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Abstract

The implication problem is the problem of deciding whether a given set of depend-

encies entails other dependencies. Up to now, the entailment of excluded dependencies

or independencies is only regarded on a metalogical level, which is not suitable for an

automatic inference process. But, the inference of independencies is of great importance

for new topics in database research like knowledge discovery in databases.

In this paper, the expanded implication problem is discussed in order to decide en-

tailment of dependencies and independencies. The main results are axiomatizations of

functional, inclusion and multivalued independencies and the corresponding inference re-

lations. Also, we discuss the use of independencies in knowledge discovery in databases

and semantic query optimization.
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1 Introduction

The implication problem in relational database theory can be de�ned as a test: Given a

set of dependencies � and a dependency �, �nd whether � entails �, or � 2 Cn(�). In

order to avoid theorem proving in �rst order logic for testing entailment, there have been

proposed more simple decision procedures, which are mainly based on axiomatizations of

these dependencies.

But, new directions in database research require a more detailed point of view, because

they deal for example with partial information. As a matter of fact knowledge discovery

in databases is also concerned with the discovery of dependencies in databases. A typical

situation can be described as follows: A set of dependencies � is known to be valid and a

set of dependencies �

0

is known to be invalid in a database: What are the dependencies,

which may also be valid or invalid in each of this relations, too ? Or, is a dependency �

already entailed by � and �

0

? Since there are interactions between � and �

0

, it is no

longer su�cient to show � 2 Cn(�) or � 62 Cn(�).

We would like to point out this view in respect with a description of the process of

knowledge discovery in databases in general. Assume that S is the language of a particular

class of constraints. test(r; s) is a function which evaluates to true, if s 2 S and s holds

in r, otherwise to false. The task of discovering a complete set of constraints which holds

in r can be de�ned by: Find a set V � S with s 2 V if and only if test(r; s) evaluates

to true. This de�nition can be transformed in a simple enumeration algorithm provided

that S is �nite for a given database:

V := fg

for each s 2 S do

if test(r; s) then V := V [ fsg

Using this algorithm has the disadvantage that a lot of redundant constraints are

tested. Therefore, we introduce a consequence relation Cn(V ) which computes all logical

consequences of a set of constraints, i.e. s 2 Cn(V ) if s is a consequence of V . The

improved algorithm is:

V := fg

for each s 2 S do

if s 62 Cn(V )

then if test(r; s) then V := V [ fsg

But we still have unnecessary tests in our algorithm. For example, if we look at

functional dependencies: Let be A! B 2 V and test(r; C ! B) evaluates to false. Thus,

we do not have to test C ! A, because it cannot be valid in r. This shows that it is useful

to have negative dependencies, because then we can avoid by the question :s 62 Cn(V )

this unnecessary test provided that S is still �nite. The new algorithm is:

V := fg

for each s 2 S do

if s 62 Cn(V ) and :s 62 Cn(V )

then if test(r; s) then V := V [ fsg

else V := V [ f:sg
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=

n

1 NULL 2

1 true false false

NULL false true false

2 false false true

Figure 1: Equality operator =

n

In the following, we give solutions according functional independencies by an axio-

matization and by an inference relation in the second and the third section. Then it is

shown how functional dependencies can be maintained if new tuples are added or removed

from the database. Unary inclusion independencies are investigated by an axiomatiza-

tion and an inference relation in the next sections. In the seventh and eighth section the

combination of both is discussed. A close relationship between multivalued dependencies

and independencies is presented in the ninth section. Finally, we related our approach to

others and discuss the work.

2 Functional Independencies

In this section we discuss functional independencies and their axiomatization. We assume

familiarity with the de�nitions of relational database theory (for an overview see for ex-

ample [Kanellakis, 1990]) and the basic properties of the classical consequence relation

Cn. The capital letters A;B;C; : : : denote attributes, and X; Y; Z denote attribute sets.

We do not distinguish between an attribute A and an attribute set fAg. Remember that

every attribute is associated with a set of values, called its domain. Functional dependen-

cies are de�ned as usual. Additionally, we consider Null values because the ISO standard

permits Null values in any attribute of a candidate key. Therefore, we adopt a special

equality operator for the de�nition of the FDs, =

n

, which is illustrated in �gure 1.

Now, we can de�ne the consequences of a set of dependencies with: Let � be a set

of functional dependencies, then X ! Y is a consequence of � or X ! Y 2 CONS(�):

whenever a relation satis�es �, then it satis�es X ! Y . This is the equivalent operator to

the logical operator of classical logic. According to [Paredaens et al., 1989] a sound and

complete axiomatization of FDs is given by one axiom schema and two inference rules:

De�nition 1 [Axiomatization of FDs] X; Y and Z are sets of attributes. An axiomatiz-

ation of FDs is given by:

FD1 : (Reflexivity) If X � Y then Y ! X

FD2 : (Augmentation) If W � V then

X!Y

XV!Y W

FD3 : (Transitivity)

X!Y;Y!Z

X!Z

Some well known rules likes union and complementation are logically implied by this

system. The closure of attributesX regarding a set of FDs � is de�ned as: closure(X;�) =

fY jX ! Y 2 CONS(�)g and is denoted by X .
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Functional independencies have been introduced by Janas [Janas, 1988] to mirror func-

tional dependencies. But they are meant for a totally di�erent purpose: FIs are not se-

mantical constraints on the data, but a support for the database designer in the task of

identifying functional dependencies. In addition, they also help to improve the inference

of functional dependencies.

In [Paredaens et al., 1989] afunctional dependencies

1

are introduced, but they are a

sort of semantic constraints and much stronger than our functional independencies.

De�nition 2 (Functional Independency (FI)) X 6! Y denotes a functional inde-

pendency. A relation r satis�es X 6! Y (r j= X 6! Y ), if there exist tuples t

1

, t

2

of r with

t

1

[X ]=

n

t

2

[X ] and t

1

[Y ]6=

n

t

2

[Y ].

The consequences of FDs and FIs are de�ned as follows: Let � be a set of FDs and �

0

a set of FIs. Cn(� [ �

0

) := f�j for each relation r if r j= � [ �

0

, then r j= �g, where � is

a FD or FI. � [ �

0

is called inconsistent, if there is no relation r with r j= � [ �

0

.

An important property of the relationship between FDs and FIs is that the inference

of FDs is not a�ected by the presence of FIs, stated by the �rst lemma.

Lemma 1 Let � be a set of FDs, �

0

a set of FIs and � [ �

0

be consistent.

X ! Y 2 Cn(� [ �

0

) if and only if X ! Y 2 Cn(�).

Proof: (if) is trivial by monotonicity of Cn.

(only-if) Assume that X ! Y 62 Cn(�) and X ! Y 2 Cn(� [ �

0

). Then there must

be a relation r with r j= � and r 6j= X ! Y . This means, there are tuples t

1

and t

2

in

r with t

1

[X ]=

n

t

2

[X ] and t

1

[Y ]6=

n

t

2

[Y ]. We can add for each element V 6! W 2 �

0

two

tuples which satisfy V 6! W by de�nition. Any values are assigned to the remaining

attributes without a�ecting �, because � [�

0

is consistent. Remember that our domains

are countably in�nite, which ensures that we can use new values if needed. The expanded

relation satis�es � and �[�

0

by construction, but not X ! Y , which is a contradiction.

The next important observation is that FIs do not interact in the process of the infer-

ence. This can be illustrated by the fact that there exist at least two tuples for each FI

but we cannot identify them and so we cannot reason about further consequences of FIs

solely. For example, we cannot conclude from X 6! Y and Y 6! Z to the FI X 6! Z. This

can be clari�ed by the following observation:

Lemma 2 Let �

0

be a set of FIs. If X 6! Y 2 Cn(�

0

), then there exists a FI V 6! W 2 �

0

with X � V , and W \ Y 6= fg.

Proof: Assume that X 6! Y 2 Cn(�

0

), and V 6! W 62 �

0

with X � V , and W \ Y 6= fg,

and �

0

= fS

1

6! T

1

; : : : ; S

n

6! T

n

g. We show by construction of two relations, that

there exists a relation r so that if r j= �

0

, and V 6! W 62 �

0

, then r 6j= X 6! Y . Thus

X 6! Y 62 Cn(�

0

) which is a contradiction to the assumption.

1

The de�nition of the AD X!== Y requires that for each tuple t there exists a tuple t

0

so that t[X]=

n

t

0

[X]

and t[Y ]6=

n

t

0

[Y ].
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The �rst relation r

1

with 2n tuples is constructed by assigning each attribute in each

row pairwise di�erent values, except for the attributes S

i

with S

i

6! T

i

2 �

0

, the following

condition holds t

i

[S

i

]=

n

t

i+n

[S

i

]. Thus, r

1

j= �

0

.

The rows in the second relation r

2

with 2n tuples are assigned all the same value,

except again for each S

i

6! T

i

2 �

0

, t

i

[S

i

]=

n

t

i+n

[S

i

] and t

i

[T

i

]6=

n

t

i+n

[T

i

]. Thus, r

2

j= �

0

.

If X 6� S

i

for i 2 1; : : : ; n, then it is easy to see that r

1

j= �

0

, but r

1

6j= X 6! Y . This

is a contradiction to the assumption, thus X � S

i

.

Now, assume that X � S

i

for at least one i and T

i

\ Y = fg. It is easy to see that

r

2

6j= X 6! Y , because if t

i

[X ]=

n

t

i+n

[X ], then also t

i

[Y ]=

n

t

i+n

[Y ].

Corollary 1 Let � be a set of FDs, �

0

a set of FIs.

If X 6! Y 2 Cn(� [ �

0

) then there exists a R 6! S 2 �

0

such that X 6! Y 2

Cn(� [ fR 6! Sg).

An axiomatization of FIs has already been given by Janas [Janas, 1988], which estab-

lishes an inference relation `

Janas

.

De�nition 3 (FIs) The Axiomatization by Janas is given by:

1.

X 6!Y

X 6!Y Z

2.

XZ 6!Y Z

XZ 6!Y

3.

X!Y;X 6!Z

Y 6!Z

We show with a counterexample that this inference relation is not complete, i.e., there

exists some X 6! Y with X 6! Y 2 Cn(� [ �

0

) and � [ �

0

6 `

Janas

X 6! Y .

Lemma 3 The following inference rule is correct:

X ! Y; Z 6! Y

Z 6! X

Proof: trivial by assuming that the conclusion is not satis�ed and Armstrong's Axioms.

Lemma 4 fX ! Y; Z 6! Y g 6 `

Janas

Z 6! X.

Proof: We assume that X; Y and Z are disjoint. Then it is obvious that the �rst and the

second rule cannot have be applied to infer Z 6! X . Thus, the third rule can be applied

only. But Z is not in the closure of Y and �, i.e. fX ! Y g 6`

A

Y ! Z. Thus, Z 6! X

cannot be inferred.

Corollary 2 The axiomatization by Janas is not complete.

Instead, we propose the following axiomatization:

De�nition 4 (Inference of FIs) An inference relation `

fi

is given by an axiomatization

of the FDs and the following inference rules:
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FI1 :

V 6!Y U;U�V

V 6!Y

FI2 :

X!Y;X 6!Z

Y 6!Z

FI3 :

Y!Z;X 6!Z

X 6!Y

For example, the functional independency X 6! Y Z, which is a consequence of Janas's

�rst inference rule, can be inferred by `

fi

as follows: we infer Y Z ! Y by Armstrong's

Axiom and use FI3 to infer the FI X 6! Y Z from X 6! Y and Y Z ! Y . FI1 re
ects

lemma 2, because FIs can be inferred from a set of FIs only by this rule.

Theorem 1 (Soundness) The inference rules of de�nition 4 are correct.

Proof: (Soundness) By Lemma 1 it is su�cient to show the soundness of FI1, FI2 and

FI3 w.r.t. functional independencies:

� (FI1) We have to show that V 6! Y 2 Cn(fV 6! Y Ug). This means that each rela-

tion that satis�es V 6! Y U must satisfy V 6! Y . By de�nition there are tuples t

1

; t

2

with t

1

[V ]=

n

t

2

[V ] and t

1

[Y U ] 6 =

n

t

2

[Y U ]. Since U � V , it follows that t

1

[U ]=

n

t

2

[U ],

thus t

1

[Y ] 6 =

n

t

2

[Y ] and t

1

[V ]=

n

t

2

[V ] and therefore V 6! Y .

� (FI2) fX ! Y;X 6! Zg means there are tuples t

1

; t

2

with t

1

[X ]=

n

t

2

[X ], t

1

[Z] 6

=

n

t

2

[Z] and for all tuples, particularly for t

1

; t

2

t

1

[X ]=

n

t

2

[X ] and t

1

[Y ]=

n

t

2

[Y ]. Then

t

1

[Y ]=

n

t

2

[Y ] and t

1

[Z] 6 =

n

t

2

[Z] and therefore Y 6! Z.

� (FI3) see Lemma 3

Theorem 2 (Completeness) The inference rules of de�nition 4 are complete.

Before, we state the theorem we need a further de�nition about FDs.

De�nition 5 (Base of FDs) Let � a set of FDs and X a set of attributes. Then the

base of X is de�ned by:

X = fY j Y ! X 2 Cn(�)g

Note, that the base of a set of attributes is a set of sets. To prevent too many sets, we

restrict the set to minimal sets. Thus, X consists of minimal sets S

i

, or X = fS

i

j 1 � i �

ng and if S

j

� S

i

then S

j

= S

i

for i; j 2 1; : : : ; n. For example, let � = fAB ! C;CD!

EFg be a set of FDs, then EF = fABD;CD;EFg. Now, we can prove the completeness:

The idea of the proof is, that it is possible to partition all subsets of U into the set

of all S

i

(and their subsets), and in V = fV

j

j for all S

i

it holds, that V

j

2 P

U

nS

i

and

V

j

6� S

i

g. There are only two possibilities for the set Y , which will be used in the following

proof:

1. Y � S

i

2. Y � V

j
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Proof: It is su�cient to show the completeness w.r.t. functional independencies by

lemma 1. Let � be a set of FDs, �

0

a set of FIs and � [ �

0

consistent. We show

that if X 6! Y 2 Cn(� [ �

0

) then � [ �

0

`

fi

X 6! Y . By corollary 1 we know that

X 6! Y 2 Cn(�[ fR 6! Sg) for R 6! S 2 �

0

. Remember that R is the closure of R w.r.t.

�. Then we can partition the attributes of each relation which satisfy � [ fR 6! Sg into

two disjunctive sets: R, and the set U of the remaining attributes. The existence of R is

guaranteed by de�nition.

Now we take a look at the following cases and show how we can use our inference rules:

� Assume that X 6� R: Then we can easily construct a relation r with two rows which

satis�es � [ fR 6! Sg but not X 6! Y by assigning each attribute of U di�erent

values. If the left hand sides of the FDs in � are in R, then also the right hand sides.

We assume that 0 and 1 are in the domain of the attributes. Then there are no

tuples t

1

; t

2

with t

1

[X ]=

n

t

2

[X ]. Thus, r 6j= �[fR 6! Sg, but r j= X 6! Y . Therefore

X � R.

U R

0 : : : 0 : : :

1 : : : 0 : : :

� Let X � R, S = S

i

for 1 � i � n, and Y \ S

i

= Z for an i:

1. Z = Y : This means there is a set of attributes W , which is disjunct to Y and

YW ! S. By repeated application of FI2 we know that R 6! S, and by FI3

that R 6! YW . There are two case:

(a) W � R: Thus, by FI1 R 6! Y is inferred and by FI2 X 6! Y .

(b) W 6� R: Thus, we infer by FI1 the FI YW

0

! S with the attributes

W

0

= WnR and construct a counterrelation r by

R W

0

S UnS [W

0 : : : 0 : : : 0 : : : 0 : : :

0 : : : 1 : : : 1 : : : 1 : : :

Then it is easy to see that r j= � [ fR 6! Sg, but r 6j= X 6! Y , which is a

contradiction to the assumptions.

2. Z = fg: This means, that a relation r can be constructed with a partition of

all attributes into R, all attribute S which occur in a S

i

and the remaining

attributes U :

R SnR UnS

0 : : : 0 : : : 0 : : :

0 : : : 1 : : : 0 : : :

Then it is easy to see that r j= � [ fR 6! Sg but r 6j= X 6! Y , which is a

contradiction. Thus, Z 6= fg.

3. Z = S

i

: By assumption, we know that Y ! S and R 6! S. By rule FI3 we

conclude that R 6! Y . We know also, that X � R, respectively, that R ! X .

Thus, by FI2 we conclude that X 6! Y .
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4. Z � R: Here the same counterrelation can be constructed as in case 2.

5. Z � U : The same as in case 2.

Corollary 3 (Completeness and Soundness) Let � and �

0

be a set of FDs and FIs

respectively, and �[�

0

be consistent. X 6! Y 2 Cn(�[�

0

) if and only if �[�

0

`

fi

X 6! Y .

3 Inference of Functional Independencies

Our system consists of three elements: initialization, entailment, and veri�cation. It is

roughly sketched in table 1. First, we initialize our data structure List for the FDs and

FIs. Then, we generate hypothetical dependencies, check if these are already entailed by

the known dependencies or independencies, and verify the remaining ones by querying

the database. We use a kind of breath �rst search because we generate only hypotheses

which are not related by each other. Terminating is ensured, because if no already entailed

hypotheses can be generated, then the algorithm stops.

3.1 Veri�cation

Functional dependencies can be veri�ed by sorting the tuples of the relation which takes

O(n log n) time w.r.t. the number of tuples, cf. [Mannila and R�aih�a, 1991]. In our

implementation we use the nvl statement in SQL to handle the NULL values. We refer the

reader to our previous work in [Bell and Brockhausen, 1995] for details on the veri�cation

of dependencies.

3.2 Entailment

Entailment of FDs is often discussed by studying if � `

A

X ! Y holds where � is a set

of FDs and n = j�j. This can be decided in linear time with appropriate data structures

[Kanellakis, 1990]. By Lemma 2, we can easily construct an algorithm for testing FIs:

function � [ �

0

`

fi

X 6! Y ;

begin

for each V 6! W 2 �

0

do

for each Z � W \ V do

if � `

A

V ! X and � `

A

Y ! WnZ

then return Yes;

return No;

end;

It is obvious that testing FIs takes O(m � n

2

) time where n = max(�;�

0

) and m is

the number of attributes. If we demand that for each S

i

6! T

i

2 �

0

and S

i

\ T

i

= fg,

then testing takes O(n

2

) time. Correctness and completeness follow immediately from the

previous section.

The sets of FDs and FIs are usually very large. We can reduce these sets taking into

account the following observation: The set of functional dependencies is partitioned into

equivalence classes by the satis�ability de�nition. Each class of functional dependencies
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1. Initialize List.

2. Repeat

(a) Take an element t from List and generate all

tuples T with a �xed length that are not entailed

by List.

(b) Query DB server for T .

(c) Add T to List and �nd a minimal cover for it.

3. until no already entailed hypothesis can be generated

Table 1: Description of our System

speci�es the same set of admissible relations. As these equivalence classes will typically

contain a large number of elements, it is reasonable to de�ne a suitable representation with

a minimal number of elements. This representation is usually called a minimal cover, see

[Maier, 1980]. We can simply extend the de�nitions in [Maier, 1980] by using our inference

relation `

fi

:

De�nition 6 (Minimal Cover) Let � be a minimal set of FDs.

�

0

is a set of FIs and is called minimal if for all V 6! W 2 Cn(�[�

0

) there exists no

X 6! Y 2 �

0

with � [ �

0

nfX 6! Y g `

fi

V 6! W .

Therefore, minimizing can be done by repeated application of `

fi

and takes O(n

3

)

time for some set of FDs and FIs.

3.3 Initialization

We initialize our data structure with information about primary keys and su�cient con-

ditions for FIs as given by the cardinality of attributes. Cardinality Dependencies (CDs)

was introduced by Kanellakis et al. [Kanellakis et al., 1983] for an axiomatization of un-

ary inclusion dependencies and FDs in the �nite case of databases. CDs simply compare

the numbers of di�erent values of an attribute in a certain relation. They propose the

following rules for the interaction of CDs and FDs which we extend to sets of attributes.

The fact that the cardinality of the values in X is greater or equal than Y is expressed by

the CD jX j � jY j. We omit the inference relation of the operator " � " which is given by

the corresponding relation � and characterized by `

c

.

De�nition 7 (Interaction of CDs and FDs) Let X and Y be sets of attributes. The

interaction of CDs and FDs is given by two inference rules :

X!Y

jX j�jY j

X!Y;jY j�jX j

Y!X
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Theorem 3 (Soundness of `

fc

) The inference rules of de�nition 7 are sound.

Proof: (soundness) trivial

For completeness we need a de�nition of CDs of a set of FDs and the following lemmas.

f

CD

is a function that transforms a set of FDs in a set of CDs so that simply ! is replaced

by �, for example f

CD

(fX ! Y g) = fjX j � jY jg. The �rst lemma states that if a CD is

inferred from a set of CDs and FDs, then it can be inferred from a set of CDs.

Lemma 5 (Interaction 1) Let � and � be a set of FDs and � CDs respectively. jX j �

jY j 2 Cn(�[ �) if and only if jX j � jY j 2 Cn(� [ f

CD

(Cn(�))).

Proof: (if) is trivial by the monotonicity of Cn and the de�nition of f

CD

which re
ects

the �rst rule

(only-if:) We assume that jX j � jY j 62 Cn(� [ f

CD

(Cn(�))) and jX j � jY j 2 Cn(� [ �).

But this cannot be the case because f

CD

is bijective and Cn is idempotent.

The second lemma states that if a FD is inferred from a set of CDs and FDs, then it

can be inferred from the set of FDs solely, or a kind of inverse of it can be inferred from

the set of FDs.

Lemma 6 (Interaction 2) Let � be a set of FDs and � a set of CDs. If X ! Y 2

Cn(� [ �) then X ! Y 2 Cn(�) or Y ! X 2 Cn(�).

Proof: (Case 1) if X ! Y 2 Cn(� [ �) then X ! Y 2 Cn(�) is trivial.

(Case 2) Thus, X ! Y 62 Cn(�) and X ! Y 2 Cn(� [ �). We assume that Y ! X 62

Cn(�). Hence, there is at least a relation r so that r j= �, but r 6j= Y ! X . The following

relation r satis�es each element of �, but does not satisfy neither X ! Y nor Y ! X .

Again X is the closure of X , respectively Y of Y , and U is the set of the remaining

attributes. We can see this by �lling the second row of U . If W � U and W ! X and

W ! Y , then assign 2, else ifW ! X , then assign 0 else 1 toW . The remaining attributes

can be assigned the value 1, since all CDs are satis�ed w.r.t. Cn(�). Other cases cannot

arise because � [ �

0

is consistent. For example, if W ! X and W ! Y and jX j � jW j,

then we can infer by the second inference rule X ! W , but this is a contradiction because

we can also infer X 6! W by `

fi

. Therefore, we have a relation r with r j= � [ � and

r 6j= X ! Y which is a contradiction to the assumption.

U X Y

0 : : : 0 : : : 0 : : :

: : : 0 : : : 1 : : :

1 : : : 1 : : : 1 : : :

Now we are able to prove the completeness of `

fc

:

Theorem 4 (Completeness of `

fc

) Let � be a set of FDs and � a set of CDs. An

inference relation `

fc

is given by Armstrong's Axioms, an axiomatization of � and the

inference rules of de�nition 7.
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Proof: First, we show that if jX j � jY j 2 Cn(�[�), then �[� `

fc

jX j � jY j. By Lemma

5 it is su�cient to show that if jX j � jY j 2 Cn(�[�) then �[f

CD

(Cn(�)) `

fc

jX j � jY j.

This is trivial by the axiomatization of �.

In the second part of the proof we have to show that if Y ! X 2 Cn(� [ �), then

� [ � `

fc

Y ! X . Without loss of generality we assume that Y ! X 62 Cn(�).

Otherwise we can use the completeness of Armstrong's Axioms. First, we show that

jY j � jX j 2 Cn(� [ �). If jY j � jX j 62 Cn(� [ �), then there must be a r with

r j= � [ �, r 6j= jY j � jX j and r j= jY j � jX j due to the soundness of the �rst rule.

Therefore, jY j � jX j 2 Cn(� [ �). Since the second interaction Lemma we know that

X ! Y 2 Cn(�). Therefore, we can apply the second inference rule and conclude that

� [ � `

fc

Y ! X .

We also use CDs to initialize the data structures of the FIs by the following inference

rules. We do this by the introduction of a stronger form of CDs, jX j > jY j, where > has

the obvious meaning and we expand `

c

adequately.

De�nition 8 (Interaction of CDs and FIs) Let X and Y be sets of attributes. An

axiomatization of FDs, FIs and CDs is given by the de�nition 7, and an axiomatization

of FDs and FIs, and the following two inference rules.

CD-FI1:

jX j�jY j; X 6!Y

Y 6!X

CD-FI2:

jX j>jY j

Y 6!X

The following lemma shows that we have to regard FIs during the inference procedure

only:

Lemma 7 (Interaction of FDs, FIs and CDs) Let �;�

0

and � be sets of FDs, FIs

and CDs and � [ �

0

[ � be consistent. X ! Y 2 Cn(�[ �

0

[ �) if and only if X ! Y 2

Cn(� [ �).

Proof: (if) is trivial.

(only{if) Assume X ! Y 2 Cn(� [ �

0

[ �) and X ! Y 62 Cn(� [ �), then there must

be at least one relation r with r j= � [ � and r 6j= X ! Y . Therefore, there are tuples

t

1

; t

2

with t

1

[X ] = t

2

[X ] and t

1

[Y ] 6= t

2

[Y ]. By consistency we can expand this relation r

by adding new tuples, two for each element of �

0

so that r j= � [ �

0

[ � and r j= � [ �

which is a contradiction. (The construction is done in a similar way as above.)

Now an inference relation can be de�ned based on FDs, FIs and CDs which clari�es

the usefulness of FIs.

Theorem 5 De�nition 8 establishes an inference relation `

i

which is sound and complete.

Proof: (Soundness) is trivial.

Let �;�

0

and � be sets of of FDs, FIs and CDs and � [ �

0

[ � is consistent. We have

to show that X 6! Y 2 Cn(� [ �

0

[ �) implies � [ �

0

[ � `

i

X 6! Y . By de�nition

we know that each relation r which satis�es � [ �

0

[ � has to satisfy X 6! Y . Thus, we

have to regard only three cases for the cardinalities of X and Y in r by Lemma 7: �rst,

if jY j > jX j, then by the �rst inference rule we infer X 6! Y ; second, if jX j = jY j, then

we know that two tuples t

1

; t

2

must be in r with t

1

[X ] = t

2

[X ] and t

1

[Y ] 6= t

2

[Y ], because

X 6! Y holds, and the FDs and FIs can be completely inferred. Hence, to adjust the



3.4 Complexity of the System 11

A

1

A

2

A

3

A

4

: : : A

2m�1

A

2m

A

2m+1

0 1 0 2 2

m

+ 1 . . . 0 2(m� 1)2

m

0

0 2 0 2 2

m

+ 2 . . . 0 2(m � 1)2

m

+ 1 1

3 0 0 2 2

m

+ 3 . . . 0 2(m � 1)2

m

+ 2 0

4 0 0 2 2

m

+ 4 . . . 0 2(m � 1)2

m

+ 3 1

. . . . . .

. . . . . .

0 2 2

m

� 3 4 2

m

� 3 0 . . . 2m2

m

� 3 0 0

0 2 2

m

� 2 4 2

m

� 2 0 . . . 2m2

m

� 2 0 1

2 2

m

� 1 0 4 2

m

� 1 0 . . . 2m2

m

� 1 0 0

2 2

m

0 4 2

m

0 . . . 2m2

m

0 1

Table 2: Example Relation for FIs

cardinalities there must be also two tuples t

3

; t

4

with t

3

[Y ] = t

4

[Y ] and t

3

[X ] 6= t

4

[X ].

This implies that Y 6! X 2 Cn(� [ �

0

[ �). Then we can infer with the �rst inference

rule that � [ �

0

[ � `

i

X 6! Y . Third, if jX j > jY j, then we can infer Y 6! X and also

with the second inference rule X 6! Y .

Unfortunately, it turned out that testing CDs by our SQL-interface is as much expens-

ive as testing FDs

2

. Thus, we check the cardinality of unary CDs in one pass only and

approximate CD from them by the following Lemma:

Lemma 8 Let A be the attribute with the maximal cardinality in X and Y = B

1

; : : : ; B

n

.

If jAj � (jB

1

j : : : jB

n

j), then jX j � jY j.

Proof: trivial

So, we initialize our data structures of FDs and FIs with the in this manner approx-

imated CDs and the inference rule CD-FI2 only. But it is easy to see, that the number of

CDs grows exponentially w.r.t. to the number of attributes. Therefore, this algorithm is

in EXPTIME.

3.4 Complexity of the System

Our system is in EXPTIME because there exist relations with the number of FDs in a min-

imal cover growing exponentially w.r.t. the number of attributes. This has been shown by

Beeri et al. [Beeri et al., 1984] and also by Mannila and R�aih�a [Mannila and R�aih�a, 1991].

As there are relations with the number of FIs growing exponentially the performance can-

not be improved by using FIs instead of FDs.

Theorem 6 (Cardinality of the set of FIs) For each n there exists a relation r which

satis�es a minimum cover of FIs with the cardinality 
(2

n=2

).

Proof: We construct a relation r and show that the cardinality of the minimum cover of

FIs �

0

grows exponentially w.r.t. the number of the attributes of r, see table 2. Assume

without loss of generality that n = R = 2m+ 1. Then we add for each 1 � k � 2

m

two

2

We can only count single attributes by the count { statement in SQL.
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tuples t and t

0

whereX contains exactly one of the attributes A

2i�1

and A

2i

for 1 � i � 2m

with t[X ] = 0, t

0

[X ] = 0, t[A

2m+1

] = 0 and t

0

[A

2m+1

] = 1. Each attribute not mentioned

in each t; t

0

gets a new number as value.

Now we de�ne �

0

= X 6! A

2m+1

such that for each i, where 1 � i � 2m, X contains

exactly one of the attributes A

2i�1

and A

2i

. First, we show that r satis�es �

0

. We can �nd

for each X 6! A

2m+1

two tuples t

1

and t

2

with t

1

[X ] = t

2

[X ] but t

1

[A

2m+1

] 6= t

2

[A

2m+1

] by

construction of r. Second, we show that there exists no X

0

with X � X

0

and X

0

6! A

2m+1

.

This can be seen by the fact that each A

j

62 X has a unique value. Hence, X

0

! A

2m+1

and �

0

is a minimum cover.

If the relation of Mannila and R�aih�a is added to ours, then it is easy to see that

relations exist where the sets of FDs and FIs grow exponentially w.r.t. the number of

attributes. Again, we argue that our goal, to minimize database access, can be achieved

with this system.

4 Maintenance of FDs

Obviously, the discovered FDs can become invalid, because they only describe the current

state of the database. Therefore, the discovered FDs have to be maintained if new tuples

are added, old tuples are deleted, or existing tuples are updated.

If maintenance of FDs is seen as revision, it is more suitable to do theory revision

than base revision as introduced by G�ardenfors [G�ardenfors, 1988]. In contrast to theory

revision, base revision works on the whole consequence set So it is easy to see, for example,

that by adding a new tuple the second FD of the set fAB ! CD;CD! EFgmay become

invalid, but the AB ! EF remains valid. Therefore, in a �rst step the minimal set of

FDs � is transformed into a set �

m

of FDs. This new set is called most general and can

be computed with the following algorithm:

for each X ! Y 2 � do

if Y = closure(X;�)nX then

�

m

:= �

m

[ fX ! Y g

Obviously, the complexity depends on the cardinality of � and the closure operation

which is mentioned above.

4.1 Inserting Tuples

If new tuples are added, FDs may become invalid. Thus, each FD is checked if

it is still valid. If not then the FD has to be replaced by a set of FDs which are

valid. The algorithm is listed in table 3 and is applied before the tuple is inserted. Let

(d

1

; : : : ; d

n+m+l

) be the new tuple, r the corresponding relation with the relation scheme

R = (A

1

; : : : ; A

n

; B

1

; : : : ; B

m

; C

1

; : : : ; C

l

), A

1

; : : : ; A

n

! B

1

; : : : ; B

m

the selected FD and

C

1

; : : : ; C

l

the remaining attributes. The c

i

can consist of values and that we expand the

left hand side of each invalid FD by attributes which values are di�erent from the selected

ones.

The advantage of this algorithm is that it only one simple query for each new tuple

and for each FD is needed. It is easy to see that the removed FDs are no longer valid. For

the correctness, we �rst give the following lemma:
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�

n

:= fg

for each A

1

; : : : ; A

n

! B

1

; : : : ; B

m

2 � do

begin

b

1

; : : : ; b

m

; c

1

; : : : ; c

l

:=

select B

1

; : : : ; B

m

; C

1

; : : : ; C

l

from r

where A

i

1

= a

i

1

; : : : ; A

i

n

= a

i

n

if

V

i=0;:::;m

b

i

= d

n+i

then

�

n

:= �

n

[ A

1

; : : : ; A

n

! B

1

; : : : ; B

m

else begin

if there is a minimal � with C

l

1

; : : : ; C

l

�

and

V

i=1;:::;�

d

l

�

6= c

l

�

then

�

n

:= �

n

[ A

1

; : : : ; A

n

;C

l

1

; : : : ; C

l

�

! B

1

; : : : ; B

m

end

end

Table 3: Algorithm for Inserting New Tuples

Lemma 9 Each generated FD is valid.

Proof: We call the new tuple t

1

. We know that A

1

; : : : ; A

n

; B

1

; : : : ; B

m

is invalid. Then

there must be at least one tuple t

2

so that t

1

[A

1

; : : : ; A

n

]=

n

t

2

[A

1

; : : : ; A

n

] and

t

1

[B

1

; : : : ; B

m

]6=

n

t

2

[B

1

; : : : ; B

m

]. We know by construction that

t

1

[C

l

1

; : : : ; C

l

v

]6=

n

t

2

[C

l

1

; : : : ; C

l

v

]. Hence, t

1

[X;C

l

1

; : : : ; C

l

v

]6=

n

t

2

[X;C

l

1

; : : : ; C

l

v

] and

A

1

; : : : ; A

n

; C

l

1

; : : : ; C

l

v

! B

1

; : : : ; B

m

is valid.

Completeness can now be seen by the following lemma:

Lemma 10 Let � be the former set of FDs and �

n

be the revised set of FDs. r

n

is

obtained by expanding r by one tuple. Assume that � j= X ! Y and r j= X ! Y . If

�

n

6j= X ! Y , then r

n

6j= X ! Y .

Proof: By correctness we only add valid FDs. By minimality of the added attributes to

the LHS of the FD, it is guaranteed that an FD with less attributes at the LHS is not

valid.

We conclude that if our algorithm is applied on � and the result is �

0

, then r

0

j= �

0

by the lemmas.

4.2 Deleting Tuples

Deleting tuples does not a�ect the old set of FDs, but some new FDs may become valid.

Therefore, we have to revise the FDs and add new FDs if necessary. Unfortunately it

turned out, that deleting tuples is the same as discovering FDs with a given starting set

of FDs. Therefore computation in this case can be as expensive as the discovery process.
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4.3 Updating Tuples

Normally, updating tuples can be seen as a combination of deleting and inserting tuples.

But sometimes we can simplify this process by comparing the old values with the new

ones.

Assume that d = (a

1

; : : : ; a

n

; b

1

; : : : ; b

m

; c

1

; : : : ; c

l

) is the tuple which will be updated

by the values (a

0

1

; : : : ; a

0

n

; b

0

1

; : : : ; b

0

m

; c

0

1

; : : : ; c

0

l

), and the selected FD is A

1

; : : : ; A

n

!

B

1

; : : : ; B

m

.

� If the values of the attributes of the left and the right hand side do not change, then

we have nothing to do.

� If

V

i=1;:::;m

b

i

= b

0

i

and at least one value of A

i

, 1 � i � n, does not occur in r, then

we have only to apply the algorithm for deleting tuples.

5 Unary Inclusion Independencies

Another important class of dependencies are the so called unary inclusion dependencies.

We regard only unary inclusion dependencies, because there exists an axiomatization re-

garding functional dependencies. Originally, the concept of inclusion dependencies in

relational database theory has been a generalization of Codd's notion of a foreign key.

Unary inclusion dependencies are restricted to only one attribute. Again, we denote a set

of formulas consistent if there exists a database which satis�es the set. Satis�ability is

de�ned as in the second section.

De�nition 9 (Unary Inclusion Dependencies (UIND)) Let A be an attribute of the

relation scheme R, and B of S, and a an element of the domain of B. R[A] � S[B] is an

UIND: if a 2 S[B], then a 2 R[A].

The interaction of UINDs can be formally described by an axiomatization. According

to [Kanellakis, 1990] a sound and complete axiomatization for unary inclusion dependen-

cies (UIND) is given by the following de�nition:

De�nition 10 (Inference of Unary Inclusion Dependencies) Let A be an attribute

of the relation scheme R, and B of S, and C of T . Inference rules of unary inclusion

dependencies are given by:

U1 : (Reflexivity) R[A] � R[A]

U2 : (Transitivity)

R[A]�S[B];S[B]�T [C]

R[A]�T [C]

The concept of unary inclusion independencies (UINIs) simpli�es the discovery of

UINDs. Therefore, UINDs are introduced and the interaction is described.

De�nition 11 (Unary Inclusion Independencies (UINI)) Let A be an attribute of

the relation scheme R, and B of S, and a an element of the domain of B. R[A] 6� S[B]

is an UINI: if there exists an a with a 2 S[B] and a 62 R[A].
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Now, it will be shown that there is only an interaction from UINDs to UINIs and not

vice versa. Therefore, we denote by I a set of UINDs and by I

0

a set of UINIs.

Lemma 11 If I [ I

0

is consistent then R[A] � S[B] 2 Cn(I[I

0

) i� R[A] � S[B] 2 Cn(I)

Proof: (if) is trivial by the monotonicity of j=.

(only-if) We know that R[A] � S[B] 2 Cn(I [ I) and I [ I

0

is consistent. If R[A] 6�

S[B] 2 I

0

then I[I

0

is inconsistent. But this is not the case, therefore it exists at least one

database which satis�es I[I

0

and for each database db it is the case that db j= R[A] � S[B].

Assume that R[A] � S[B] 62 Cn(I), then there must be a database db

0

which satis�es

I but not R[A] � S[B] by de�nition, thus db

0

j= R[A] 6� S[B]. Now we extend db

0

for each

T [C] 6� U [D] 2 I

0

by one tuple, such that db

0

j= I

0

. This can be done by duplicating rows,

and changing the mentioned values by extending the domain. By consistency, db

0

modelsI

remains. Thus we have db

0

j= I [ I

0

and db

0

j= R[A] 6� S[B], which is a contradiction.

Therefore, R[A] � S[B] 2 Cn(I).

Another interesting point is, that there are no consequences of a set of uINIs, except

the trivial ones like re
exivity.

Lemma 12 Let I

0

be a set of UINIs. R[A] � S[B] 2 Cn(I

0

) if and only if R[A] � S[B] 2

I

0

.

Proof: (if) trivial.

(only-if) We know that each database db which satis�es I

0

also satis�es R[A] 6� S[B].

We show the lemma by construction of a database which satis�es I

0

, but not R[A] 6� S[B]

under the assumption that R[A] 6� S[B] 62 I

0

. A database can be constructed by adding

for each T [C] 6� U [D] 2 I

0

a row to the empty database with the corresponding values,

i.e. U [D] = 2 and T [C] = 1.

T . . . C . . .

1 . . . 1 1 1 . . . 1

U . . . D . . .

1 . . . 1 2 1 . . . 1

If S[B] = U [D] then we use the same value asB for the attributeA in the corresponding

row. thus, we get a database db

0

with db

0

j= I

0

and db

0

6j= R[A] 6� S[B]. Therefore,

R[A] 6� S[B] 2 I

0

.

The previous lemmas clari�es the following inference rule which state that only UINIs

can follow from a set of UINDs and UINIs:

De�nition 12 (Inference of UINIs) Inference rules for UINIs are given by:

UI1 :

R[A]�S[B]; R[A]6�T [C]

S[B]6�T [C]

UI2 :

R[A]�T [C]; S[B]6�T [C]

S[B]6�R[A]

Theorem 7 The rules are sound.

Proof: Can easily be seen by contraposition of U2
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function Infer-UINI(A 6� B; I; I

0

) : bool;

begin

� := Closure(B; I)

� := Closure(A; I)

for each C 2 � do

for each D 2 � do

if D 6� C 2 I

0

then succeed

end

Table 4: Membership Algorithm for UINIs

Theorem 8 Let I be a set of UINDs, and I

0

a set of UINIs.

If I [ I is consistent then I [ I

0

[ fR[A] � S[B]g is inconsistent i� A 6� B 2 Cn(I[I

0

).

Proof: (if) trivial

(only-if) By lemma it su�ces to prove that T [C] � U [D] 2 Cn(I [ fR[A] � S[B]g) for

some T [C] 6� U [D] 2 I

0

. It is shown that I [ fT [C] 6� U [D]g ` R[A] 6� S[B], whereas

` is the inference in respect of the inference rules of I and I

0

. Assume that I [ I

0

is

consistent. This implies A � B 62 Cn(I) (see Lemma). By completeness of the UIND

axiomatization it is known I 6` R[A] � S[B]. Suppose without loss of generality that

R[A] 6= S[B] then the transitivity rule is the only one, which we can use to infer from

I [ fR[A] � S[B]g the UIND T [C] � U [D]. This can be done with a chain in I :

fT [C] � V [X

1

]; V [X

1

] � V

0

[X

2

]; : : : ; V

00

[X

i

] � R[A]; S[B] � V

000

[X

i+1

]; V

0000

[X

n

] � T [D]g.

This implies: I ` T [C] � R[A]; S[B] � U [D]. Now it can be inferred with NU1 from

T [C] � R[A]; T [C] 6� U [D] that R[A] 6� S[D] and from this with NU2 and S[B] 6� T [D]

we can infer R[A] 6� S[B].

Corollary 4 The formal system of UINDs and UINIs, given by the inference rules of

de�nition 10 and 12, is complete.

6 Inference of UINIs

In this section we discuss we investigate the inference of unary inclusion dependencies.

Therefore, we adapt the membership problem to UINDs and UINIs.

The algorithm, which is listed in table 4, for the membership problem is mainly based

on the observation, that only one UINI participate in the inference process of an UINI.

Therefore, the main work is done by computing the closure and the reverse closure of the

given attributes. Also, we have to recognize cycles in the closure. We state correctness

and completeness by the following proposition:

Proposition 1 Let R[A], S[B], T [C] and U [D] be attributes of a database, I and I

0

be

sets of UINDs, respectively UINIs.
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R[A] 6� S[B] 2 Cn(I [ I

0

) if and only if there is a T [C] 6� U [D] 2 I

0

, T [C] 2

Closure(R[A]; I), and U [D] 2 Closure(S[B]; I).

Proof: (if) can be seen by the corollary above.

(only-if) By lemma 12 it is obvious that if R[A] 6� S[B] 2 Cn(I [ I

0

), then there is

a T [C] 6� U [D] 2 I

0

and R[A] 6� S[B] 2 Cn(I [ f6� U [D]g). By the corollary, the

proposition can immediately seen.

It takes O(n

2

) time for closure and Closure with n attributes in the database, because

there can be O(n

2

) dependencies. Including recognizing cycles it takes O(n

4

). Combina-

tion for attributes can be O(n

2

).

7 Interaction of FDs and UINDs

Now the combination of FDs and UINDs is discussed. We simplify the notation of UINDs

by not mentioning any more the relation of the UINDs, but it is easy to see how to expand

the UINDs to get the right notation.

There is no interaction between standard FDs and UINDs in the unrestricted case.

There are interactions in the �nite case, but in general there are in�nitely many axioms.

They can be described by a set of inference rules, [Kanellakis, 1990].

CD :

A

0

! A

1

; A

1

� A

2

; : : : ; A

k�1

! A

k

; A

k

� A

0

A

1

! A

0

; A

2

� A

1

; : : : ; A

k

! A

k�1

; A

0

� A

k

for each odd positive integer k.

The next question is: Is there any interaction between the dependencies and their

counterparts in the �nite case.

In the �rst example it is the case that A � D and D 6� A. This means, that in A are

really more values than in B. Therefore D can not determine A: D 6! A. So there exists

at least one relationship between UINDs, UINIs and FIs.

Another inference rule is given by the observation that if the FD A ! B is valid and

if B 6! A then it must be the case that each value of A cannot appear in B, because the

same values in A have the same values in B and at least for two same values in B we have

two di�erent values in A. This means B 6� A.

A general inference rule is proposed, whereas for each odd positive integer k there is

one inference rule:

CDI :

A

0

! A

1

; A

1

� A

2

; : : : ; A

k�1

! A

k

; A

k

� A

0

; A

i+1

o

0

A

i

A

l

oA

l+1

whereas for one l there is a missing element in the chain, i; l � k and if l is even, then

o =6! else o =6� and if i is even then o

0

=6! else o

0

=6�.

Lemma 13 CDI is sound.

Proof: To see soundness of this inference rule it have to be remarked that both independ-

encies express something about the cardinality of the values. If A has more values than

B, then it is the case that the FI B 6! A and the UINI B 6� A holds. It becomes clear

with contraposition that if A

0

! A

1

holds, this means, that card(A

0

) � card(A

1

) and
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if A

1

� A

2

holds this means also card(A

1

) � card(A

2

). This means that card(A

l+1

) �

card(A

l

). If i = l and l is even it is the case that card(A

l

) 6� card(A

l+1

). This means

card(A

l+1

) > card(A

l

) and therefore A

l

6! A

l+1

. If i 6= l then there is the case that

card(A

i

) � card(A

i+1

) and card(A

i+1

) 6� card(A

i

). It follows that card(A

i

) > card(A

i+1

)

and that card(A

l+1

) > card(A

l

). This means that for the corresponding o it is the case

that A

l

6! A

l+1

or A

l

6� A

l+1

.

The sets of FDs and UINDs are partitioned to a new set called DEP and the FIs and

UINIs to a set called INDEP for proving completeness. We show how the elements of

DEP and INDEP interact.

Lemma 14 Let DEP and INDEP be sets of dependencies and independencies respectively,

and let the sets be consistent. A

i

6 oA

l

2 Cn(INDEP [ DEP ) if and only if A

i

6 oA

l

2

Cn(DEP ) with o =! or o =�.

Proof: (if) trivial.

(only-if) Case 1) o =!: This means that A ! B 2 Cn(DEP [ INDEP ). Assume

that A ! B 62 Cn(DEP ), then there must be a database db with db j= DEP and

db 6j= A ! B. db can be expanded by new values that each independency of INDEP is

satis�ed and the dependencies of DEP remains valid by consistency. But this means the

case that db j= DEP [ INDEP and db 6j= A ! B which is a contradiction. Therefore

A! B 2 Cn(DEP ).

Case 2 analogously to case 1

Next, it is shown that elements of INDEP do not work together.

Lemma 15 Let INDEP be a set of independencies. A 6 oB 2 Cn(INDEP ) if and only if

A 6 oB 2 INDEP with o =! or o =�.

Proof: (if) trivial.

(only-if, sketch) Assume that A 6 oB 2 Cn(INDEP ) and A 6 oB 62 INDEP . As above

we can construct a database which satis�es each elements of INDEP but no other.

The next lemma shows the completeness of the inference rules.

Lemma 16 If DEP and INDEP are consistent then DEP [ INDEP j= A

l

6o A

l+1

i�

DEP [ INDEP [ fA

l

o A

l+1

g is inconsistent whereas o stands for ! or � and A

l

and

A

l+1

are some attributes.

Proof: (only-if) is trivial.

(if) By lemma the assumption can be transformed to A

i+1

o

0

A

i

2 Cn(DEP [ fA

l

oA

l+1

g)

for some A

i+1

6o

0

A

i

2 INDEP , whereasA

i+1

and A

i

are some attributes. A stronger result

is shown that this implies DEP [ fA

i+1

6o

0

A

i

g ` A

l

6o A

l+1

. Assume DEP [ INDEP is

consistent. This implies A

l

oA

l+1

62 Cn(DEP ). There are four cases: (We denote with �

the set of FDs.)

1. A

i+1

! A

i

2 Cn(DEP [ fA

l

! A

l+1

g)

2. A

i+1

� A

i

2 Cn(DEP [ fA

l

! A

l+1

g)

3. A

i+1

! A

i

2 Cn(DEP [ fA

l

� A

l+1

g)



19

4. A

i+1

� A

i

2 Cn(DEP [ fA

l

� A

l+1

g)

ad 1: case 1: If A

i+1

! A

i

2 Cn(� [ fA

l

! A

l+1

g), then it is known by completeness of

FDs and FIs that DEP [ fA

i+1

! A

i

g ` A

l

! A

l+1

.

case 2: If A

i+1

! A

i

62 Cn(� [ fA

l

! A

l+1

g), then it is known by completeness of DEP,

that DEP [ fA

l

! A

l+1

g ` A

i+1

! A

i

and this means the inference rule CD can be

applied and therefore A

0

! A

1

; : : : ; A

l

oA

l+1

; : : : ; A

k

� A

0

2 Cn(DEP ). By I1 it can be

inferred DEP [ fA

i+1

! A

i

g ` A

l

6! A

l+1

.

ad 2: Assume that A

0

! A

1

; : : : ; A

l�1

� A

l

; A

l+1

� A

l+2

: : : ; A

k

� A

0

2 Cn(DEP ).

Therefore it can be inferred from DEP ` A

0

! A

1

; : : : ; A

l�1

� A

l

; A

l+1

� A

l+2

: : : ; A

k

�

A

0

and from DEP [ fA

i+1

6 oA

i

g ` A

l

6! A

l+1

.

ad 3 and ad 4 are analog to ad1 and ad2.

Corollary 5 The inference of FDs, FIs, UINDs and UINIs, given by the axioms and rules

of de�nition 2, 3, 10, 12, CD and CDI, is sound and complete.

It is shown by Kleene that each axiomatization can be transformed into an �nite

axiomatization by the introduction of new predicates, i.e. in order to avoid in�nite many

inference rules. Here the language is expanded with a new kind of dependencies, the

cardinality dependencies like in [Kanellakis et al., 1983].

De�nition 13 (Cardinality Dependencies) The cardinality dependency jAj � jBj is

true i� the cardinality of the attribute A is greater or equal the cardinality of the attribute

B. Strictly greater is abbreviated with jAj > jBj.

In [Kanellakis et al., 1983] a sound and complete axiomatization of functional and

inclusion dependencies regarding cardinality dependencies is given by the following axiom

and rules:

De�nition 14 (Finite Axiomatization of FDs and UINDs) An axiomatization is

given by:

� The rules FD1, FD2, FD3 and U1 , U2.

� N1: re
exivity axiom, jAj � jAj.

� N2: transitivity rule,

jAj�jBj;jBj�jCj

jAj�jCj

.

� N3:

A!B

jAj�jBj

� N4:

A�B

jAj�jBj

� N5:

A!B;jBj�jAj

B!A

� N6:

A�B;jBj�jAj

B�A

� N7:

R:�!A;S:B

jS[B]j�jR[A]j

N7 is necessary if nonstandard dependencies are allowed and interrelational depend-

encies are taken into consideration. The in�nite set of inference rules is replaced by the

following rules regarding cardinality dependencies.

De�nition 15 (Finite Axiomatization with Cardinalities) An axiomatization is

given by:
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� The rules FI1, FI2, FI3 and NU1,

NU2 and of de�nition 8.

� I1:

jAj�jBj; A6!B

B 6!A

� I2:

jAj�jBj; A 6�B

B 6�A

� I3:

jAj>jBj

B 6!A

� I4:

jAj>jBj

B 6�A

� I5:

jAj>jBj

jAj�jBj

� I6:

A�B;B 6�A

jAj>jBj

� I7:

A!B;B 6!A

jAj>jBj

� I8:

jAj>jBj;jBj�jCj

jAj>jCj

� I9:

jAj�jBj;jBj>jCj

jAj>jCj

Lemma 17 (Equivalence) If AoB is inferred by the inference rules of de�nition 14 then

AoB can be inferred by the rules of de�nition 15.

Proof: Assume fA

i+1

6! A

i

; A

0

! A

1

; : : : ; A

l�1

! A

l+1

! A

l+2

; : : : ; A

k

� A

0

g with

l; i � k. First consider the case l 6= i. Then it can be inferred by I7 from A

i

! A

i+1

and

A

i+1

6! A

i

that jA

i

j > jA

i+1

j. By using rules N3, N4, I9 and I8 that jA

l+1

j > jA

i

j. If

l is even, it is known by rule I3 that A

i

6! A

l+1

and if l is odd, it is known A

i

6� A

l+1

.

For l = i it is known by N3, N4 and N2 that jA

i+1

j � jA

i

j. Then by I1 it is known

A

i

6! A

i+1

. The other cases are analog.

FDs and UINDs are recursive, therefore their counterparts are decidable. This implies

a decision procedure, which can be expressed as a formal system.

Corollary 6 If DEP [ INDEP j= o, then there is a formal system which is sound and

complete to decide if DEP [ INDEP ` AoB by the rules of de�nition 15.

8 Complexity of Independency Inference

We regard in this section the membership problem in respect to unary FDs and UINDs.

The test of FDs and UINDs alone takes O(n) (cf. [Kanellakis, 1990]) regarding n as the

number of attributes. In the �nite case, the test regarding combination of FDs and UINDs

takes O(n

3

) and O(n) if we only regard unary FDs.

We assume that the cardinalities of the attributes are all known. They can be represen-

ted by a list with a total order. We change therefore the previous algorithms to algorithm

listed in tabel 5, but the costs remains mainly the same. Assume that the number of

attributes is n. If o =! then we need n times the time of infer-FI time which is O(n

3

),

and otherwise we need the same with the appropriate data structures.

9 Multivalued Independencies

A strong relationship exists between FIs and multivalued dependencies (MVD), because

they state that some attributes are independent from others attributes. Here we present

in a rough sketch results about multivalued independencies which can be achieved by the

already used techniques. Thus we left out the proofs.

A de�nition of multivalued dependencies is given by:
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function Infer{FI{UINI(A 6o B;Card;�;�

0

; I; I

0

) : bool;

begin

if o =! then

begin

if B > A then succeed

else if B � A and Infer{FI(B 6! A; I; I

0

) then succeed

else if Infer{FI(A 6! B; I; I

0

) then succeed

end

else

if B > A then succeed

else if B � A and Infer{UINI(B 6� A; I; I

0

) then succeed

else if Infer{UINI(A 6� B; I; I

0

) then succeed

end

Table 5: Membership Algorithm for FIs and UINIs

De�nition 16 (Multivalued Dependency (MVD)) The MVD X!! Y holds in r i�

for all tuples t

1

and t

2

in r, if t

1

[X ] = t

2

[X ], then there are tuples t

3

and t

4

in r such that

(i) t

3

[X ] = t

1

[X ], t

3

[Y ] = t

1

[Y ] and t

3

[Z] = t

2

[Z]

(ii) t

4

[X ] = t

2

[X ], t

4

[Y ] = t

2

[Y ] and t

4

[Z] = t

1

[Z]

A formal system is given by:

De�nition 17 (Axiomatization of MVDs) X; Y and Z are sets of attributes, with U

is the set of all attributes. An axiomatization of MVDs is given by:

MDc : (Complementation) If U is the universe of attributes, then j= X!! U �X

MDa : (Augmentation)

X!! Y

XZ!! Y Z

MDd : (Difference) if Y \ Z = fg then

X!! Y;Z!! Y

1

X!! Y�Y

1

This axiomatization does again constitute an inference relation `. The counterpart to

this dependencies are the so called multivalued independencies, which can be de�ned as:

De�nition 18 (Multivalued Independency (MVI)) The MVI X 6!! Y holds in r if

there are tuples t

1

, t

2

in r, if t

1

[X ] = t

2

[X ]; t

1

[Y ] 6= t

2

[Y ]; t

1

[Z] 6= t

2

[Z] and is no tuple t

3

with Z = U - X - Y:

(i) t

3

[X ] = t

1

[X ], t

3

[Y ] = t

1

[Y ] and t

3

[Z] = t

2

[Z]

The de�nition 18 shows, that MVDs and MVIs do not work together in the sense, that

there are no inference rules, to infer from MVIs any MVDs. Also MVIs do not interact

together.

The following inference rules are proposed, which constitute an inference relation `

m

.

The soundness follows by contraposition of the axiomatization of MVDs. The completeness

can be seen by similar arguments.
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De�nition 19 (Inference of MVIs) Inference rules for the MVIs are given by with U

as the universe of attributes:

MIr :

XZ 6!! Y Z

X 6!! Y

MI1 : if Y \ Z = fg then

X!! Y;X 6!! Y�Y

1

Z 6!! Y

1

MI2 : if Y \ Z = fg then

Z!! Y

1

;X 6!! Y�Y

1

X 6!! Y

The next step is to investigate the combination of functional and multivalued depend-

encies. In [Kanellakis, 1990] a formal system is given by:

De�nition 20 (Interaction of FDs and MVDs) Inference rules for the interaction

between FDs and MVDs are given by:

MFDt :

X!Y

X!! Y

MFDi : if Y \ Z = fg then

X!! Y;Z!Y

1

X!Y \Y

1

The following rules re
ect the interaction between functional and multivalued inde-

pendencies:

De�nition 21 (Interaction of FIs and MVIs) Inference rules for the interaction between

FIs and MVIs are given by:

MFI1 :

X 6!! Y

X 6!Y

MFI2 : if Y \ Z = fg then

X!! Y;X 6!Y \Y

1

Z 6!Y

1

MFI3 : if Y \ Z = fg then

Z!Y

1

;X 6!Y \Y

1

X 6!! Y

10 Related Work

Query optimization can be regarded as the process of transforming a query Q into an-

other query Q

0

that can be evaluated more e�ciently, as mentioned by Chakravarthy et

al. [Chakravarthy et al., 1990]. Semantic query optimization (SQO) is mainly based on

the use of semantic knowledge during the optimization process. Thus, the user is motiv-

ated to concentrate on the application rather than forming queries with explicit semantic

knowledge of the application.

So far, the main problem is to provide the optimizers with semantic knowledge about

the database during SQO. Obviously, the only kind of semantic knowledge which is always

available in relational databases management systems (DBMS) are integrity constraints

like primary or foreign keys. Thus, Chakravarthy et al. [Chakravarthy et al., 1990] have

de�ned SQO in respect of integrity constraints as to transform a query into one which is

semantically equivalent to the original query, but which can be executed more e�ciently.

King [King, 1981] argued that the costs of evaluating the transformed query plus the trans-

formation costs should be lower than the costs of evaluating the original query. Semantic
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equivalence means that the transformed query has the same answer as the original query

on all database states satisfying the integrity constraints. Jarke et al. [Jarke et al., 1984]

have shown several ways to use functional dependencies for SQO. But the constraints

provided by a DBMS are few and often too general in the sense that they are valid in all

possible database states.

Another way is to provide SQO with semantic knowledge by hand which also seems no

adequate technique. For example, King [King, 1981] uses constraints on attribute values to

optimize queries by his system QUIST. Zhang and Ozsoyoglu [Zhang and Ozsoyoglu, 1994]

have presented also techniques for semantic query optimization which are based on implic-

ation constraints and referential constraints. Implication constraints are a generalization

of functional dependencies and referential constraints of inclusion dependencies.

The arise of knowledge discovery in databases (KDD) o�ers a new approach to solve

both problems: provides SQO automatically with constraints and extends them to con-

straints which precisely re
ects the present content of the database. Siegel has reported

this by the �rst time [Siegel, 1988] and [Siegel et al., 1991]. Such constraints have been

termed, for example, Database Abstractions in [Hsu and Knoblock, 1993], Metadata in

[Siegel and Madnick, 1991], and Meta Knowledge in [Schlimmer, 1991]. Also, Hsu and

Knoblock [Hsu and Knoblock, 1993] have shown the bene�ts of optimization techniques

based on automatically discovered constraints. But we have to keep in mind that these

constraints are only valid in the present state of the database and therefore describe the

content of the database precisely. The constraints may become invalid, if the database

changes. Therefore, we have to maintain the discovered knowledge, if we use it more than

once.

Problems arise if knowledge discovery is applied to real world databases which are

continuously in use and large. Therefore, knowledge discovery in databases is only allowed

to take a small portion of the system resources and the use of independencies is one way

to improve this process.

But FIs can also be used directly for semantic query optimization in order to refute

or to simplify queries. For example, the already mentioned approach of Zhang and Oz-

soyoglu [Zhang and Ozsoyoglu, 1994] use implication and referential constraints which are

generalizations of functional and inclusion dependencies.

Gottlob and Libkin [Gottlob and Libkin, 1990] have shown that the MAX-set, intro-

duced by Mannila and R�aih�a [Mannila and Raiha, 1986], can be written and interpreted

as functional independencies. But in both works a closed world is assumed, which makes

the concept of FIs super
uous, because FIs are here an alternative way of representing

FDs. In contrast to this, we are not forced to know all FDs or FIs. Our system still

works if we have only proper subsets of FDs and FIs in order to prevent the worst cases

of exponentially many FDs in a relation. This makes their approaches to ours absolutely

incomparable.

Comparable to our approach in order to discover functional dependencies, there are

similar's by Mannila and R�aih�a [Mannila and R�aih�a, 1991], Schlimmer [Schlimmer, 1993],

Savnik and Flach [Savnik and Flach, 1993], and Dehaspe et al. [Dehaspe et al., 1994].

Mannila and R�aih�a have investigated the problem of inferring FDs from example relations

in order to determine database schemes. But they do not use a complete inference relation

regarding independencies. Savnik and Flach have investigated a special data structure

for the FDs. Brie
y, they start with a bottom{up analysis of the tuples and construct a
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negative cover, which is a set of FIs. In the next step they use a top{down search approach.

They check the validity of a dependency by searching for FIs in the negative cover. Also,

the negative cover is not complete regarding a classical consequence relation. Schlimmer

also uses a top{down approach, but in conjunction with a hash{function in order to avoid

redundant computations. However, he does not use a complete inference relation even

regarding functional dependencies. Also do Dehaspe et al. because their inferences are

based on �{subsumption. In addition, the veri�cation is based on theorem proving which

is not suitable for real world databases.

In general, these authors do not use a relational database like OracleV7 or any other

commercial DBMS. In such case, we argue that the proposed algorithm and approaches

have to redesign according the set oriented interface of a relational database system. For

example, the concept of the negative cover has only advantages if the tuples can be accessed

directly, i.e. the tuples are stored in the main memory as Prolog{facts. Savnik and Flach

have introduced it because the complexity for testing contradiction of the FDs is reduced.

In contrast to these approaches our purpose is di�erent because we maintain the dis-

covered FDs in order to use them all the time by semantic query optimization.

In addition, we argue that by using a relational database system, the higher complexity

of the complete inference relation is justi�ed by the size of a real world database.

Thus, our approach has two advantages: it does not presumes the closed world assump-

tion, which does not make sense in a knowledge discovery or machine learning environ-

ment, cf. [Bell and Weber, 1993]. The second advantage is, that this approach guarantees

minimal database access by completeness of the axiomatizations.

11 Conclusions

We have presented a more detailed view of the implication or membership problem � 2

Cn(�). We use the concept and the axiomatization of independencies in our system

twofold: First, independencies help to minimize the number of accesses to the database

w.r.t. the discovery of dependencies and their maintenance, because the alternative to

a complete inference would be a more or less exhaustive test of FDs on the database.

Usually, real world databases are very large, the number of tuples is much larger than the

number of attributes. Thus, the main costs of database management systems are caused

by reading from secondary memory. Therefore, a single saved database query makes up

for the costs of inferring FDs and FIs. This is true for the maintenance, too.

Second, independencies can directly be used for semantic query optimization in order

to refute or simplify queries.

Currently, we integrate these discovered and maintained constraints in a semantic

query optimizer.
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