe: Daten \mathcal{D} , Anzahl Cluster k, Metrik/Distanzmaß $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \cup \{0\}$

- (1) Weise jedem Punkt in D einen zufälligen Cluster zu
- (2) Bestimme Clusterzentrum c ("Mittelpunkt") jedes Clusters
- (3) Weise jedem Punkt x den Cluster zu, dessen Mittelpunkt c am nächsten zu x ist (mittels f)
- (4) Wiederhole Schritte 2 und 3 so lange, bis sich die Clusterzuweisung nicht mehr ändert oder Zeit aufgebraucht

k-Means Verlustfunktion

Notation:

- Datensatz $\mathcal D$ mit $|\mathcal D|$ = N, n-dimensionalen Datenpunkten
- Metrik/Distanzmaß $f: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \cup \{0\}$
- Die Menge $C = \{ {m c}^{(1)}, {m c}^{(2)}, \dots, {m c}^{(k)} \}$ enthält die k Clusterzentren

Optimierungsproblem:

$$\min_{C \subset \mathbb{R}^n, |C| = k} \ell(C; \mathcal{D}) = \min_{C \subset \mathbb{R}^n, |C| = k} \sum_{\boldsymbol{x} \in \mathcal{D}} \min_{\boldsymbol{c} \in C} f(\boldsymbol{x}, \boldsymbol{c})$$

k-Means Verlustfunktion (mit Euklidischem Abstand)

Jetzt:

• Metrik/Distanzmaß $f(x, y) = ||x - y||_2^2$

Verlustfunktion:

$$\ell(C; \mathcal{D}) = \sum_{\boldsymbol{x} \in \mathcal{D}} \min_{\boldsymbol{c} \in C} \|\boldsymbol{x} - \boldsymbol{c}\|_{2}^{2}$$

$$\frac{\partial}{\partial \boldsymbol{c}_{j}^{(i)}} \ell(C; \mathcal{D}) = \sum_{\boldsymbol{x} \in \mathcal{D}} \frac{\partial}{\partial \boldsymbol{c}_{j}^{(i)}} \min_{\boldsymbol{c} \in C} \sum_{l=1}^{n} (\boldsymbol{x}_{l} - \boldsymbol{c}_{l})^{2}$$

$$= \sum_{\boldsymbol{x} \in \mathcal{D}_{i}} \frac{\partial}{\partial \boldsymbol{c}_{j}^{(i)}} (\boldsymbol{x}_{j} - \boldsymbol{c}_{j}^{(i)})^{2}$$

$$= \sum_{\boldsymbol{x} \in \mathcal{D}_{i}} 2(\boldsymbol{c}_{j}^{(i)} - \boldsymbol{x}_{j})$$

Kurzschreibweise: \mathcal{D}_i enthält Datenpunkt mit minimalem

Abstand zu (Gluster) c_i

k-Means Verlustfunktion (mit Euklidischem Abstand)

Jetzt:

• Metrik/Distanzmaß $f(x, y) = ||x - y||_2^2$

Verlustfunktion:

$$\ell(C; \mathcal{D}) = \sum_{\boldsymbol{x} \in \mathcal{D}} \min_{\boldsymbol{c} \in C} \|\boldsymbol{x} - \boldsymbol{c}\|_{2}^{2}$$

$$\frac{\partial}{\partial \boldsymbol{c}_{j}^{(i)}} \ell(C; \mathcal{D}) = \sum_{\boldsymbol{x} \in \mathcal{D}} \frac{\partial}{\partial \boldsymbol{c}_{j}^{(i)}} \min_{\boldsymbol{c} \in C} \sum_{l=1}^{n} (\boldsymbol{x}_{l} - \boldsymbol{c}_{l})^{2}$$

$$= \sum_{\boldsymbol{x} \in \mathcal{D}_{i}} \frac{\partial}{\partial \boldsymbol{c}_{j}^{(i)}} (\boldsymbol{x}_{j} - \boldsymbol{c}_{j}^{(i)})^{2}$$

$$= \sum_{\boldsymbol{x} \in \mathcal{D}_{i}} 2(\boldsymbol{c}_{j}^{(i)} - \boldsymbol{x}_{j})$$

Kurzschreibweise: \mathcal{D}_i enthält Datenpunkt mit minimalem

Abstand zu (Cluster) c_i

k-Means Verlustfunktion (mit Euklidischem Abstand) (II)

Es gilt **im Optimum**:

$$\ell(C; \mathcal{D}) = 0 = \sum_{\boldsymbol{x} \in \mathcal{D}_i} 2(\boldsymbol{c}_j^{(i)} - \boldsymbol{x}_j)$$

$$\Leftrightarrow 0 = |\mathcal{D}_i| 2\boldsymbol{c}_j^{(i)} - 2\sum_{\boldsymbol{x} \in \mathcal{D}_i} \boldsymbol{x}_j$$

$$\frac{1}{|\mathcal{D}_i|} \sum_{\boldsymbol{x} \in \mathcal{D}_i} \boldsymbol{x}_j = \boldsymbol{c}_j^{(i)}$$

Also:

- k-Means ist ein Optimierungsverfahren erster Ordnung (wie Gradientenabsteig!)
- Aber: Zielfunktion ist nicht-konvex. Keine Konvergenz zum globalen Optimum!

k-Means Verlustfunktion (mit Euklidischem Abstand) (II)

Es gilt **im Optimum**:

$$\ell(C; \mathcal{D}) = 0 = \sum_{\boldsymbol{x} \in \mathcal{D}_i} 2(\boldsymbol{c}_j^{(i)} - \boldsymbol{x}_j)$$

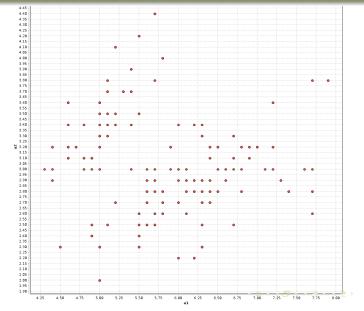
$$\Leftrightarrow 0 = |\mathcal{D}_i| 2\boldsymbol{c}_j^{(i)} - 2\sum_{\boldsymbol{x} \in \mathcal{D}_i} \boldsymbol{x}_j$$

$$\frac{1}{|\mathcal{D}_i|} \sum_{\boldsymbol{x} \in \mathcal{D}_i} \boldsymbol{x}_j = \boldsymbol{c}_j^{(i)}$$

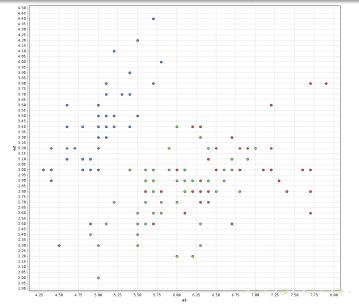
Also:

- k-Means ist ein Optimierungsverfahren erster Ordnung (wie Gradientenabsteig!)
- Aber: Zielfunktion ist nicht-konvex. Keine Konvergenz zum globalen Optimum!

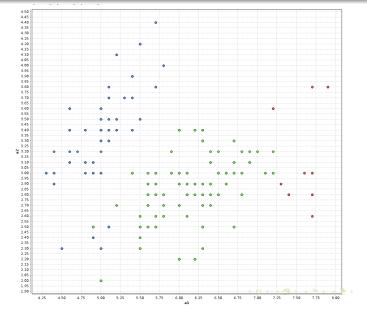
Beispiel: Daten (x)



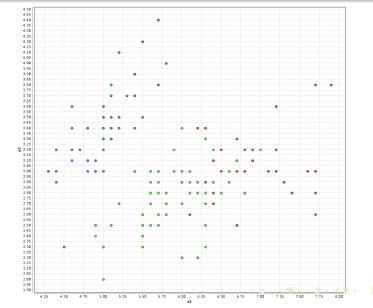
Beispiel: Daten mit Klassen (x,y)



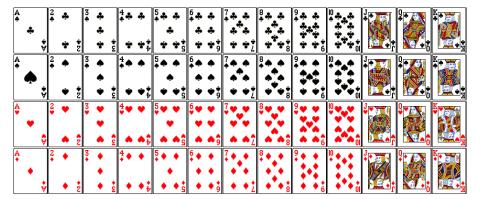
Beispiel: 3-means, 1 Iteration



Beispiel: 3-means, 10 Iterationen



Intuition: Auswahl von k und Distanzmaß (II)



DBSCAN: Vermeidung von ${\it k}$

Wie kann die Wahl von k vermieden werden?

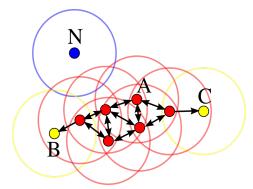
Neue Verlustfunktion(?) = neuer Algorithmus

Kategorisierung der Punkte eines Datensatzes

- Kernpunkte
- Dichte-erreichbar
- Rauschen

Problemstellung mittels

- Nachbarschaftsgröße e
- Mindestanzahl an Nachbarn minPts



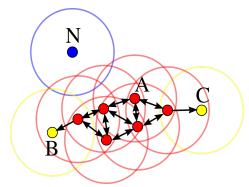
DBSCAN: Vermeidung von ${\it k}$

Wie kann die Wahl von k vermieden werden?

- Neue Verlustfunktion(?) = neuer Algorithmus
- Kategorisierung der Punkte eines Datensatzes:
 - Kernpunkte
 - Dichte-erreichbar
 - Rauschen

Problemstellung mittels

- Nachbarschaftsgröße
- Mindestanzahl an Nachbarn minPts



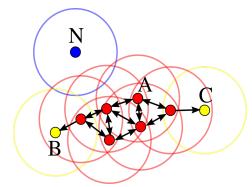
DBSCAN: Vermeidung von ${\it k}$

Wie kann die Wahl von k vermieden werden?

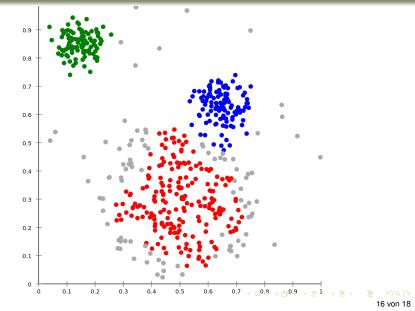
- Neue Verlustfunktion(?) = neuer Algorithmus
- Kategorisierung der Punkte eines Datensatzes:
 - Kernpunkte
 - Dichte-erreichbar
 - Rauschen

Problemstellung mittels

- Nachbarschaftsgröße ϵ
- Mindestanzahl an Nachbarn minPts



DBSCAN Clustering



Clustern von Text

Menge von Dokumenten = Korpus Verschiedene Darstellungen denkbar:

- Vorhandensein von Worten (Binärvektoren, Mengen)
- Anzahl von Worten (Bag-of-Words)
- Term-Frequency-Inverse-Document-Frequency (TF-IDF)

$$tfidf_{w,d} = \frac{\text{H\"{a}ufigkeit Wort } w \text{ in Dokument } d}{\max_{d'} \text{H\"{a}ufigkeit Wort } w \text{ in Dokument } d'} \log \frac{N}{N_w}$$

 N_w ist Anzahl Dok. mit Wort w; N ist Anzahl aller Dok.

- k-means Clustering der obigen Darstellungen möglich
- Aber: Bei großem Vokabular sind alle Dokumente weit weg ("Fluch der hohen Dimensionen")

Clustern von Text

Menge von Dokumenten = Korpus Verschiedene Darstellungen denkbar:

- Vorhandensein von Worten (Binärvektoren, Mengen)
- Anzahl von Worten (Bag-of-Words)
- Term-Frequency-Inverse-Document-Frequency (TF-IDF)

$$tfidf_{w,d} = \frac{\text{H\"{a}ufigkeit Wort } w \text{ in Dokument } d}{\max_{d'} \text{H\"{a}ufigkeit Wort } w \text{ in Dokument } d'} \log \frac{N}{N_w}$$

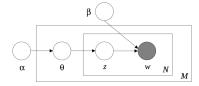
 N_w ist Anzahl Dok. mit Wort w; N ist Anzahl aller Dok.

- k-means Clustering der obigen Darstellungen möglich
- Aber: Bei großem Vokabular sind alle Dokumente weit weg ("Fluch der hohen Dimensionen")

Clustern von Text mit Graphischen Modellen (Topic Models)

Idee: Datengenerierender Prozess von Dokument d ist:

- Wähle Länge des Dokuments N_d aus $\mathbb{P}(N_d \mid \lambda)$ [Poisson]
- Wähle Themenverteilung θ_d aus $\mathbb{P}(\theta_d \mid \alpha)$ [Dirichlet]
- Erzeuge die Worte $w = 1 \dots N_d$:
 - Wähle ein Thema z_w aus $\mathbb{P}(z_w \mid \theta)$ [Kategorisch]
 - Wähle ein Wort aus $\mathbb{P}(w \mid z_w, \beta)$ [Kategorisch]



Lernen: Bestimme λ, α, β , und θ via Expectation-Maximization (Maximum-Likelihood für unvollständige Daten)