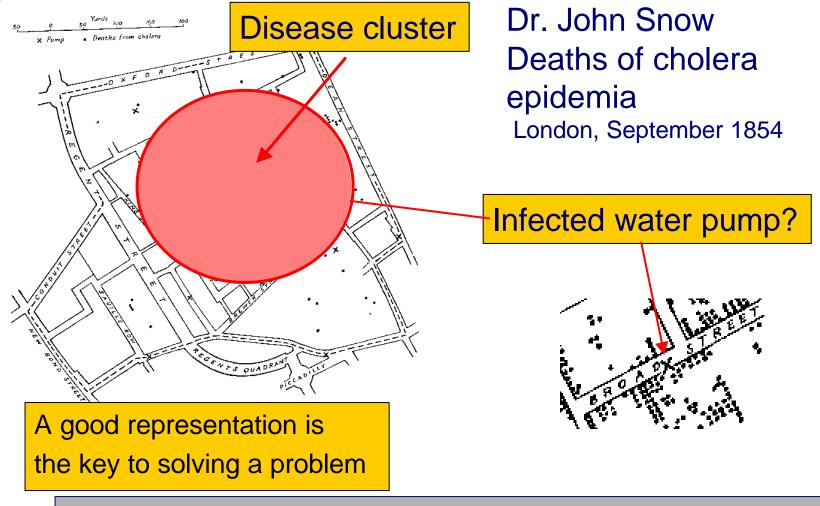
Spatial Data Mining for Customer Segmentation


Fraunhofer Institut Autonome Intelligente Systeme

Data Mining in Practice Seminar, Dortmund, 2003

Dr. Michael May Fraunhofer Institut Autonome Intelligente Systeme

Spatial Data Mining, Michael May, Fraunhofer AIS

Introduction: a classic example for spatial analysis

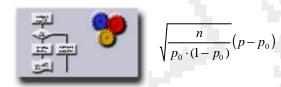
Good representation because...

Represents spatial relation of objects of the same type

Represents spatial relation of objects to other objects

Shows only relevant aspects and hides irrelevant It is not only important where a cluster is but also, what else is there (e.g. a water-pump)!

Goals of Spatial Data Mining

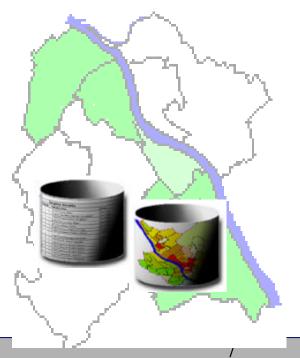

- Identifying spatial patterns
- Identifying spatial objects that are potential generators of patterns
- Identifying information relevant for explaining the spatial pattern (and hiding irrelevant information)

 Presenting the information in a way that is intuitive and supports further analysis

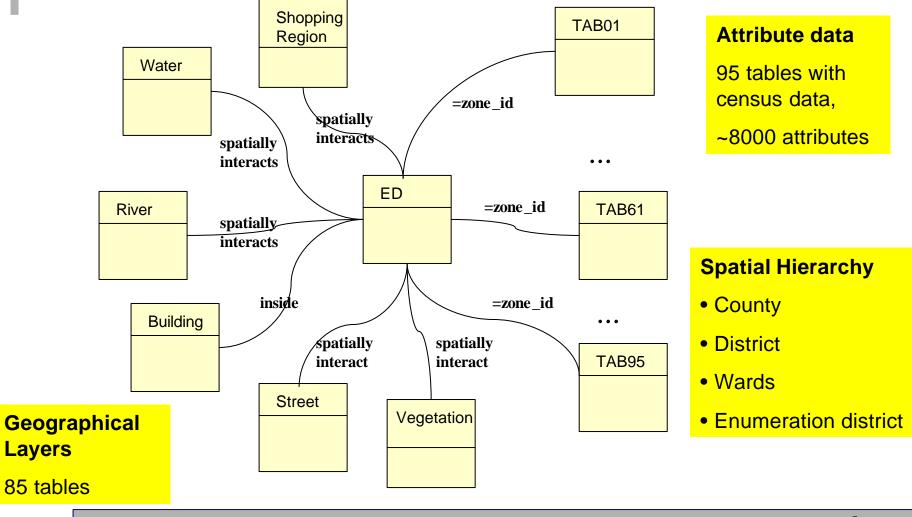
Approach to Spatial Knowledge Discovery

Data Mining

Geographic Information Systems



UK, Greater Manchester, Stockport 500 **Streets Buildings** Person p. Household No. of Cars Long-term illness Age **Rivers** Profession Brook Vale Ethnic group STOCKPORT DISTRICT **Hospitals** Unemployment Education Woods **Migrants** Moor Medical establishment Stepping Shopping areas


Representation of spatial data in Oracle Spatial

A set of relations $R_1, ..., R_n$ such that each relation R_i has a geometry attribute G_i or an identifier A_i such that R_i can be linked (joined) to a relation R_k having a geometry attribute G_k

- Geometry attributes G_i consist of ordered sets of x,y-pairs defining points, lines, or polygons
- Different types of spatial objects are organized in different relations R_i (geographic layers), e.g. streets, rivers, enumeration districts, buidlings, and
- each layer can have its own set of attributes A₁,..., A_n and at most one geometry attribute G

Stockport Database Schema

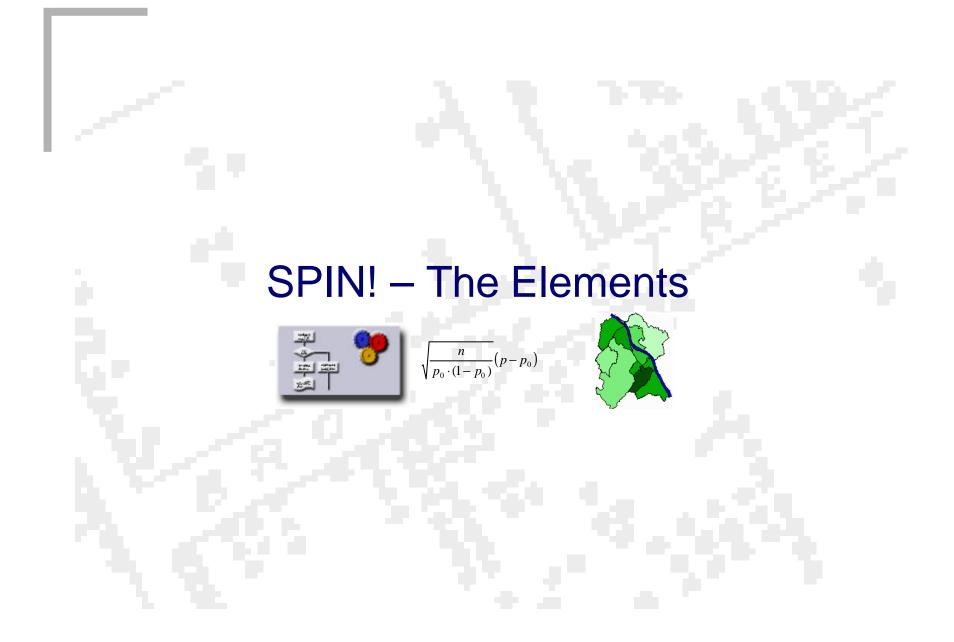
Spatial Data Mining, Michael May, Fraunhofer AIS

Spatial Predicates in Oracle Spatial

Topological relation (Egenhofer 1991)

A disjoint B, B disjoint A	
A meets B, B meets A	
A overlaps B, B overlaps A	
A equals B, B equals A	
A covers B, B covered by A	
A covered-by B, B covers A	
A contains B, B inside A	
A inside B, B contains A	

Distance relation: Minimum distance between 2 points

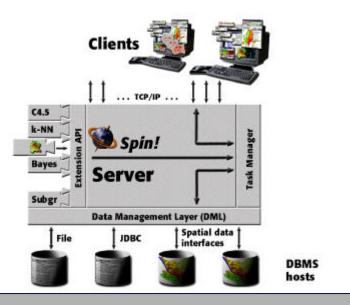

Typical Data Mining representation

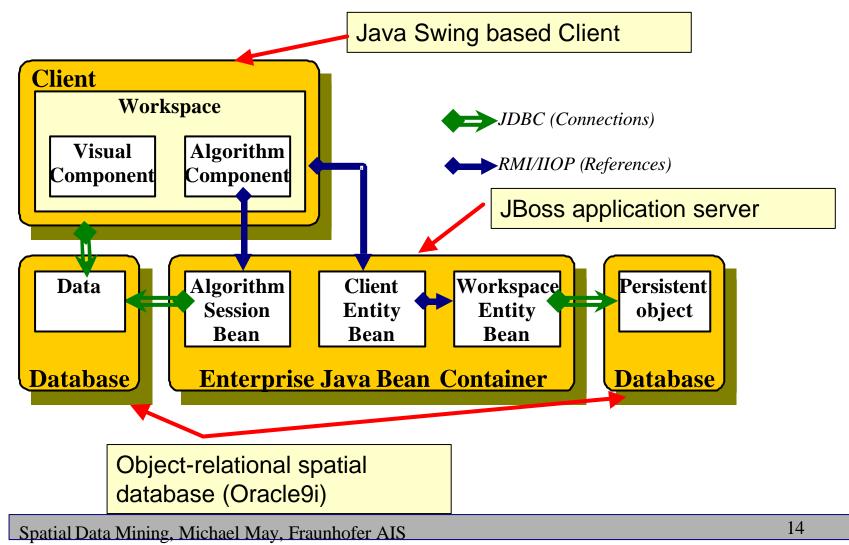
'spreadsheet data'

											exactly 1 table
facts ta:	sk: otask56	òo								×	
Start Abort facts task: 0_task560								New			
Task Data	Task Param	eters trace	Relation Data							_	
ID	Sex	Age	Income	SocialStatus	Region	LifelP	HomelP	CarlP	Respor		
1	female	22	16283	single	city	no	no	yes	no 🧧		
2	male	23	58613	family	city	no	no	yes	no		
3	male	36	2594	single	rural	no	yes	yes	no		
4	female	52	96649	single	city	no	no	yes	no	atc	omic values
5	female	84	51797	family	city	no	no	no	no		
6	male	25	87791	single	rural	yes	yes	yes	no		
7	female	56	82112	family	city	no	no	no	no		
8	male	48	64281	single	city	no	no	110	no		
9	female	18	130170	single	city	yes	no	no	no		
10	male	47	63236	single	rural	no	yes	no	no		
11	male	15	94908	family	city	no 📥	yes	yes	no		
12	male	47	18381	family	city	no	no	yes	no		
13	male	42	168200	family	rural	no	yes	yes	no		
14	female	71	49439	single	city	yes	no	no	no –	20	
15	female	46	40821	single	city	no	yes	no	no		
16	female	64	43853	family	city	no	no	no	no		
17	male	32	76938	single	rural	yes	no	yes	no		
18	male	44	55208	family	city	no	no	yes	no		
19	female	42	179725	single	rural	no	no	yes	no		
20	male	41	130841	single	city	no	no	yes	no		
21	male	35	83577	family	city	yes	no	yes	no		
22	male	42	19514	family	city	no	no	yes	no		
22	mala	25	60056	family	oitu	l no	Ino	- VOO	00		

Data Mining for spatial data: strong discrepancy between usual and adequate problem representation

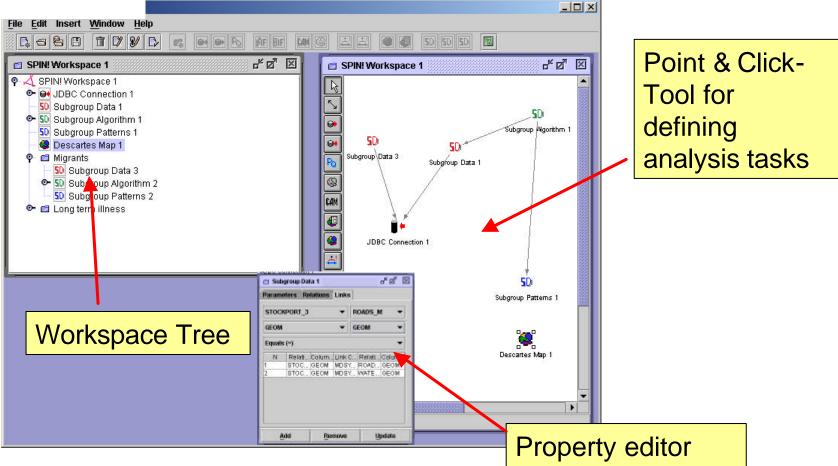
. . . .


1. Spatial Data Mining Platform

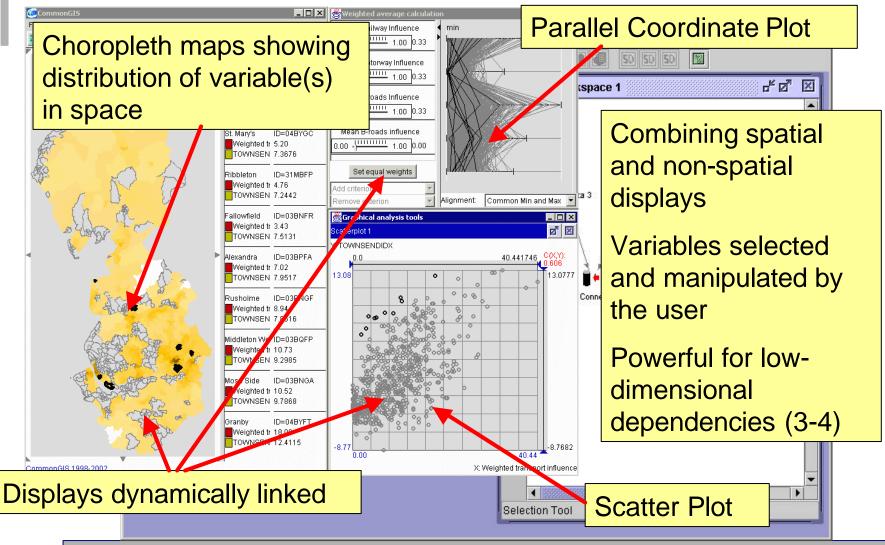

Providing an integrated data mining platform

- Data access to heterogeneous and distributed data sources (Oracle RDBMS, flat file, spatial data)
- Organizing and documenting analysis tasks
- Launching analysis tasks
- Visualizing results

Note: Same software basis as MiningMart!



SPIN! Architecture: Enterprise Java Bean-based


SPIN! User Interface

2. Visual Evoloratory Analyis

Interactive Exploratory Analysis

Spatial Data Mining, Michael May, Fraunhofer AIS

3. Searching for Explanatory

Data Mining Tasks in SPIN!

 Looking for associations between subsets of spatial and non-spatial attributes

⇒ Spatial Association Rules

 A phenomenon of interest (e.g. death rate) is given but it is not clear which of a large number of spatial and non-spatial attributes is relevant for explaining it

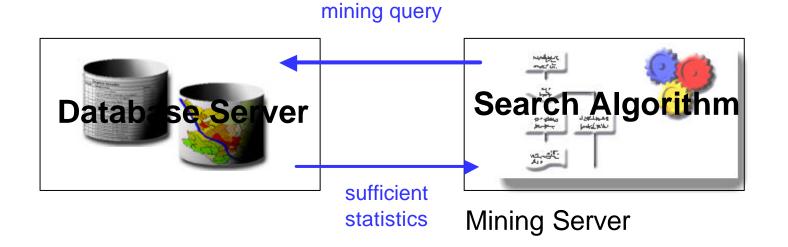
⇒ Spatial Subgroup Discovery

 A quantitative variable of interest is given and we ask how much this variable changes when one of the relevant independent variables is changed
Bayesian Local regression

Subgroup Discovery Search

- Subgroup discovery is a multi-relational approach that searches for probabilistically defined deviation patterns (Klösgen 1996, Wrobel 1997)
- Top-down search search from most general to most specific subgroups, exploiting partial ordering of subgroups ($S_1 \ge S_2$ S_1 more general than S_2)
- Beam search expanding only the *n* best ones at each level of search
- Evaluating hypothesis according to quality function:

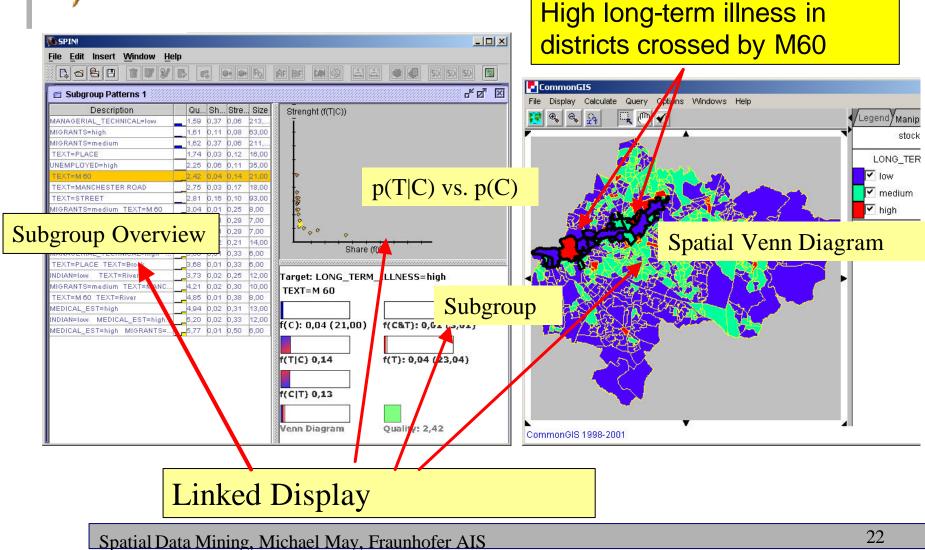
T= target group C= concept

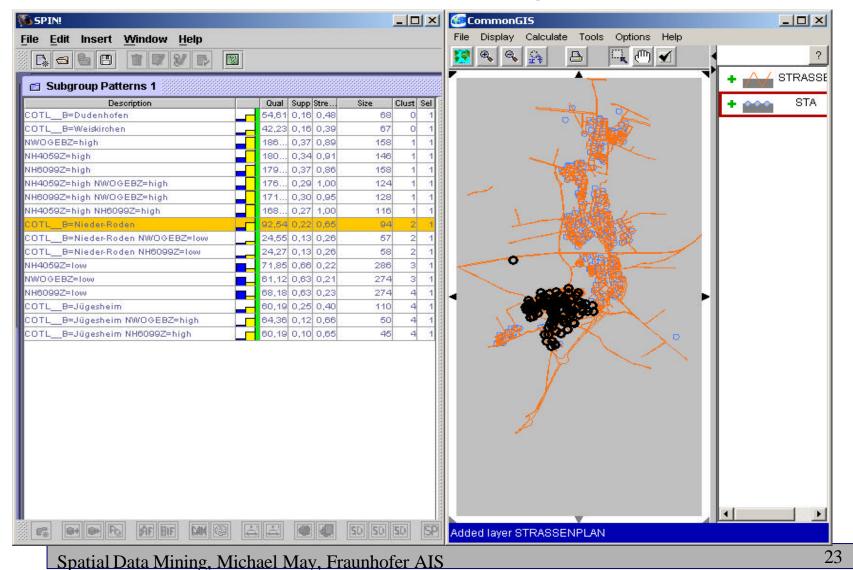

$$\frac{p(T \mid C) - p(T)}{\sqrt{p(T)(1 - p(T))}} \sqrt{n} \sqrt{\frac{N}{N - n}}$$

T = long-term illness=high

C = unemployment=high

Spatial Data Mining, Michael May, Fraunhofer AIS


Division of labour between Oracle RDBMS and Search Manager


- Database integration: efficiently organize mining queries
- Mining query delivers statistics (aggregations) sufficient for evaluating many hypotheses
- search in hypothesis space
- generation and evaluation of hypotheses (subgroup patterns)

Data Mining visualization

Customer Analysis Rodgau, Germany

System Demo: Customer Analysis using MiningMart and SPIN!

Summary & Outlook

- SPIN! tightly integrates Data Mining analysis and GIS-based visualization
- Main features:
 - A spatial data mining platform
 - New spatial data mining algorithms for subgroup discovery, association rules, Baysian MCMC
 - New visualization methods
- Integration of Spatial Data allows to get results that could not be achieved otherwise
- MiningMart can usefully applied for some pre-processing tasks
- Future tasks: Integrating spatial preprocessing in MiningMart