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Course Structure 

Everything in English! 

 

Lecture: Mon, 10:15 – 12:00 : optimization theory / methods 

Practice: Wed, 10:15 – 12:00 : Julia / demo / homework discussion 

 

Place: OH12, R 1.056 

 

Lecturer: Dr. Sangkyun Lee 

Office Hour: By appointment, OH12, R 4.023 

 

Lecture website: check for topics, no lectures, etc. 

http://tinyurl.com/nopt-w16 
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Prerequisite 

No prerequisite, but math skills will be helpful 

 

We will cover necessary concepts in class 

•  We’ll review required math concepts next week 

•  Self-study of unfamiliar concepts is highly encouraged 
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Homework 

HW will be assigned in every 2~3 weeks (total ~5 hw’s) 

 

HW will consist of: 

•  Simple proofs 

•  Solving optimization problems 

•  Implementing/using optimization algorithms in Julia 

HW’s will NOT be graded J 

Ubung HW sessions, you need to present your answers! 

•  2~3 correct solutions will be needed, to pass Ubung and to be 

qualified for the final exam 
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Exams: 

Exams will be WRITTEN tests, NOT ORAL 

 

Exam questions will be mostly from homework problems 

 

•  Mid-Term (before Christmas: Dec 14th or 21st) : 50% 

•  Final Exam (tentative: Feb 15): 50% 

•  Coverage: midterm ~ the last lecture 
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Textbook / Lecture Notes 

No textbook is required, but the following text is recommended: 

Numerical Optimization 

J. Nocedal and S. Wright, 2nd Ed, Springer, 2006 

 

Lecture notes will be uploaded after each class 
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Question? 
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Optimization 

Methods to find solutions of mathematical programs (MPs): 
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min
x∈Rn

f (x) subject to x ∈ C

Objective  
Function 

Optimization 
Variable 

Constraint  
Set 



Why Optimization? 
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min
x∈Rn

f (x)

s.t. x ∈ C

Idea / Problem 

x
∗

MP 
(Mathematical Program) 

Solution 

Operations  
Research 

Mathematical  
Programming 



Optimizations is a fundamental 

tool in… 

Machine Learning / Statistics 

•  Regression, Classification 

•  Maximum likelihood estimation 

•  Matrix completion (collaborative filtering) 

•  Robust PCA 

•  Graphical models (Gaussian Markov random field) 

•  Dictionary learning 

•  … 

Signal Processing 

•  Compressed sensing 

•  Image denoising, deblurring, inpainting 

•  Source separation 

•  … 
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Considerations for Large-Scale 

Efficient Algorithms 

•  Faster convergence rate 

•  Lower per-iteration cost 

 

Separability 

•  Separable reformulations for parallelization 

 

Relaxations 

•  Find relaxed formulations that are easier to solve 

-  E.g. QP à LP, MIP à SDP 

Approximations 

•  Stochastic approximations to deal with large volume of data 
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Total cost 



Ex. Data Analysis 

Classification Problem: 

 

We’re given m data points (in n dimensions) which belong to two 

categories. Find a predictor to classify new data point into the 

two categories, based on the given data. 

 

Be robust against memorization (aka overfitting)! 
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Support Vector Machines 

Data: 
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(xi , yi ), xi ∈ R
n, yi ∈ {+1,−1}, i = 1, 2, . . . ,m

min
w∈Rn,b∈R,ξ∈Rm

1

2
‖w‖2 + C

m∑

i=1

ξi

s.t. ξi ≥ 1− yi (〈w , xi 〉+ b), i = 1, 2, . . . ,m

ξi ≥ 0, i = 1, 2, . . . ,m.

Primal form of the soft-margin SVM 

•  n+m+1 variables 

•  2m constraints 



SVM 
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min
w∈Rn,b∈R,ξ∈Rm

1

2
‖w‖2 + C

m∑

i=1

ξi

s.t. ξi ≥ 1− yi (〈w , xi 〉+ b), i = 1, 2, . . . ,m

ξi ≥ 0, i = 1, 2, . . . ,m.

Primal: 

Dual: 

Primal form à dual form 

•  n+m+1 variables à m variables 

•  2m constraints à 2m (simple) + 1 constrains 

•  Can we solve the dual, instead of the primal ? 

min
α∈Rm

1

2
α
TDyKDyα− eTα

s.t. yT
α = 0

0 ≤ αi ≤ C , i = 1, 2, . . . ,m.

Kij = 〈xi , xj〉



Sparse Coding 

Data: data (design) matrix X, response y 

 

Find a sparse coef vector beta that best predicts responses y 

 

 

 

 

 

 

 

Application: e.g. biomarker discovery from genetic data 
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X ∈ R
m×n y ∈ R

m

≈y

X

β



Sparse Coding: LASSO 

Least Absolute Shrinkage and Selection Operator [Tibshirani, 96] 
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min
β∈Rn

‖y − Xβ‖2 + λ‖β‖1

min
β∈Rn

‖y − Xβ‖2 s.t. ‖β‖1 ≤ γ

Properties: 

•  Convex optimization 

•  Exact zeros in solution 



ts 

Compressed Sensing 
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y x ∈ R
n

s-sparse

A ∈ R
k×n

Observations Original signal 

An inverse problem of dimensionality reduction: 

can we reconstruct the original signal from observations? 

(Figure adapted from R.Baraniuk’s talk slides) 

Sensing matrix 



Single-Pixel Camera 

18 

random 
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DMD array 
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or 
processing 

w/ Kevin Kelly  

scene 

(Slide adapted from R.Baraniuk’s talk) 

 A 
“inner product” 



Magnetic Resonance Imaging 
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Speeding up MRI by CS 

TU Dortmund, Dr. Sangkyun Lee 20 

[FIG8] 3-D Contrast enhanced angiography. Right: Even with 10-fold undersampling CS can recover most blood vessel information
revealed by Nyquist sampling; there is significant artifact reduction compared to linear reconstruction; and a significant resolution
improvement compared to a low-resolution centric k-space acquisition. Left: The 3-D Cartesian random undersampling configuration.
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Compressed Sensing MRI, Lustig, Donoho, Santos, and Pauly, IEEE Signal Processing Magazine, 72, 2008 



A Bigger Picture 
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min
x∈Rn

f (x)

s.t. x ∈ C

Idea / Problem 

x
∗

Parallel computing 
(e.g. GPGPU) 

Distributed data 

Data structure 

Computation cost 

Energy usage 

Machine Learning 
Statistical Data Analysis 

Programming Language 



Agenda 

Theory 

•  Optimality Conditions, 

KKT 

•  Rate of Convergence 

•  Duality 

Method 

•  Gradient Descent 

•  Quasi-Newton Method 

•  Conjugate Gradient 

•  Proximal Gradient 

Descent 

•  Stochastic Gradient 

Descent 

•  ADMM 
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The Julia Language 
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More on Wed 


