Numerical Optimization

Homework 2

Due 14.05.2014

Give your answers with logical and/or mathematical explanations. Handin your homework in the beginning of a lecture on due date. Late submissions will not be accepted.

1. For $f(x)=\frac{1}{2}\|y-A x\|_{2}^{2}$ where $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{k}$, and $A \in \mathbb{R}^{k \times n}$, derive the expressions of $\nabla f(x)$ and $\nabla^{2} f(x)$ using the chain rule.
2. Compute the gradient $\nabla f(x)$ and the Hessian $\nabla^{2} f(x)$ of the Rosenbrock function,

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

Show that $x^{*}=(1,1)^{T}$ is the only local minimizer of this function, and that the Hessian matrix at that point is positive definite.
3. Consider $f(x)=x^{T} H x$ where $H \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix. Show using the definition of convex functions that $f(x)$ is convex on the domain \mathbb{R}^{n}. Hint: it may be convenient to prove the following equivalent inequality for all $x, y \in \mathbb{R}^{n}$ and all $\alpha \in[0,1]$,

$$
f(y+\alpha(x-y))-\alpha f(x)-(1-\alpha) f(y) \leq 0 .
$$

4. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function. Show that the set of global minimizers of f is a convex set.
5. For a square symmetric matrix $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^{n}, x \neq 0$, the quantity

$$
\frac{x^{T} A x}{x^{T} x}, x \in \mathbb{R}^{n}
$$

is called the Rayleigh quotient. Find a vector x^{*} that minimizes the Rayleigh quotient for a given A, and the corresponding minimum value. Also, find x^{*} that maximizes the quotient, and the corresponding maximum value.

