Numerical Optimization

Homework 1

Due 28.04.2014

Give your answers with logical and/or mathematical explanations. Handin your homework in the beginning of a lecture on due date. Late submissions will not be accepted.

1. Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for $i=1,2, \ldots, m$ be convex functions. Show that

$$
F(x)=\max \left\{f_{1}(x), f_{2}(x), \ldots, f_{m}(x)\right\}
$$

is also a convex function.
2. Let $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ be two scalar sequences. Show the following using definitions of inf and liminf:
(a) If $c \leq x_{k}$ for all k for a scalar c, then $c \leq \inf \left\{x_{k}\right\}$.
(b) $\inf \left\{x_{k}\right\}+\inf \left\{y_{k}\right\} \leq \inf \left\{x_{k}+y_{k}\right\}$.
(c) $\liminf \left\{x_{k}\right\}+\liminf \left\{y_{k}\right\} \leq \liminf \left\{x_{k}+y_{k}\right\}$.
3. Let X and Y be two closed sets in R^{n}. Give an example of X and Y showing that the sum $X+Y:=\{x+y: x \in X, y \in Y\}$ is not necessarily a closed set. (You can choose a specific dimension n for your example.)
4. Show that for a convex set C, its closure $\mathrm{cl} C$ is also convex.
5. For $f(x)=x^{T} H x$, where $x \in \mathbb{R}^{n}$ and $H \in \mathbb{R}^{n \times n}, \nabla^{2} f(x)=2 H$ when H is symmetric (in this case, f is twice continuously differentiable). What is $\nabla^{2} f(x)$ when H is not symmetric?
6. For $f(x)=\frac{1}{2}\|y-A x\|_{2}^{2}$ where $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{k}$, and $A \in \mathbb{R}^{k \times n}$, derive the expressions of $\nabla f(x)$ and $\nabla^{2} f(x)$ using the chain rule.

