Gliederung

- Maximum Margin Methode Lagrange-Optimierung
- Weich trennende SVM

2 von 40

Einführende Literatur

- Vladimir Vapnik "The Nature of Statistical Learning Theory" Springer Vg. 1995
- W.N. Wapnik, A. Tscherwonenkis "Theorie der Zeichenerkennung" Akademie Vg. 1979
- Christopher Burges "A Tutorial on Support Vector Machines for Pattern Recognition" in: Data Mining and Knowledge Discovery 2, 1998, 121-167

Vertiefung: Bernhard Schölkopf, Alexander Smola "Learning with Kernels", MIT Press, 2002

Vorlesung Maschinelles Lernen SVM – optimale Hyperebene

Katharina Morik

LS 8 Künstliche Intelligenz Fakultät für Informatik Technische Universität Dortmund

18.11.2008

Übersicht über die Stützvektormethode (SVM)

Eigenschaften der Stützvektormethode (SVM) (Support Vector Machine)

- Maximieren der Breite einer separierenden Hyperebene maximum margin method – ergibt eindeutige, optimale trennende Hyperebene.
- Transformation des Datenraums durch Kernfunktion behandelt Nichtlinearität.
- Strukturelle Risikominimierung minimiert nicht nur den Fehler, sondern auch die Komplexität des Modells.

Hinführungen zur SVM Maximum Margin Methode Weich trennende SV

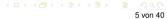
Probleme der Empirischen Risikominimierung

Empirische Risikominimierung: Bisher haben wir lineare Modelle

$$\hat{Y} = \hat{\beta}_0 + \sum_{j=1}^p X_j \hat{\beta}_j$$

auf die Fehlerminimierung hin optimiert:

$$RSS(\hat{\vec{\beta}}) = \sum_{i=1}^{N} (y_i - \vec{x}_i^T \hat{\beta})^2$$



Hinführungen zur SVM Maximum Margin Methode Weich trennende SVM

Klassifikationsproblem

Gegeben sei ein Klassifikationsproblem mit $Y=\{-1;+1\}$ und $\mathbf{X}\subset\mathbb{R}^p.$

Sei $\mathbf{X} = C_+ \stackrel{.}{\cup} C_-$ die Menge der Trainingsbeispiele mit

$$C_{+} = \{(\vec{x}, y) \mid y = +1\}$$
 und $C_{-} = \{(\vec{x}, y) \mid y = -1\}$

Zur Klassifikation ist nun eine Hyperebene

$$H = \left\{ \vec{x} \mid \beta_0 + \langle \vec{x}, \vec{\beta} \rangle = 0 \right\}$$

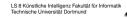
gesucht, die die Mengen C_+ und C_- bestmöglichst trennt

Für eine gegebene Hyperebene ${\cal H}$ erfolgt die Klassifikation dann durch

$$\hat{y} = \operatorname{sign}\left(\beta_0 + \langle \vec{x}, \vec{\beta} \rangle\right)$$

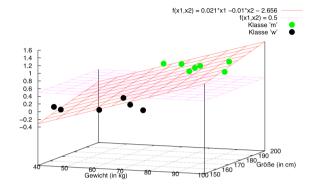
7 von 40

technische universität



Hinführungen zur SVM Maximum Margin Methode Weich trennende SV

Wo trennen wir die Daten?



Problem: Mehrere Funktionen mit minimalem Fehler existieren. Welche wählen?

- 1. Ausweg: Verbessertes Kriterium: maximum margin.
- 2. Ausweg: Zusätzliches Kriterium: möglichst geringe Komplexität des Modells (Strukturelle Risikominimierung)

LS 8 Künstliche Intelligenz Fakultät für Informatik Technische Universität Dortmund

Notationen

Und warum jetzt $\langle \vec{x}, \vec{\beta} \rangle$ statt $\vec{x}^T \vec{\beta}$?

Wir bewegen uns derzeit in einem \mathbb{R} -Vektorraum der Beispiele mit dem Standardskalarprodukt

$$\langle \vec{x}, \vec{\beta} \rangle = \underbrace{\vec{x}^T \vec{\beta}}_{Matrix multiplikation} = \underbrace{\vec{x} \vec{\beta}}_{Implizites Skalar produkt}$$

Die Notation $\langle \vec{x}, \vec{\beta} \rangle$ sollte aus der linearen Algebra (Schule?) bekannt sein.

Klassifikation mit Hyperebenen

Ist eine Fbene \tilde{H} mit

$$\tilde{H} = \left\{ \vec{x} \mid \beta_0 + \langle \vec{x}, \vec{\beta} \rangle = 0 \right\}$$

gegeben, können wir diese in Hesse-Normalenform überführen

$$H = \left\{ \vec{x} \ | \ \beta_0^* + \langle \vec{x}, \vec{\beta}^* \rangle = 0 \right\} \quad \text{mit } \vec{\beta}^* := \frac{\vec{\beta}}{||\vec{\beta}||}, \beta_0^* := \frac{\beta_0}{||\vec{\beta}||}$$

und erhalten die vorzeichenbehaftete Distanz eines Punktes \vec{x} zu H durch

$$d(\vec{x}, H) = \langle \vec{x} - \vec{x}_0, \vec{\beta}^* \rangle = \frac{1}{||\vec{\beta}||} (\langle \vec{x}, \vec{\beta} \rangle + \beta_0)$$

(Übungsaufgabe)

Einfacher Ansatz nach Schölkopf/Smola

Ein einfacher Ansatz zu einer separierenden Hyperebene zu kommen, geht über die Zentroiden von C_+ und C_- :

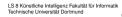
Seien

$$\vec{c}_+ := \frac{1}{|C_+|} \sum_{(\vec{x},y) \in C_+} \vec{x} \quad \text{und} \quad \vec{c}_- := \frac{1}{|C_-|} \sum_{(\vec{x},y) \in C_-} \vec{x}$$

Wähle nun

$$\vec{x_0} := \frac{\vec{c}_+ + \vec{c}_-}{2}$$
 und $\vec{\beta} := \vec{c}_+ - \vec{c}_-$

als Hyperebene mit Normalenvektor $\vec{\beta}$ durch den Punkt \vec{x}_0



Klassifikation mit Hyperebenen

Die vorzeichenbehaftete Distanz $d(\vec{x}, H)$ drückt aus

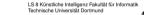
- \bigcirc den Abstand $|d(\vec{x}, H)|$ von \vec{x} zu Ebene H
- ② die Lage von \vec{x} relativ zur Orientierung ($\vec{\beta}$) von H, d.h.

$$\mathrm{sign}\left(d(\vec{x},H)\right) = \left\{ \begin{array}{l} +1 & , \text{ falls } \cos \measuredangle(\vec{x},\vec{\beta}) \geq 0 \\ -1 & , \text{ sonst} \end{array} \right.$$

Auf diese Weise lassen sich die Punkte klassifizieren mit

$$\hat{y} = \operatorname{sign}\left(\beta_0 + \langle \vec{x}, \vec{\beta} \rangle\right)$$

10 von 40



Separierende Hyperebene über Zentroiden

Durch $\vec{\beta}$ und \vec{x}_0 ist die Hyperebene gegeben als

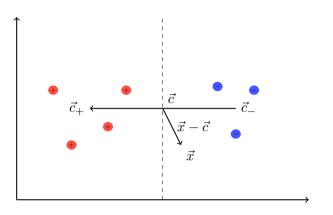
$$\tilde{H} = \left\{ \vec{x} \mid \langle \vec{x} - \vec{x}_0, \vec{\beta} \rangle = 0 \right\} = \left\{ \vec{x} \mid \langle \vec{x}, \vec{\beta} \rangle - \underbrace{\langle \vec{x}_0, \vec{\beta} \rangle}_{=:-\beta_0} = 0 \right\}$$

Damit erfolgt die Klassifikation durch

$$\hat{y} = \operatorname{sign} \left(\langle \vec{x} - \vec{c}, \vec{\beta} \rangle \right)$$

$$= \operatorname{sign} \left(\langle \vec{x}, \vec{c}_{+} \rangle - \langle \vec{x}, \vec{c}_{-} \rangle + \beta_{0} \right)$$
 (Übung)

Lernalgorithmus im Bild



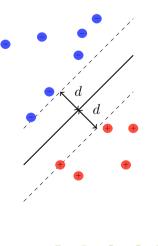
13 von 40

15 von 40

LS 8 Künstliche Intelligenz Fakultät für Informatik Technische Universität Dortmund

Die optimale Hyperebene

Eine Menge von Beispielen heißt linear trennbar, falls es eine Hyperebene H gibt, die die positiven und negativen Beispiele trennt.



• Einfach den Mittelpunkt der Beispiele einer Klasse zu berechnen ist zu einfach, um ein ordentliches $\vec{\beta}$ zu

wäre das schon die Stützvektormethode Aber:

bekommen.

• Man erhält so nicht die optimale Hyperebene.

14 von 40

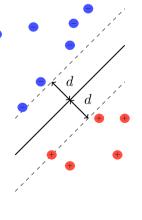
LS 8 Künstliche Intelligenz Fakultät für Informatik Technische Universität Dortmund

Die optimale Hyperebene

Eine Menge von Beispielen heißt linear trennbar, falls es eine Hyperebene H gibt, die die positiven und negativen Beispiele trennt.

5.1: Optimale Hyperebene

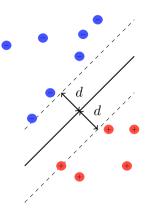
Eine separierende Hyperebene Hheißt optimal, wenn ihr Abstand dzum nächsten positiven und nächsten negativen Beispiel maximal ist.



5.1: Optimale Hyperebene

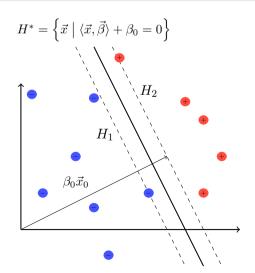
Eine separierende Hyperebene Hheißt optimal, wenn ihr Abstand d zum nächsten positiven und nächsten negativen Beispiel maximal ist.

Es existiert eine eindeutig bestimmte optimale Hyperebene.



15 von 40

Abstand der Hyperebenen zum Ursprung



Der Abstand der mittleren Ebene H^* zum Ursprung beträgt

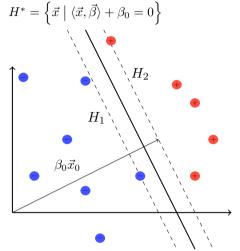
$$d(\vec{0}, H^*) = \frac{\beta_0}{||\vec{\beta}||}$$

Die Abstände der grauen Ebenen H_1 und H_2 sind

$$d(\vec{0}, H_j) = \frac{\beta_0 + (-1)^j}{\|\vec{\beta}\|}$$

$$\stackrel{H_1||H_2}{\Rightarrow} d(H_1, H_2) = \frac{2}{||\vec{\beta}||}$$

Bild



Nach 5.1 wird die optimale Hyperebene durch die nächstliegenende Punkte aus C_{+} und C_{-} bestimmt.

Skalierung von $\vec{\beta}$ und β_0 , so dass

$$|\langle \vec{\beta}, \vec{x} \rangle + \beta_0| = 1$$

für alle Beispiele am nächsten zur Hyperebene liefert die Hyperebenen H_1 und H_2

$$H_j = \left\{ \vec{x} \mid \langle \vec{x}, \vec{\beta} \rangle + \beta_0 = (-1)^j \right\}$$

16 von 40

Margin

Nach Konstruktion liegt kein Beispiel zwischen H_1 und H_2 , d.h.

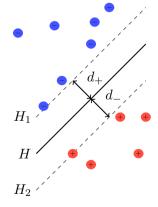
$$\langle \vec{x}, \vec{\beta} \rangle + \beta_0 \ge +1 \forall \vec{x} \in C_+ \tag{1}$$

$$\langle \vec{x}, \vec{\beta} \rangle + \beta_0 \le -1 \forall \vec{x} \in C_-$$
 (2)

Der Abstand

$$d(H_1, H_2) = \frac{2}{||\vec{\beta}||}$$

heißt Margin und soll maximiert werden!



Optimierungsaufgabe

technische universität

Nach diesen Vorüberlegungen haben wir also (nur noch) die folgende Optimierungsaufgabe zu lösen:

Optimierungsaufgabe

Minimiere

$$\frac{1}{2}||\vec{\beta}||^2$$

unter den Nebenbedingungen

$$\langle \vec{x}, \vec{\beta} \rangle + \beta_0 \ge +1 \quad \forall \ \vec{x} \in C_+$$

 $\langle \vec{x}, \vec{\beta} \rangle + \beta_0 \le -1 \quad \forall \ \vec{x} \in C_-$

Die Nebenbedingungen lassen sich zusammenfassen zu

$$y(\langle \vec{x}, \vec{\beta} \rangle + \beta_0) - 1 \ge 0 \quad \forall (\vec{x}, y) \in \mathbf{X}$$
 (3)

Optimierung mit Lagrange

Die Optimierung nach Lagrange ermöglicht die Optimierung einer Funktion f(x) unter Nebenbedingungen durch *Relaxation*.

Mit der Lagrange-Methode lassen sich Nebenbedingungen q_i und h_i der Art

$$g_i(x) \leq 0$$
 und $h_j(x) = 0$

behandeln, indem diese zur zu optimierenden Funktion f hinzugefügt werden, im Falle eines Minimierungsproblems als

$$\min f(x) + \sum_{i} \alpha_i g_i(x) + \sum_{j} \mu_j h_j(x) \quad \mathsf{mit} \ \alpha_i, \mu_j \ge 0 \ \forall i, j$$

Die α_i und μ_i heißen auch Lagrange-Multiplikatoren.

Mit der Maximierung des Margin finden wir eine optimale Hyperebene innerhalb der Menge der möglichen trennenden Hyperebenen.

Durch die Minimierung von $\frac{1}{2}||\vec{\beta}||^2$ erhalten wir ein konvexes, quadratisches Optimierungsproblem, d.h.

• Es existiert eine eindeutig bestimmte, optimale Hyperebene

$$H^* = \left\{ \vec{x} \mid \langle \vec{x}, \vec{\beta} \rangle + \beta_0 = 0 \right\}$$

Das quadratische Optimierungsproblem läßt sich in Zeit $O(N^3)$ lösen.

19 von 40

Optimierung mit Nebenbedingungen

Sei die optimierende Funktion $f: \mathbb{R} \to \mathbb{R}$ gegeben als

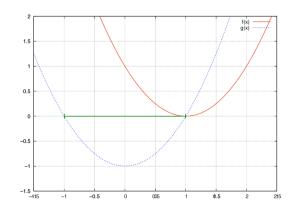
$$f(x) = (x-1)^2$$

unter der einzigen Nebenbedingung

$$g(x) = x^2 - 1,$$

d.h. für die möglichen Lösungen \tilde{x} muss gelten

$$\tilde{x} \in \{x \in \mathbb{R} \mid g(x) \le 0\}$$



Lagrange-Funktion

Die Umformung der Nebenbedingungen (3) erlaubt nun die Anwendung von Lagrange (nur Ungleichheitsbedingungen):

Lagrange-Funktion

Sei das Optimierungsproblem gegeben, $f(\vec{\beta})$ zu minimieren unter den Nebenbedingungen $q_i(\vec{\beta}) > 0, i = 1, ..., m$ dann ist die Lagrange-Funktion:

$$L\left(\vec{\beta}, \vec{\alpha}\right) = f(\vec{\beta}) - \sum_{i=1}^{m} \alpha_i g_i(\vec{\beta}) \tag{4}$$

Dabei muss gelten $\alpha_i \geq 0$, Gleichheitsbedingungen sind nicht gegeben.



23 von 40

Karush-Kuhn-Tucker Bedingungen

Durch die partiellen Ableitung nach $\vec{\beta}$ und β_0 erhalten wir

$$\frac{\partial}{\partial \vec{\beta}} L_P(\vec{\beta},\beta_0,\vec{\alpha}) = \vec{\beta} - \sum_i \alpha_i y_i \vec{x}_i \quad \text{ und } \quad \frac{\partial}{\partial \beta_0} L_P(\vec{\beta},\beta_0,\vec{\alpha}) = - \sum_i \alpha_i y_i$$

Nullsetzen der Ableitungen und die Berücksichtigung der Nebenbedingungen führt zu den KKT-Bedingungen für eine Lösung für L_P :

$$\vec{\beta} = \sum_{i=1}^{N} \alpha_i y_i \vec{x}_i \quad \text{und} \quad \sum_{i=1}^{N} \alpha_i y_i = 0$$
 (6)

$$\alpha_i \ge 0 \ \forall i = 1, \dots, N \tag{7}$$

$$\alpha_i \left(y_i \left(\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0 \right) - 1 \right) = 0 \ \forall i = 1, \dots, N$$
 (8)

Optimierungsfunktion als Lagrange

Die Nebenbedingungen as sind gegeben durch

$$g_i(\vec{\beta}, \beta_0) = y_i \left(\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0 \right) - 1 \ge 0 \ \forall \vec{x}_i \in \mathbf{X}$$

Die Formulierung des Optimierungsproblems nach Lagrange wird auch als Primales Problem bezeichnet:

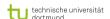
Primales Problem

Die Funktion

$$L_P(\vec{\beta}, \beta_0, \vec{\alpha}) = \frac{1}{2} ||\vec{\beta}||^2 - \sum_{i=1}^N \alpha_i \left(y_i \left(\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0 \right) - 1 \right)$$
 (5)

soll L_P bezüglich $\vec{\beta}$ und β_0 minimiert und bezüglich $\vec{\alpha}$ maximiert werden!

24 von 40



Hinführungen zur SVM Maximum Margin Methode Weich trenner

Duales Problem

Das primale Problem soll bezüglich $\vec{\beta}$ und β_0 minimiert und bezüglich $\vec{\alpha}$ maximiert werden:

Mit den Bedingungen aus $\frac{\partial L_P}{\partial \vec{\beta}}$ und $\frac{\partial L_P}{\partial \beta_0}$ erhalten wir den *dualen* Lagrange-Ausdruck $L_D(\vec{\alpha})$

- Der duale Lagrange-Ausdruck $L(\vec{\alpha})$ soll maximiert werden.
- Das Minimum des ursprünglichen Optimierungsproblems tritt genau bei jenen Werten von $\vec{\beta}, \beta_0, \vec{\alpha}$ auf wie das Maximum des dualen Problems.

26 von 40

Umformung des primalen in das duale Problem

$$\frac{1}{2}||\vec{\beta}||^2 - \sum_{i=1}^N \alpha_i \qquad \left[y_i \left(\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0 \right) - 1 \right]
= \frac{1}{2}||\vec{\beta}||^2 - \sum_{i=1}^N \alpha_i \qquad y_i \left(\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0 \right) \qquad + \sum_{i=1}^N \alpha_i
= \frac{1}{2}||\vec{\beta}||^2 - \sum_{i=1}^N \alpha_i y_i \langle \vec{x}_i, \vec{\beta} \rangle \qquad - \sum_{i=1}^N \alpha_i y_i \beta_0 \qquad + \sum_{i=1}^N \alpha_i
\frac{(6)}{2}||\vec{\beta}||^2 - \sum_{i=1}^N \alpha_i y_i \langle \vec{x}_i, \vec{\beta} \rangle \qquad + \sum_{i=1}^N \alpha_i$$

SVM Optimierungsproblem (Duales Problem)

Die Umformungen führen nach Einsetzen der KKT-Bedingungen zum dualen Problem:

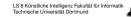
Duales Problem

Maximiere

$$L_D(\vec{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j \langle \vec{x}_i, \vec{x}_j \rangle$$
 (9)

unter den Bedingungen

$$\alpha_i \geq 0 \; \forall \, i=1,\dots,N \quad \text{und} \quad \sum_{i=1}^N \alpha_i y_i = 0$$



Umformuna II

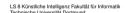
Einsetzen von $\vec{eta} = \sum\limits_{i=1}^{N} \alpha_i y_i \vec{x}_i$ führt zu

$$\frac{1}{2}||\vec{\beta}||^{2} - \sum_{i=1}^{N} \alpha_{i} y_{i} \langle \vec{x}_{i}, \vec{\beta} \rangle + \sum_{i=1}^{N} \alpha_{i}$$

$$= \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \vec{x}_{i}, \vec{x}_{j} \rangle - \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \vec{x}_{i}, \vec{x}_{j} \rangle + \sum_{i=1}^{N} \alpha_{i}$$

$$= + \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \vec{x}_{i}, \vec{x}_{j} \rangle$$

unter den Nebenbedingungen $0 = \sum_{i=1}^{N} \alpha_i y_i$ und $\alpha_i \geq 0 \ \forall i$



Die Lösung $\vec{\alpha}^*$ des dualen Problems

$$L_D(\vec{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_i y_j \alpha_i \alpha_j \langle \vec{x}_i, \vec{x}_j \rangle$$

muss die KKT-Bedingungen erfüllen, d.h. es gilt unter anderem

$$\alpha_i \left(y_i \left(\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0 \right) - 1 \right) = 0 \ \forall i = 1, \dots, N$$

 $\vec{\alpha}^*$ enthält für jedes Beispiel \vec{x}_i genau ein α_i mit

 $\alpha_i = 0$, falls \vec{x}_i im richtigen Halbraum liegt

 $\alpha_i > 0$, falls \vec{x}_i auf der Hyperebene H_1 oder H_2 liegt

Ein Beispiel \vec{x}_i mit $\alpha_i > 0$ heißt Stützvektor.

technische universität

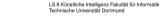
Berechnung der α_i ?

Das prinzipielle Vorgehen ist bei der SVM wie bei anderen Lernverfahren auch:

- Parametrisierung der Modelle, hier über Umwege durch $\vec{\alpha}$
- Festlegung eines Optimalitätskriteriums, hier: Maximum Margin
- Formulierung als Optimierungsproblem

Das finale Optimierungsproblem läßt sich mit unterschiedlichen Ansätzen lösen

- Numerische Verfahren (quadratic problem solver)
- Seguential Minimal Optimization (SMO, [J. C. Platt, 1998])
- Evolutionäre Algorithmen (EvoSVM, [I. Mierswa, 2006])



Was wissen wir jetzt?

- Maximieren des Margins einer Hyperebene ergibt eine eindeutige Festlegung der optimalen trennenden Hyperebene.
- Dazu minimieren wir die Länge des Normalenvektors $\vec{\beta}$
 - Formulierung als Lagrange-Funktion
 - Formulierung als duales Optimierungsproblem
- Das Lernergebnis ist eine Linearkombination von Stützvektoren.
- Mit den Beispielen müssen wir nur noch das Skalarprodukt rechnen.

Haben wir das optimale $\vec{\alpha}^*$ bestimmt, erhalten wir unsere optimale Hyperebene:

Nach (6) gilt

$$\vec{\beta} = \sum \alpha_i y_i \vec{x}_i$$

d.h. der optimale Normalenvektor $\vec{\beta}$ ist eine Linearkombination von Stützvektoren.

Um β_0 zu bestimmen können wir

$$\alpha_i \left(y_i \left(\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0 \right) - 1 \right) = 0$$

für ein beliebiges i und unser berechnetes $\vec{\beta}$ nutzen.

31 von 40

Zusammenfassung der Lagrange-Optimierung für SVM

Das Lagrange-Optimierungs-Problem (5) ist definiert als:

$$L_P = \frac{1}{2} \|\vec{\beta}\|^2 - \sum_{i=1}^{N} \alpha_i \left[y_i(\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0) - 1 \right]$$

mit den *Lagrange-Multiplikatoren* $\vec{\alpha}_i > 0$.

Notwendige Bedingung für ein Minimum liefern die Ableitungen nach $\vec{\beta}$ und β_0

$$\frac{\partial L_P}{\partial \vec{\beta}} = \vec{\beta} - \sum_{i=1}^N \alpha_i y_i \vec{x}_i \quad \text{und} \quad \frac{\partial L_P}{\partial \beta_0} = \sum_{i=1}^N \alpha_i y_i$$

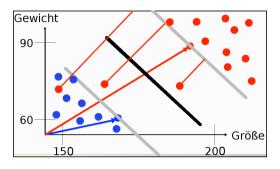
Diese führen zum dualen Problem (9)

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_{i'} \langle \vec{x}_i, \vec{x}_{i'} \rangle$$

technische universität

Nicht linear trennbare Daten

• Was passiert, wenn die Beispiele nicht komplett trennbar sind?



35 von 40

37 von 40

SVM mit Ausnahmen

Ein anderer Ansatz basiert wieder auf einer Relaxation:

- Punkte, die nicht am Rand oder auf der richtigen Seite der Ebene liegen, bekommen einen Strafterm $\xi_i > 0$.
- Korrekt klassifizierte Punkte erhalten eine Variable $\xi_i = 0$.

Dies führt zu folgenden Minimierungsproblem

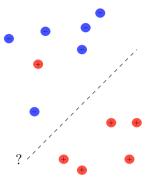
$$\frac{1}{2}\|\vec{\beta}\|^2 + C\sum_{j=1}^N \xi_j \quad \text{für ein festes } C \in \mathbb{R}_{>0} \tag{10}$$

Daraus folgt insbesondere

$$0 \le \alpha_i \le C$$

In der Praxis sind linear trennbare Daten selten:

- 1. Ansatz: Entferne eine minimale Menge von Datenpunkten, so dass die Daten linear trennbar werden (minimale Fehlklassifikation).
- Problem: Algorithmus wird exponentiell.



36 von 40

LS 8 Künstliche Intelligenz Fakultät für Informatik Technische Universität Dortmund

Weich trennende Hyperebene

Relaxiertes Optimierungsproblem

Sei $C \in \mathbb{R}$ mit C > 0 fest. Minimiere

$$||\vec{\beta}||^2 + C \sum_{i=1}^{N} \xi_i$$

unter den Nebenbedingungen

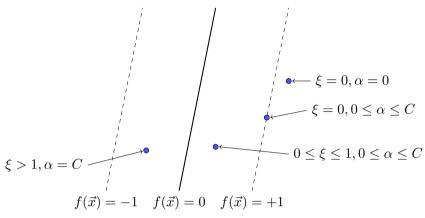
$$\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0 \geq +1 - \xi_i \quad \text{für } \vec{y}_i = +1$$

$$\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0 \leq -1 + \xi_i \quad \text{für } \vec{y}_i = -1$$

Durch Umformung erhalten wir wieder Bedingungen für die Lagrange-Optimierung:

$$y_i(\langle \vec{x}_i, \vec{\beta} \rangle + \beta_0) \ge 1 - \xi_i \quad \forall \ i = 1, \dots, N$$

Bedeutung von ξ und $\vec{\alpha}$



Beispiele \vec{x}_i mit $\alpha_i > 0$ sind Stützvektoren.

Wo sind wir?

- Maximieren der Breite einer separierenden Hyperebene (maximum margin method) ergibt eindeutige, optimale trennende Hyperebene.
 - Das haben wir heute in der Theorie für linear separierbare Beispielmengen und mit weicher Trennung gesehen – wie es praktisch geht, sehen wir nächstes Mal.
 - Die Grundlagen waren die selben wie bei den linearen Modellen.
- Transformation des Datenraums durch Kernfunktion behandelt Nichtlinearität.
 - Das kam nur einmal am Rande vor. Wir sehen es nächstes Mal genauer.
 - Es baut auf die Behandlung der Nichtlinearität durch die Basisexpansion auf.
- Strukturelle Risikominimierung minimiert nicht nur den Fehler, sondern auch die Komplexität des Modells. Später!

40 von 40