Numerical Optimization

Homework 3

Due 11.06.2014

Give your answers with logical and/or mathematical explanations. Hand-in your homework in the beginning of a lecture on due date. Late submissions will not be accepted. Assigned points are shown in square brackets, which will be re-scaled so that the total homeworks points will be 40.

1.[5] Consider the (exact) line search problem for a given point $x_k \in \mathbb{R}^n$ and a descent direction $p_k \in \mathbb{R}^n$, searching for $\alpha_k > 0$ that solves

$$\min_{\alpha > 0} \ \phi(\alpha) = f(x_k + \alpha p_k)$$

for a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$. Show that for a convex quadratic function $f(x) = \frac{1}{2}x^TQx + c^Tx$ where Q is positive definite, the unique global minimizer $\alpha_k > 0$ of $\phi(\alpha)$ is given by

$$\alpha_k = -\frac{\nabla f(x_k)^T p_k}{p_k^T Q p_k}.$$

Hint: first show that $\phi(\alpha)$ is a strictly convex function.

2.[5] For a twice continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$, denote its Hessian matrix at a point $x_k \in \mathbb{R}$ by $H_k = \nabla^2 f(x_k)$. Suppose that the Hessian is positive definite and has a uniformly bounded condition number, that is, for there exists a constant M > 0 such that

$$\kappa(H_k) = \|H_k\|_2 \|H_k^{-1}\|_2 \le M \ \forall k.$$

Show in this case the Newton direction $p_k^N = -H_k^{-1} \nabla f(x_k)$ satisfies that

$$\cos \theta_k = \frac{-\nabla f(x_k)^T p_k^N}{\|\nabla f(x_k)\|_2 \|p_k^N\|_2} \in \left[\frac{1}{M}, 1\right].$$

3.[15] (Backtracking Linesearch)

A popular line search strategy is called the *backtracking* line search, which typically uses only the Armijo condition to check satisfactory step sizes. A sketch of the backtracking line search algorithm is shown in Algorithm 1. [3pt] This algorithm is guaranteed to find an $\alpha_k > 0$ and perhaps not too small one if α_0 is sufficiently large. Explain briefly why this is true.

[12pt] A typical minimization loop is illustrated in Algorithm 2. Implement the minimization loop with backtracking line search in R, using the steepest descent and the Newton directions to find a stationary point of the Rosenbrock function¹. We've shown that $(1,1)^T$ is a unique minimizer, in homework 2. Try two starting points, $(1.2,1.2)^T$ and $(-1.2,1)^T$, for two different choices of search directions, to see if they find the minimizer and how they behave differently.

For implementation, we recommend using the following values:

The R code for f, ∇f , and $\nabla^2 f$ are available from the lecture website.

- Minimization: $tol = 10^{-16}$ and max.iter = 100.
- Line search: $\alpha_0 = 1.0$, $\rho = 0.5$, $c_1 = 10^{-4}$ and max.ls.iter = 25.

Algorithm 1: Backtracking Linesearch

Algorithm 2: Minimization Loop

```
Input: x_0, f, \nabla f, \nabla^2 f, tol > 0, and max.iter > 0; k \leftarrow 0; x_k \leftarrow x_0; while k < max.iter do

| if \|\nabla f(x_k)\|_2 < tol then
| break;
| end
| Choose a descent direction p_k;
| Choose \alpha_k from linesearch;
| x_k \leftarrow x_k + \alpha_k p_k;
| k \leftarrow k + 1;
| end
| Output: x^* = x_k.
```

Points will be given as follows: running implementation of line search with steepest descent direction (2pt + 3pt if correct) and newton's direction (2pt + 3pt if correct). 2pt will be given to correct observations of the difference between the steepest descent and Newton's methods from the output of your code.

Submit:

- (1) print out your R code.
- (2) for each of two starting points and the two choices of search directions, print and submit the following information in each iteration of Algorithm 2,
 - Iteration number $k = 0, 1, \ldots$
 - Chosen step size α_k .
 - Function value at x_{k+1} .
 - $\|\nabla f(x_{k+1})\|_2$.

Before beginning the while loop, show the function value at x_0 and $\|\nabla f(x_0)\|_2$ and check if x_0 satisfies the stopping condition so that the code will immediately return if $x_0 = (1, 1)^T$ is given.