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Abstract

The paper describes a case study that explores the idea of building a planner with a neat semantics

of the plans it produces, by choosing some action formalism that is \ideal" for the planning

application and building the planner accordingly. In general|and particularly so for the action

formalism used in this study, which is quite expressive|this strategy is unlikely to yield fast and

e�cient planners if the formalism is used na��vely. Therefore, we adopt the idea that the planner

approximates the theoretically ideal plans, where the approximation gets closer, the more run time

the planner is allowed. As the particular formalismunderlying our study allows a signi�cant degree

of uncertainty to be modeled and copes with the rami�cation problem, we end up in a planner

that is functionally comparable to modern anytime uncertainty planners, yet is based on a neat

formal semantics.

This paper is to appear in the Journal of Logic and Computation, 1994.
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1 Background and Plan of the Paper

There is an increasing amount of work providing logical formalizations of planning systems or

of basics of such systems, e.g., [15, 18, 22]. The rationale is that formally rigorous descriptions

can help understanding the systems, their fundamental procedures, limitations and theoretical

complexity|and that formal description can simply serve as a more e�cient tool than natural

language for communicating a system's essentials, as other sciences have experienced before.

There are in fact two ways to provide a planner with a neat formalization, or semantics. The

�rst is the ex post way: The planner comes �rst, and the attempt to formalize it, later; Lifschitz's

[15] semantics of strips [9] is the most prominent example, and it also demonstrates that the

planner implementors may have used implementation tricks that require a matching formalization

to be more intricate than expected. The second is the ex ante way: The basic formalization

comes �rst, and the planner is implemented later; an example for that direction is Pednault's [18]

formalization for determining possibly context-dependent action e�ects using regression, with a

planner implementation provided by McDermott [16].

However, you don't get a planner for free using either way. It is not planners that are for-

malized by an action theory, but, naturally enough, actions and how they change world states

when applied. The purpose of an action formalism is to specify the reasoning about prerequi-

sites and consequences of actions that an ideally rational agent should perform. Consequently,

such formalisms are idealistic in the sense that they, e.g., need not take e�cient implementability

into account. Planner implementations, on the other hand, must be realistic, having to deal with

scru�y things like heuristic search strategies, e�cient domain modeling, anytime behavior, or even

acceptable graphical user interfaces. It is, hence, understandable that action theoreticians and

planner implementors may talk di�erent languages.

So, when we say that a particular action formalism underlies a particular planner, we intend

to mean only that the planner is, �rstly, correct with respect to the formalism, i.e., the plans it

generates for a planning problem have the property to be executable in every domain correctly

modeled by the formalism and achieve the desired goals; we will call this property of plans their

correctness and completeness. Secondly, the planner is complete with respect to the formalism, i.e.,

if there is in the formalism a structure (e.g., a sequence) of actions representing a way to solve a

planning problem, then the planner will eventually �nd a corresponding correct and complete plan.

As to designing your favorite graphical user interface or employing most tricky search strategies,

however, the action formalism gives you and burdens you with full freedom|within the limits of

correctness and completeness.

However, requiring correctness and completeness turns out to be overly strong if you want to

include the possibility of designing practical planners in the ex ante way of construction. Therefore,

we want to admit some more liberality and require only correctness in the limit for planners,

i.e., require that plans delivered be correct and complete, given an arbitrarily high amount of

computation time, but may deviate from correctness and completeness if the available time is

limited; however, the deviation must in some way be predictable or describable relative to the

underlying action formalism. Note that these ideas are not uncommon; they are closely related to,

e.g., anytime algorithms [7] and bounded optimality of [19].

The following hypothesis underlies the work presented here:

Building planners by approximating an action formalism in the ex ante way just sketched

works in principle for any reasonable such formalismand is a generally applicable method

for neat planner engineering,

(1)

where \reasonable" means in particular implementable. Note that this hypothesis contradicts the

view of Russel and Wefald [19]. They say,

that existing formal models, by neglecting the fact of limited resources for computation,

fail to provide an adequate theoretical basis on which to build a science of arti�cial

intelligence. [19, p. 10, their emphasis]
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One intended side e�ect of this paper is to demonstrate why we think they are wrong here: It

is not the formalism that must take limited resources into account, but the interpretation of the

output of a resource-bounded planning system relative to the formalism.

We do not believe, let alone assume, that there is the one universal action formalism to rely

on. The variance in the required expressivity is huge for planners for di�erent application domains

involving|or not involving, respectively|numerical time, parallel action execution, incomplete

situation descriptions, alternative action e�ects, or whatsoever. So, the problem is to �nd a

method allowing a planner designer to choose one appropriately expressive formalism and guiding

how to build a planner on it that exhibits correctness in the limit.

We know of no such method yet. The purpose of this paper, then, is to describe a case study

in ex ante planner construction. We start from the possible worlds action formalism by Brewka

and Hertzberg [3] that is brie
y described in section 2. Section 3 develops the notion of plans

for the actions used and de�nes the concepts of correctness and completeness of plans relative to

the formalism. Section 4 deals with the question of how correctness in the limit can be de�ned in

this framework, and how to obtain it; the key issue for the de�nition is a function on plans that

rates their \degree" of correctness and completeness. Section 5 brie
y describes our actual planner

implementation pascale2; owing to the degree of uncertainty handled by the underlying action

formalism (namely, incomplete situation descriptions, context-dependent and alternative action

e�ects) and to the requirements of correctness in the limit, our case study yields as a byproduct

an anytime uncertainty planner that may be of interest in itself. Section 6 concludes and sketches

some open issues.

Figure 1 summarizes the main steps of our proposed way of turning an action formalism into

a planner in general (left column), the respective instances of these steps for the possible worlds

formalism in particular (right column), and the respective sections in this paper that deal with the

respective steps (middle column).

Single aspects of this work have been reported in [3, 23, 24], fromwhich texts this paper borrows

occasionally. Note that the formalism from [3] is only used as a tool here. Consequently, discussing

its strengths and weaknesses or relating it to comparable formalisms is out of the scope of this

paper, and we refer to the original article.

2 The Action Formalism

Under the hypothesis (1), we could carry out our case study using any reasonable action formalism

as presented, e.g., in [20]. As mentioned, the required expressivity of the planner sets lower

bounds on the formalism's expressivity. To illustrate that our proposed methodology for planner

construction is not restricted to classical planning|and, correspondingly, very restrictive action

formalizations|we build a planner able to handle

� underspeci�ed initial situations,

� context-dependency of action e�ects, and

� alternative e�ects for an action applied in one context.

In fact, we will see below that considering uncertainty of this sort matches very well the anytime

behavior [7] that emerges naturally from the requirement of correctness in the limit.

The particular formalism we use is inspired by Ginsberg and Smith's [11], or rather by the cor-

rection of their formalism in [26]. As it is described in full detail in [3] and is only an instrument

within this paper, our presentation here is sketchy, without further motivation or discussion. Read-

ers familiar with [3] may safely skip this section or just skim through, to pick up the description

of the example domain used throughout the paper.
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Figure 1: The steps of turning action formalisms into planners, and the structure of the paper.

We assume a �rst order language L that represents the application domain, where we assume

L to have a �nite Herbrand base.

1

Each Herbrand model, respectively each corresponding con-

junction l

1

^ � � � ^ l

n

of ground literals, is called a world. We will deliberately switch between set

and conjunctive notation for worlds, i.e., we will use the notations l

1

^ � � � ^ l

n

and fl

1

; : : : ; l

n

g

interchangeably. Similarly, we interpret sets of worlds as disjunctions of worlds.

Consider as an example the cup domain, which is inspired by [6]; Figure 2 is meant to vivify the

imagination. The task of a robot is to manipulate a cup from some position, using several actions

to be detailed later. The cup can be either on the 
oor (on
oor) or on a table (ontable). When on

the 
oor, the cup can either stand upright (up), or be tipped forward with its mouth facing the

robot (forward), or be tipped backward (back). Experiments take place outside; thus rainy weather

(rainy) might a�ect the robot's performance. The language of the cup domain, L

c

, is the �rst order

language induced by the ground atom set fon
oor; ontable; up; forward; back; rainyg; a world is any

set of ground literals made of exactly these ground atoms. (As a notational convention, we will

use a subscript c for names referring to constructs in the cup domain.)

A situation is described by a formula s 2 L. Note that such a formula does not necessarily

describe the real situation in all detail, i.e., there may be many situations|and, correspondingly,

multiple worlds|in which some s is true. An example for such a non-unique situation description

in the cup domain is

s

c

= rainy ^ (ontable _ forward)

Knowledge about what is true in all situations is represented in the two sets C and B. C is a set

of inference rules over L, called the causal background knowledge, and is used to express directed

(\causal") relationships. The term Theory(C) denotes the set consisting of implications f

1

! f

2

for each inference rule f

1

) f

2

in C. The logical background knowledge B is a set of formulas from

1

The latter assumption is not strictly necessary, but simpli�es the presentation.
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Figure 2: An illustration of the cup domain.

L that are true in all situations; examples for such formulas are general laws, constraints, and

formulas introduced for terminology. As a shorthand notation, K = Theory(C) [ B denotes the

background knowledge in sum.

In the cup domain, we assume that bringing about up, forward, or back, respectively, causes

the other two to become false and causes the cup to be on
oor (independently of whether or not

it was there before); moreover, if all three of up, forward, back are turned false, this causes the cup

to be ontable. This is to be expressed in the causal background knowledge C

c

. Finally, we de�ne

that on
oor if and only if :ontable, i.e., we exclude any third location by de�nition; this must be

expressed in the logical background knowledge B

c

. Hence, B

c

, C

c

, and K

c

are given by

B

c

=

�

on
oor $ :ontable

	

C

c

=

8

>

>

<

>

>

:

up ) :forward ^ :back ^ on
oor;

forward ) :up ^ :back ^ on
oor;

back ) :forward ^ :up ^ on
oor;

:up ^ :forward ^ :back ) :on
oor

9

>

>

=

>

>

;

K

c

=

8

>

>

>

>

<

>

>

>

>

:

ontable $ :on
oor;

up ! :forward ^ :back ^ on
oor;

forward! :up ^ :back ^ on
oor;

back ! :forward ^ :up ^ on
oor;

:up ^ :forward ^:back ! :on
oor

9

>

>

>

>

=

>

>

>

>

;

Only worlds consistent with the background knowledge K are possible. That intuition is made

precise in the following de�nition:

De�nition 1 (Possible worlds in s) Let s 2 L be a formula and let K � L be a set of formulas.

The possible worlds in s with respect to K are all worlds consistent with K and s, i.e., the elements

of the set

Poss

K

(s) = fw j w is a world and K [ fsg 6j= :wg

We use Poss

K

as a shorthand for Poss

K

(true), i.e., for the set of all worlds possible with respect

to K alone.

In the example of the cup domain with K

c

and s

c

as de�ned above, we have

Poss

K

c

(s

c

) =

�

W

1

= frainy;:forward;:back;:up;:on
oor; ontableg;

W

2

= frainy; forward;:back;:up; on
oor;:ontableg

�
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where the W

i

are names for later reference. Poss

K

c

consists of W

1

, W

2

, and the following other

worlds, which we present as we will occasionally refer to them:

W

3

= frainy;:forward; back;:up; on
oor;:ontableg;

W

4

= frainy;:forward;:back; up; on
oor;:ontableg;

W

5

= f:rainy;:forward;:back;:up;:on
oor; ontableg;

W

6

= f:rainy; forward;:back;:up; on
oor;:ontableg;

W

7

= f:rainy;:forward; back;:up; on
oor;:ontableg;

W

8

= f:rainy;:forward;:back; up; on
oor;:ontableg

Below, actions will be de�ned that change situations by making certain postconditions true

as a result of their application. In that context, it will be required to express that some formula

(describing the original situation) is in some sense minimally di�erent from some other formula

(describing the resulting situation), where a third formula (the action's postcondition) is true. To

make the concept of minimal di�erence precise, two supplementary de�nitions are needed, which

in turn require some additional terminology.

Let w

1

; w

2

be two sets of ground literals (e.g., two possible worlds). Di�(w

1

; w

2

) denotes the

set of ground literals true in w

2

, but not in w

1

. In the cup domain, we have, for example,

Di�(W

1

;W

2

) = fforward; on
oor;:ontableg and

Di�(W

2

;W

1

) = f:forward;:on
oor; ontableg

For a set C of inference rules, the C-closure of some set of formulasF is the smallest deductively

closed formula set containing F that is also closed under the inference rules of C. As a shorthand,

F`

C

f denotes that some formula f is contained in the C-closure of F . For example, the C

c

-closure

of forward contains :up ^ :back ^ on
oor, as dictated by the inference rules in C

c

, and hence also

contains :up and :back and on
oor; rainy, e.g., is not included.

Armed with this terminology, one can now de�ne a concept denoting a minimal set of changes

transforming a world w

1

into another world w

2

, given some background knowledge K. The idea

is that the \essential" changes are computed using C, and B is used to determine the additional

\trivial" ones, if any.

De�nition 2 (Causal change set) Let K = Theory(C) [ B be the background knowledge, w

1

and w

2

possible worlds, and w

0

2

� w

2

. A set of formulas S is called a causal change set of (w

1

; w

2

),

i� S is a minimal subset of Di�(w

1

; w

2

) such that S [ (w

1

\ w

2

) `

C

w

0

2

and w

0

2

[B ` w

2

.

Note that a pair of worlds may have multiple causal change sets. In the cup domain, fforwardg is

the unique causal change set for (W

1

;W

2

).

2

Causal change sets are now used to determine closeness between possible worlds:

De�nition 3 (Closeness, �

w

) Let w, w

1

and w

2

be possible worlds. w

1

is closer to w than w

2

,

denoted w

1

�

w

w

2

, i�

� Di�(w;w

1

) � Di�(w;w

2

), or

� every causal change set of (w;w

1

) is a subset of a causal change set of (w;w

2

), and not vice

versa.

We use the term w-Closest

K

(f) as a shorthand notation to denote the set of possible worlds wrt.

K that are �

w

-minimal among the worlds satisfying f .

2

To see that fforwardg is a causal change set, note that

fforwardg [ (W

1

\W

2

) `

C

c

frainy; forward;:back;:up;on
oorg =: W

0

2

;

and that W

0

2

[B

c

`W

2

.
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As a cup domain example, consider the possible world W

6

. The single causal change set of

(W

1

;W

6

) is f:rainy; forwardg. Therefore, using the results of previous examples, W

2

�

W

1

W

6

.

Finally, actions and the result of applying them are de�ned. The possible worlds formalization

adopts the common idea that actions are described by pre and postconditions. Crucially for the

formalism, actions can have di�erent e�ects in di�erent contexts (imagine the action of toggling a

lightswitch that has the e�ect of switching the light on if it was o� before, and vice versa); and

actions can have alternative e�ects in the same context (imagine the action of tossing a coin that

may result in heads or tails). The syntactic appearance of an action is then de�ned as follows:

De�nition 4 (Action description) An action description of m contexts is a structure of the

form

[ Pre

1

j Post

1;1

; : : : ;Post

1;l(1)

;

.

.

.

Pre

m

j Post

m;1

; : : : ;Post

m;l(m)

];

where the preconditions Pre

i

and the postconditions Post

i;j

are arbitrary formulas from L such

that Pre

1

_ � � � _ Pre

m

is equivalent to true, and the Pre

i

are mutually exclusive.

As an example from the cup domain, consider the action table2up meant to describe moving

the cup from the table to its upright position on the 
oor. When the cup is originally on the

table, the action can produce either the intended e�ect, i.e., up, or it can fail in the sense that the

action results in the cup's position forward (which, by K

c

, implies :up). In all other contexts, the

action fails in the sense that nothing is changed. Note that this way of modeling action failure is

very generous; in general, failure might result in any sort of damage on the cup's or robot's side

or unpredictability of the successor situation. The formalism allows this to be expressed|but we

use the generous way throughout the paper for ease of presentation. The action table2up is then

described by

3

table2up = [ :rainy ^ ontable j up; forward;

rainy ^ ontable j up; forward;

:ontable j true ]

To �x the meaning of the syntactical action descriptions, the concept of closeness between

possible worlds is used. If, for an action �, Pre

i

is true in s, the idea is that � results in a set of

possible worlds, each of which verify some Post

i;j

, and each of which are closest to s. Formally:

De�nition 5 (Result of an action in s) Let K = Theory(C)[B be background knowledge, s

a formula, and � an action given by an action description ofm contexts. The result of applying � in

s under K, denoted r

K

(�; s), is the set of all possible worlds w

0

satisfying the following condition:

There are w 2 Poss

K

(S), i 2 f1; : : : ;mg, and j 2 f1; : : : ; l(i)g, such that

� K [ fwg j= Pre

i

and

� w

0

2 w-Closest

K

(Post

i;j

), i.e.,w

0

is�

w

-minimal among the possible worlds satisfying Post

i;j

.

Recall that we consider a set of possible worlds as identical to their disjunction.

As a cup domain example, let us compute r

K

c

(table2up; s

c

). As demonstrated before, Poss

K

c

(s

c

)

consists of the two possible worlds W

1

and W

2

. Applying table2up in W

2

is uninteresting in the

sense that it does not lead to any changes (as :ontable is true in W

2

). Consequently, W

2

is an

element of the result.

3

You may think the two di�erent contexts :rainy^ontable and rainy^ontable with identical postconditions seem

odd. You are right. Normally, one could unite them under the identical precondition ontable. However, we will

later, when dealing with limited correctness, inject additional information into the action description, specifying

that the action is more likely to fail in rainy weather (as the cup may get slippery, say). So, the distinction simply

anticipates later enhancements of our application example.
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Then, consider W

1

, i.e., context number 2 of table2up gets applied as Pre

2

is true. For Post

2;2

,

i.e., the formula forward, we did all the necessary calculation in the examples before. The �

W

1

-

minimal world satisfying forward is good old W

2

. That means, applying table2up in W

1

may lead

to W

2

, namely, if Post

2;2

happens to occur. For Post

2;1

, i.e., the formula up, one can check that

the possible world W

4

is �

W

1

-minimal among those satisfying up. In sum, r

K

c

(table2up; s

c

) =

fW

2

;W

4

g.

Note that in the description of table2up, it is unnecessary to specify that the weather is unaf-

fected and that the cup is not on the table any more. This is an example of the formalism's dealing

with the frame and rami�cation problems.

3 Plans

We now turn to the issues of de�ning plans for the type of actions as used in the possible worlds

formalization, and we will de�ne correctness and completeness of plans, and correctness and com-

pleteness of planning procedures accordingly. We are still on the theory level here, not yet at

implementation: It is the purpose to provide the concepts in terms of which the planner imple-

mentation can then be described and evaluated.

We give the de�nitions for problem description, plan, plan correctness, and plan completeness

suitable for the possible worlds formalism here, but it should be emphasized that these notions are

essential for building a planner based on any action formalism, although they will look di�erent

for di�erent formalisms. So, the point here in view of the general methodology for turning action

formalisms into planners is: the respective de�nitions must be provided in a form suitable for the

respective formalism. The other notions we give here (planner, planner correctness, and planner

completeness) are independent of the possible worlds formalism and may be used literally for

building planners on any other one.

We start with the de�nition of a planning problem description. As this de�nition is pretty

classical, it should be understood without lengthy explanation:

De�nition 6 (Planning problem description ) Let L be a �rst order language. A planning

problem description (or problem, for short, if this causes no confusion) is a quadruple 	 =

(s; g;K;A), where

� s 2 L, the initial situation, is a formula,

� g 2 L, the goal, is a formula,

� K � L, the background knowledge, is a set of formulas, and

� A, the action inventory, is a set of action descriptions.

Remember that the background knowledge K is assumed to equal Theory(C) [ B for some C;B

throughout the paper, even if we do not mention C and B explicitly.

This is the point to present the other cup domain actions to prepare for stating the full action

inventory for problems to come. In addition to table2up, we have the actions shown in Figure 3,

with the following intuition behind:

back2up To move the cup from the back position to the up position. The action is guaranteed to

work if it is not rainy; if it is rainy, it may succeed or fail (changing nothing); in all contexts

where :back holds, it fails (again, changing nothing).

spin To (possibly) change the cup from the forward or back position into the forward or back

position, where a change may occur from either of the two to either of the two. The action

fails, i.e., nothing changes, if :(forward _ back) holds.
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back2up = [ :rainy ^ back j up;

rainy ^ back j up; true;

:back j true ]

spin = [ forward _ back j forward; back;

:(forward _ back) j true ]

wait = [ rainy j :rainy; true;

:rainy j rainy; true ]

Figure 3: Additional actions for the cup domain.

wait To just wait and do nothing. The weather may or may not change from rainy to :rainy, or

vice versa.

4

Our favorite cup domain problem for the rest of this text is then

	

c

= (s

c

; up;K

c

; ftable2up; back2up ; spin;waitg);

That means, the problem is to get into a situation where up is true, starting from s

c

, applying

some of the actions, with K

c

as the background knowledge.

Let us now turn to de�ning plans. In the framework of the possible worlds action formalization,

plans can obviously not have the structure of classical plans, i.e., a set of actions and a strict linear

or non-linear order on this set; this structure is inappropriate if actions, like all of the above, may

yield non-unique successor situations. We need something di�erent, then.

Our plan de�nition is guided by the following idea. Even if a plan cannot be given as an action

sequence, it should after all direct what action to execute next, once the executor �nds itself in a

situation matching a certain possible world. Moreover, the plan should tell which possible worlds

are expected to result from executing the action, according to the domain representation. Note

that there are only �nitely many possible worlds. Hence, a plan is a �nite structure, consisting of

possible worlds and actions; it directs which action to execute in each possible world expected to

emerge; and it tells which possible worlds are expected to result from each such action execution.

We represent a plan as a bipartite directed graph, consisting of T -nodes and W -nodes. Each

T -node is meant to represent an action occurrence (or task), and each W -node a possible world;

each node is labeled with the action whose occurrence it represents, or with the world it represents,

respectively.

De�nition 7 (Plan) Let 	 = (s; g;K;A) be a planning problem description, and let start be an

action such that start = [true j w

1

; : : : ; w

n

], where fw

1

; : : : ; w

n

g = Poss

K

(s). A plan � for 	 is a

bipartite directed graph consisting of labeled T - and W -nodes with a unique root, where:

1. The root is a T -node called Start; it is labeled with start. Every other T -node is labeled

with an element of A.

2. Every W -node is labeled with an element of Poss(K). No two W -nodes are labeled with the

same world.

3. All leaves are W -nodes.

4

Note that this may be considered ontological cheating. While all other actions' e�ects can be viewed as e�ected

by the respective actions, this is certainly not true for a weather change by waiting. Although we think it can

consistently be included, the possible worlds formalization does not provide a means to express external events that

may or may not occur independently from executing actions. The only excuse for using this cheated formulation is

that it works here.
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Figure 4: Plan �

c

for 	

c

. The atoms ry; fd ; bk ; up; of ; ot, respectively, abbreviate rainy, forward,

back, up, on
oor, ontable, respectively.

4. T -nodes have only W -nodes as successors.

5. Every non-leaf W -node has exactly one T -node as successor; every non-root T -node has

exactly one W -node predecessor.

6. From every node, there is at least one path to a leaf.

In Figure 4, we show a cup domain plan for the example problem 	

c

de�ned earlier. T -nodes

are represented by boxes, W -nodes by ellipses. Both node types are labeled with the respective

corresponding tasks or worlds. The plan is to be interpreted as follows: If the world W

1

is true

at the start of the plan execution, then apply table2up. As demonstrated earlier, the two worlds

W

2

and W

4

may result; consequently, the respective W -nodes are the successors of the respective

T -node. Determine which of the possible outcomes of table2up is the actual outcome, and proceed

until you eventually reach a leaf.

�

c

has one single leaf, namely, the one labeled with W

4

. Considering the part of �

c

that

consists only of the Start node and W

1

;W

2

, this is also a plan; it contains the two leaves labeled

with W

1

;W

2

.

As these plans are only part of the demonstration substrate in our case study for planner con-

struction, we do not go into detail concerning the underlying execution model and the possibilities

to use them for execution monitoring, replanning, or reusing old plans. The interested reader may

�nd hints about this in [23].

The example plan �

c

is rather exceptional, given the simple plan de�nition that we have: �

c

is meaningful in the sense that it correctly models the postconditions of all actions labeling its

T -nodes, as applied in their respective predecessor worlds. The plan de�nition does not enforce

that; it allows for W -nodes that have absolutely nothing to do with the worlds resulting from

applying their predecessor T -nodes.

Consequently, we have to de�ne plans that are \meaningful". We do so by de�ning correctness

and completeness for plans relative to the planning problem description 	. Note that we do not

attempt to formulate correctness with respect to the real world (or some relevant section of it);

that would have to be done for 	. It could be done along the lines that Lifschitz [15] has drawn

for de�ning the soundness of a strips system, but we simply assume in this text that planning

problem descriptions are proven to be sound with respect to the world section they are supposed

to model.

We start with correctness. The intuition behind it is to say that if a plan says that something

is or may be the case, then it really is or may be the case. In particular, if the plan execution

proceeds as a plan tells it, then the plan will rightly predict what may result from applying an

action in some situation, every action it directs to execute is in fact executable, and if it directs

to stop the plan execution, then a situation will have emerged in which the goal formula is true.
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(Remember that all this can, of course, only be guaranteed for a plan, if the planning problem

description itself was correct wrt. the real world domain.)

Note that we require only \partial" correctness here in the sense that the goal is true if the plan

directs the execution to stop; in general, we cannot guarantee that every plan execution as guided

by some plan will eventually lead to such a stop. The reason is that plans may contain loops out

of which there is syntactically a path to some leaf node (as required in item 6 of de�nition 7), but

we cannot guarantee that they will in fact eventually be left. As an example, see the spin loop in

�

c

in Figure 4: If spinning does in fact always result in forward, then executing the plan will cycle

in�nitely, if W

2

is reached once. Note, however, that the source of the trouble is the unsoundness

of the domain description in this case. For sound descriptions, we have indeed total correctness,

guaranteeing that the plan execution will eventually stop.

The correctness de�nition is given in steps: �rst for individual nodes, and then for plans.

De�nition 8 (Node correctness, plan correctness) Let � be a plan for the planning problem

description 	 = (s; g;K;A).

Root correctness: Start 2 � is correct wrt. 	 i� for every Start successor node ! labeled with

w in �: w 2 Poss

K

(s)

Non-root T -node correctness: Let � be a non-root T -node in �, labeled with �, and let ! be

its predecessor in �, labeled with w. � is correct wrt. 	 i� for every successor !

0

of � in �,

!

0

is labeled with w

0

such that w

0

2 r

K

(�;w).

Leaf correctness: A leaf ! 2 � labeled with w is correct wrt. 	 i� w [K ` g.

Plan correctness: � is correct wrt. 	, i�

1. Start 2 � is correct wrt. 	;

2. every non-root T -node in � is correct wrt. 	; and

3. every leaf node in � is correct wrt. 	.

The concept of plan completeness is related to plan correctness; the idea is to say: If something

may happen at plan execution according to 	, then the plan does already respect it. That means in

particular, the plan must represent all possible worlds of the initial situation, and it must contain

all results of actions that it directs to apply. Note that the issue is not that a plan must direct

what to do in every possible world in the domain or tell what the result is of applying every action

in each of the possible worlds it contains. As a plan is a plan, it deals only with the e�ects of the

particular actions it proposes to apply in the particular possible worlds it contains.

De�nition 9 (Node completeness, Plan completeness) Let � be a plan for the planning

problem description 	 = (s; g;K;A).

Root completeness: Start 2 � is complete wrt. 	 i� for all w 2 Poss

K

(s) there exists a successor

! of Start in � such that ! is labeled with w.

Non-root T -node completeness: Let � labeled with � be a non-root T -node in �, and let !

labeled with w be its predecessor in �. � is complete wrt. 	 i� for all w

0

2 r

K

(�;w), there

exists a successor !

0

of � in � such that !

0

is labeled with w

0

.

Plan completeness: � is complete wrt. 	, i�

1. Start 2 � is complete wrt. 	; and

2. every non-root T -node in � is complete wrt. 	.
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Obviously, a correct and complete plan is the ideal plan that one would like a planner to

generate, namely, a \solution" to the planning problem, and these two requirements are the back-

ground for the vast majority of papers about planning|albeit mostly implicit. The reason to

make them explicit here is, of course, that we want to be able to deal with controlled relaxations

of plan correctness and completeness later; this will be the key for achieving limited correctness of

planners.

The notions of correctness and completeness apply analogously to plan generating procedures,

or planners, not only to plans. In our context, a planner is an entity that, given a planning

problem description, returns plans after a number of computation steps. These steps may be time

ticks or numbers of calls to a basic procedure; more generally, the steps can be interpreted as any

monotonically increasing time function. For simplicity, we assume a discrete measure over the

natural numbers here.

To formally de�ne a planner, we would, strictly speaking, have to specify a language for for-

mulating problem descriptions on that the planner operates. From the theoretical viewpoint we

take until now, this is merely a technical matter, which we omit here. We tacitly assume that all

problem descriptions are given in some appropriate language, involving the �rst order language for

describing the domain and the language for describing the actions. Moreover, we assume the exis-

tence of types natural, problem description, and plan containing objects that are natural numbers,

problem descriptions, and plans, respectively. Under the theoretical view that we are still having

here, a planner is then somewhat impoverishedly de�ned as:

De�nition 10 (Planner) A planner is a pair (P; A

P

) of functions. P, the plan generation func-

tion, is of the type

problem description ! natural ! plan

A

P

, the availability function, is a function of type problem description ! natural set, such that

P(	) is a total function on A

P

(	) � IN for every problem 	.

Intuitively, P is the planning procedure itself, and A

P

de�nes the set of steps at which P has a

plan for a problem available. An obviously interesting special case is a planner for which A

P

= IN,

i.e., a planner that has an output available after any number of steps|an any-step planner, as

one could call it. In fact, this is the direct analog to the now-famous anytime planners as �rst

discussed in [7]; if time is considered to be discrete, then the any-step property generalizes the

anytime property.

The intuitive idea behind planner correctness or completeness, then, is simple: A planner is

correct wrt. some criterion to be speci�ed, if and only if all the plans it delivers for a planning

problem meet the criterion; and it is complete, if and only if it eventually generates all plans for

the problem that meet some other to-be-speci�ed criterion.

The obvious question is what these ominous criteria are supposed to be. In general, they

can specify everything you like; for example, one could de�ne correctness and completeness of

planners wrt. the criterion that plans contain exactly 17 tasks (but are not necessarily correct and

complete). The criterion that we will hard-wire into the de�nitions of both planner correctness

and completeness is supposed to be a bit more useful, at least as long as we remain on the theory

side: it is|somewhat unsurprisingly|plan correctness and completeness. That means that a

correct planner will deliver only correct and complete plans, and that a complete planner will

eventually deliver all correct and complete plans for a given problem. The respective de�nitions

are straightforward:

De�nition 11 (Planner correctness) A planner (P; A

P

) is correct i� the plan P(	)(t) is cor-

rect and complete wrt. 	 for all problems 	 and for all t 2 A

P

(	).

De�nition 12 (Planner completeness) A planner (P; A

P

) is complete i�, for all problems 	

and for all plans � that are correct and complete wrt. 	, there exists t 2 A

P

(	) such that

P(	)(t) = �.
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Note that it is very easy to design planners that are either correct or complete. An example

for a trivially correct planner is one that returns no plan at all; all plans it returns are correct

and complete|it just returns no plan. An example for a trivially complete planner is one that

enumerates all plans (be they correct and complete or not); it will eventually also generate all

correct and complete plans. Hence, the interesting matter is to design planners that are correct

and complete.

At least, that is what pure theory tells. As exposed in the introduction of this paper, the issue

here is to develop planners that are correct in the limit; for this task, the \ideal" correctness as

just de�ned will just serve as a reference point. De�ning this more liberal version of correctness is

what we will do in Section 4.

4 Correctness, Ltd.

We now turn to the problem of using the action formalism for planner construction. As said

earlier, in view of our goal to achieve planners that are only correct in the limit relative to the

formalism, we do not require that such a planner use a \direct" implementation of it. Given that

such formalisms may often be designed for criteria other than e�cient implementability, this would

be unnecessarily restrictive. Instead, one may use a restriction of the formalism, or a formalism

implementation that in itself only approximates the pure formalism in the task of, say, determining

action e�ects. It is only the planner whose behavior we constrain: In the limit, it must be correct;

and meanwhile, its incorrectness must be describable relative to the ideal, as objecti�ed by the

formalism. The formalism is a yardstick, not the Holy Grail.

Consequently, we have to do three things in order to achieve a well-de�ned concept of limitedly

correct planners:

1. Choose a convenient subset of the formalism. In case that the formalism is not implemented

in full generality, the restriction chosen must be characterized. Independently from that, if

the provided implementation just approximates the formalism's results, the approximation

behavior must be described. For the particular case of the possible worlds formalization, we

describe a restriction on subsets of full worlds that models the full formalism correctly under

some restrictions we will also specify; we will not use approximations.

2. De�ne a rating for incomplete and incorrect plans. In case that the planner is supposed to

return incorrect and/or incomplete plans (at least after few steps), these must be rated in

order to guarantee at least an asymptotic convergence of the planner outputs towards correct

and complete plans. For the particular case of possible worlds plans, the rating we describe is

based on a notion of utility of nodes, and takes the probability of reaching them into account.

3. De�ne correctness in the limit. Using the previous de�nitions, this de�nition of planner

behavior proves to be straightforward. Describing the particular case of our possible worlds

planner pascale2 is postponed until Section 5.

The three parts of this section deal with these three issues in turn; in particular, they exemplify

them in terms of the possible worlds action formalization and plans de�ned earlier.

4.1 Restricting the Formalism

4.1.1 Restricting Formalisms in General

The issue here is, then, to start looking at the underlying action formalism under the view of

implementability, and to restrict it accordingly, should this be deemed necessary. In this context,

two questions might require clari�cation.

The �rst is whether substantially restricting a formalism in a well-de�ned way or providing a

well-de�ned approximation doesn't in fact yield a new formalism, which could then be directly used
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as a basis for the planner. In a way, this is true. However, it is a matter of empirical observation

(and of the target readership of the respective papers) that formal theories of action and the

typically only implicitly speci�ed calculi underlying practical planners are of considerably di�erent

nature. We do not think this is necessarily so, but there are good reasons for the empirically

observed gap, given the di�erence of aims in designing a theory and in designing e�cient code.

This section, then, is to acknowledge that this gap will exist in many, if not all cases, and that it

must be bridged for constructing planners in the way we propose here. The restricted version of

the formalism or an approximate calculus for it may of course be of its own interest, not only from

the practical side, but also theoretically.

The second question is whether action formalizations provide su�cient expressivity for de-

scribing a domain in general and its actions in particular, for being suitable as a formal basis for

more modern planners. For example, few interesting modern planners will describe actions just by

preconditions and postconditions, but there will be time, a di�erence between preconditions and

subgoals, plots, protection intervals, and others, see [12] for an overview. There are two answers

to this question. First, even if many existing action formalisms (like the possible worlds formalism

that still lacks incorporating, e.g., numerical time, concurrency, or external events) are severely

restricted in their expressivity, this need not stay that way; explicitly confronting them with the

needs of planning applications may even provide a push for examining greater expressivity. Second,

from the viewpoint of formalism, di�erent features of an operator description language may well

be mapped onto the same formalism feature. For example, it makes perfect sense to pragmatically

di�erentiate between goals and preconditions in an operator in sipe [25]; however, when mapping

the planner to the theory, they may both be mapped onto preconditions. The heuristic search

behavior of the planner takes advantage of the di�erence, but this behavior is not to be mapped

back onto the formalism.

We will now continue presenting the case of our case study, and describe the restriction of the

formalism used further on.

4.1.2 Restricting the Possible Worlds Formalism

For the particular planner in this case study, we will go the way of using a mild simpli�cation of the

possible worlds formalization that is, however, equivalent to the original under certain restrictions.

Of this, we will then use a relatively straightforward implementation.

By de�nition, there are only �nitely many possible worlds. But �nitely many can still be a lot,

especially as the number of worlds grows exponentially with the cardinality of the �nite Herbrand

universe of L. Usually, only a fraction of all worlds is possible, but a fraction of an exponentially

growing number can still grow exponentially. Consequently, the size of worlds should be something

to worry about as we start turning towards building planners. We will sketch a way to both reduce

the size (although not the number) of the possible worlds and practically save dealing with the

rules in the causal background knowledge C. Part of this material is also drawn from [3], to which

we refer to further details.

There are two key ideas to the reduction. The �rst is to save computation by computing results

of an action not for the possible worlds as de�ned, but for smaller \worlds" based only on a subset

L of the Herbrand universe of L, called L-worlds. For example, we could choose

L

c

= frainy; forward; back; upg

in the cup domain. Possible L-worlds can then be de�ned like possible worlds in De�nition 1; just

substitute \world" by \L-world". We use the symbol j

L

as the notation of the restriction of some

set or function to L.

The second key idea is to choose L such that it allows the correct action e�ects to be computed

without using the inference rules of the causal background theory C, but from the formula set

K alone. To start with, de�ne the new versions of causal change set, closeness, and r

K

j

L

(�; s)

(i.e., action results restricted on L-worlds), respectively, from the old de�nitions 2, 3, and 5,
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respectively, by again substituting \L-world" for \world", replacing every occurence of C by ;,

and every occurence of B by B [ Theory(C). (Note that K does not change, then.) Hence,

determining the possible worlds closest to some given world w and verifying some formula f , i.e.,

w-Closest

K

(f), reduces in its L-restricted form to comparing di�erences between w and other

possible worlds verifying f . To sum up, the above-described changes for the L-world version of the

formalisms entail that

� the causal change set de�nition (De�nition 2) is not needed any more

� the L-world version of the closeness de�nition (De�nition 3) says that a possible L-world v

1

is closer to a possible L-world v than a possible L-world v

2

i� Di�(v; v

1

) � Di�(v; v

2

).

The de�nitions of plans, correctness, and completeness then apply analogously to L-worlds.

An obvious requirement for L is that an L-world capture the \essence" of a corresponding \full"

world in the sense that it uniquely determine a full world, taking the background knowledge into

account. This is made precise in the following de�nition.

De�nition 13 (Spanningness of L) A subset L of ground atomic formulas of L is called span-

ning wrt. the background knowledge K, i� for every possible L-world v there is a unique possible

world w such that v [K ` w.

In the following, we assume that every L be spanning w.r.t. its respective K. In particular, it can

be veri�ed that L

c

is spanning wrt. K

c

.

In some cases, working with the L-worlds variant of the possible worlds formalismyields results

that are logically equivalent to working with the original formalism. To give an example, let us

compute the result of applying table2up under K

c

in s

c

, restricted on L

c

, i.e., r

K

c

j

L

c

(table2up; s

c

).

The possible L-worlds in s

c

are

Poss

K

c

j

L

c

(s

c

) =

�

V

1

= frainy;:forward;:back;:upg;

V

2

= frainy; forward;:back;:upg

�

These L-worlds correspond to the worlds W

1

;W

2

in the original example using full worlds. Note

that, as an e�ect of L

c

's spanningness, the missing literals regarding ontable and on
oor can be

deduced using K

c

. Like in the original example, applying table2up to V

2

simply yields V

2

, so we

restrict our considerations on V

1

. Here, the second precondition of table2up is true. Hence, we

must �nd �

V

1

-minimal possible L-worlds satisfying up and forward, respectively.

Focusing on forward, V

2

is a possible L-world in which it is true; Di�(V

1

; V

2

) is fforwardg;

clearly, V

2

is �

V

1

-minimal according to the new closeness de�nition. (Recall that causal change

sets are not used here.) Hence, it is an element of the result. Analogously, we obtain the possi-

ble L-world V

4

= frainy;:forward;:back; upg from the other postcondition formula up. In sum,

r

K

c

j

L

c

(table2up; s

c

) = fV

2

; V

4

g.

Now, as K

c

[ V

2

` W

2

and K

c

[ V

4

` W

4

, we happen to �nd:

K

c

[ r

K

c

(table2up; s

c

) is logically equivalent to K

c

[ r

K

c

j

L

c

(table2up; s

c

):

This result is not incidental: the structure of the cup domain ensures that the equivalence holds

for all its actions and situations. Proving this claim is mostly a technical matter; as it is just of

marginal interest for the main point of this paper, we exile its proof to Appendix B.

The point to note is that we have identi�ed a simpli�cation of the possible worlds formalization

for which we need to use only L-worlds and can forget about the C-closure.

This simpli�cation can be implemented considerably more e�ciently, owing mostly to the de-

crease in size of the L-worlds. Therefore, the planner we construct operates on L-worlds. In

exchange, this planner can safely be applied only to domains and Ls for which using L-worlds is

equivalent to using \full" worlds with C-closure. In Appendix B, we give su�cient conditions under

which this equivalence holds in a planning domain (these conditions apply to the cup domain).
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Restricting the formalism in this way is no theoretical necessity for constructing planners from

action formalisms; but we believe it will often be helpful to speed them up. Remember, however,

that this restriction is not the only, and probably the less important idea for operating planners

under realistic run time constraints|the more important one being correctness in the limit, to be

de�ned in Section 4.3.

4.2 Rating Plans

4.2.1 De�ning a Rating Function in General

Having chosen the appropriate restriction of the formalism, i.e., of the possible worlds formalism

in our case, the issue is now to de�ne a rating for incorrect and incomplete plans, on which to base

later the planner's asymptotic convergence towards delivering correct and complete plans.

The general idea of a plan rating function is very simple. We want to have a function that,

given a plan, determines the \degree" of its correctness and completeness, supplementing the sharp

notions of correctness and completeness with a gradual valuation for plans that are not correct

and complete|i.e., the vast majority of plans that planners practically deal with. Normalizing the

values of rating functions to the real interval [0; 1], we get:

De�nition 14 (Rating function) Let 	 be a planning problem description. A rating function

for 	 is a total function %

	

mapping plans for 	 to [0; 1], such that for every plan �:

%

	

(�) = 1 i� � is correct and complete wrt. 	

For brevity, we again skip de�ning the language for specifying planning problem descriptions. In

e�ect, we sloppily speak of some % as a family of rating functions, to express that %

	

is a rating

function for every problem 	.

Note that we do not require that rating functions are the only functions evaluating the \quality"

of plans. In particular, a rating function does not select between di�erent correct and complete

plans; measures like plan execution cost, or plan generation time, however, are practically impor-

tant for a planner to deliver \good" plans, whatever the de�nition of \good" is in detail. We

assume a rating function can be a component of an overall plan evaluation measure, but make

no requirements as to whether or not this is the case, whether or not additional plan evaluation

functions exist, or how they look like. For de�ning planner correctness in the limit, rating functions

are required, and only these.

An obvious example for a rating function|or even family of rating functions|is the sigmoid

function � assigning 1 to all correct and complete plans, and 0 to all others. As we will below

de�ne a considerably more sophisticated rating function for possible world plans, mapping plans

to the whole [0; 1] interval, one might suspect that such a sophisticated function is in some respect

generally \better" than �. This is wrong. There may be domains where plans that are not correct

and complete in the strong sense, are of absolutely no value, making � the perfect rating function.

The point is that the domain modeler de�nes, of what value a non-correct-and-complete plan is

by de�ning a rating function.

This ends the general part of this Section 4.2. All the rest concerns de�ning a suitable rating

function for the case of the possible worlds plans as de�ned in Section 3. For de�ning the function,

we pursue the following idea. Given the points at which the possible worlds formalism allows

for uncertainty, i.e., for multiple possible worlds of the start situation and di�erent alternative

postconditions of actions applied in a possible model, we allow (not force!) the user to inject

information about the a-priori and relative probabilities of possible worlds. This information is

then used for handling possible worlds by applying results of Nilsson's probabilistic logic [17]. We

describe this in Section 4.2.2. In Section 4.2.3, we transfer this probability information to plans;

this is done using basic techniques from Markov chain theory and utility theory.

5

In Section 4.2.4,

we �nally de�ne the particular rating functions on possible worlds plans.

5

All de�nitions in the sections 4.2.2 and 4.2.3 will be given for L-worlds. They apply for \full" worlds accordingly.
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Let us emphasize that the choice of using probability information to develop a plan rating is

special to the case of our case study; it is in no way required by our view of planner construction

on some action formalism. Alternative ways to develop such a rating for planners based on the

possible worlds formalism in particular might include using possibility theory [8] or some variant

of Spohn's [21] model; in general, for planners based on other formalisms, completely di�erent,

maybe considerably simpler ways may be appropriate. The point is: one has to choose some such

way, and we demonstrate one that is particularly appropriate for the possible worlds formalism

and leads to somewhat interesting planners.

And let us express a mild warning, before starting on this way. Remember that the possible

worlds action formalization allows coping with missing information, e.g., about the start situa-

tion. It is then reasonable to demand that a plan rating cope with the acquisition of additional,

uncertainty-reducing information by updating the rating accordingly, i.e., that the rating be dy-

namic in this respect. This does not require highly sophisticated math in our case, but de�ning the

rating takes more e�ort than one would expect for, say, some reasonable rating function operating

on classical nonlinear plans. The case we study is just not the simplest conceivable one.

4.2.2 Injecting Probability Information into the Possible Worlds Formalism

As for using probability theory to quantify beliefs in our action formalism, we start by assuming

that the a-priori probability of some domain facts are given as a set P of probability values for

the corresponding sentences in L. The probabilistic background knowledge, called P , expresses the

constraints, if any, that must hold for the probability distribution on possible L-worlds at any time,

in absence of information beyond K. For the cup domain, we have

P

c

= f p(rainy) = 0:4; p(forward _ back) = 0:7; p(ontable) = 0:2 g

expressing, e.g., that, lacking further information, the weather has a 40% chance to be rainy.

Results from Nilsson's probabilistic logic can be used to compute the a-priori probability dis-

tribution p over the possible L-worlds space, that strictly re
ects K and P , no more, and no less.

The main result we use from Nilsson's work is that the probability of a sentence is the sum of the

probabilities of the possible L-worlds in this sentence.

6

p is de�ned as follows:

De�nition 15 (A-priori probability distribution) Let K and P be the logical and the proba-

bilistic background knowledge, respectively. The a-priori probability distribution over the possible

L-worlds space, noted p, is the probability distribution de�ned by:

p(true) = 1 =

X

v2 Poss

K

j

L

p(v) (2)

8p(s) 2 P p(s) =

X

v2 Poss

K

j

L

(s)

p(v) (3)

for which the entropy, de�ned as �

P

v2 Poss

K

j

L

p(v) log p(v), is maximal.

Equation (2) expresses that a tautology has truth-probability 1, and Equation (3) that p must

comply with the probability values given in P . In general, these two equations still induce an

in�nity of probability distributions. Among them, we select the p with maximal entropy, because

this distribution assumes minimal additional information beyond K and P . The probability dis-

tribution p for the cup domain is shown in Figure 5 and can be computed following the lines given

in [4]. Lacking further knowledge, it constitutes the robot's belief about the current situation of

the world.

6

Nilsson's result applies primarily to \full" possible worlds. However, it is also applicable to L-worlds here,

because spanningness ensures that possible L-worlds are mutually exclusive and exhaustive not only with respect

to L, but also to L.
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V 2 Poss

K

c

j

L

c

p(V )

V

1

f rainy;:forward;:back;:up g 0:08

V

2

f rainy; forward;:back;:up g 0:14

V

3

f rainy;:forward; back;:up g 0:14

V

4

f rainy;:forward;:back; up g 0:04

V

5

f :rainy;:forward;:back;:up g 0:12

V

6

f :rainy; forward;:back;:up g 0:21

V

7

f :rainy;:forward; back;:up g 0:21

V

8

f :rainy;:forward;:back; up g 0:06

Figure 5: A-priori probability distribution p for the cup example

It is straightforward to revise this probability distribution in order to re
ect additional informa-

tion about the current world situation. If s 2 L describes this situation, our belief that a possible

L-world corresponds to the actual situation is revised using Bayesian conditioning, which can be

viewed as the probabilistic counterpart of belief revision in the sense of [10]. The revised proba-

bility distribution p

s

on L-worlds is such that p

s

(v) = p(vjs), where p(vjs) denotes the conditional

probability of v given s. Using Bayes's theorem, this can easily be shown to be equivalent to the

following de�nition:

De�nition 16 (Revised probability distribution) Let p be the a-priori probability distribu-

tion over the possible L-worlds space, K the background knowledge, and s 2 L a formula. The

revision of p given that s holds, noted p

s

, is the probability distribution de�ned by

p

s

(v) =

(

p(v)

P

v

0

2 Poss

K

j

L

(s)

p(v

0

)

if v 2 Poss

K

j

L

(s)

0 otherwise.

For example, if the current situation is described by s

c

, the real situation of the world corresponds

to one of the two possible L-worlds V

1

and V

2

with respective probability:

p

s

c

(V

1

) =

p(V

1

)

p(V

1

)+p(V

2

)

=

0:08

0:22

' 0:36

p

s

c

(V

2

) =

p(V

2

)

p(V

1

)+p(V

2

)

=

0:14

0:22

' 0:64

We now turn to the problem of computing the probabilities of possible L-worlds that result from

performing an action. For that purpose, we assume that each action postcondition has associated

the probability that this postcondition is achieved when the action is performed. Hence, actions

become structures of the form:

[ Pre

1

j (Post

1;1

; p

1;1

); : : : ; (Post

1;l(1)

; p

1;l(1)

);

.

.

.

Pre

m

j (Post

m;1

; p

m;1

); : : : ; (Post

m;l(m)

; p

m;l(m)

) ];

(4)

where p

i;j

is the probability that executing the action in context i leads to Post

i;j

. For each

context i, we furthermore assume that

� the postconditions are mutually exhaustive, i.e.,

P

l(i)

j=1

p

i;j

= 1

� the postconditions are mutually exclusive, i.e., for any two postcondition Post

i;j

1

and Post

i;j

2

and for any L-world v where Pre

i

holds, we have

v-Closest

K

j

L

(Post

i;j

1

) \ v-Closest

K

j

L

(Post

i;j

2

) = ;
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table2up = [ :rainy ^ ontable j (up; 0:8); (forward; 0:2);

rainy ^ ontable j (up; 0:6); (forward; 0:4);

:ontable j (true; 1) ]

back2up = [ :rainy ^ back j (up; 1);

rainy ^ back j (up; 0:8); (true; 0:2);

:back j (true; 1) ]

spin = [ forward _ back j (forward; 0:5); (back; 0:5);

:(forward _ back) j (true; 1) ]

wait = [ rainy j (:rainy; 0:1); (true; 0:9);

:rainy j (rainy; 0:1); (true; 0:9) ]

Figure 6: The cup domain actions with associated postcondition probabilities.

The last condition states that, starting from possible L-world v, the same possible L-world will

never be produced via two di�erent postconditions of the action context that holds in v. Both

conditions can easily be ensured without loss of generality with respect to the original de�nition

of action descriptions (De�nition 4) by adding appropriate contexts. To continue the cup domain

example, the postcondition probabilities of its actions are given in Figure 6.

Upon learning that action � is applied in a situation where s holds, our belief about the possible

L-worlds space is updated. We compute the probability distribution p

(�;s)

over the possible L-

worlds space resulting from the performance of � in s, using Lewis's imaging [14], which can be

viewed as the probabilistic counterpart of updates in the sense of [13].

De�nition 17 (Updated probability distribution) Let p be the a-priori probability distribu-

tion over the possible L-worlds space, K the background knowledge, s 2 L a formula, and let p

s

be the revision of p given that s holds. Let � be an action as in (4) with exhaustive and mutu-

ally exclusive postconditions. The update of p

s

given that � is applied in s, noted p

(�;s)

, is the

probability distribution de�ned by

p

(�;s)

(v

0

) =

X

v2Poss

K

j

L

(s)

0

@

p

s

(v)

l(i)

X

j=1

p(v

0

j v-Closest

K

j

L

(Post

i;j

)) p

i;j

1

A

;

where K [ v ` Pre

i

, and p(v

0

j v-Closest

K

j

L

(Post

i;j

)) is the conditional probability of v

0

, given

that the postcondition Post

i;j

is achieved by applying � in v.

The value of p(v

0

j v-Closest

K

j

L

(Post

i;j

)) can be computed as the revision of p(v

0

), given that

v-Closest

K

j

L

(Post

i;j

)|considered as a disjunction of conjunctions|holds. Since all actions in

the cup domain have the property of yielding exactly one L-world per e�ect alternative in every

precondition context,

7

v-Closest

K

j

L

(Post

i;j

) is always a singleton, and hence this probability is

either 0 or 1. Furthermore, since the postconditions of the same context are mutually exclusive

and exhaustive, each i will have exactly one Post

i;j

, for which this probability is 1. Thus, things

are simple for the cup domain. When applying, e.g., table2up in s

c

, the situation corresponds to

7

In Appendix B, we show that this property is a consequence of spannigness of and alternative-wise result

uniqueness as de�ned in De�nition 25.
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one of the possible L-worlds V

4

or V

2

with the respective probabilities

p

(table2up;s

c

)

(V

4

) = p

s

c

(V

1

)� (1 � 0:6 + 0� 0:4) + p

s

c

(V

2

) � 0� 1

' 0:6� 0:36 ' 0:22;

p

(table2up;s

c

)

(V

2

) = p

s

c

(V

1

)� (0 � 0:6 + 1� 0:4) + p

s

c

(V

2

) � 1� 1

' 0:4� 0:36 + 1� 0:64 ' 0:78:

4.2.3 Reckoning Probability Information in Possible Worlds Plans

Using the notions just described, we can use the probability information provided by the user

for computing the updated probability distributions p

(�;s)

, telling which possible worlds result

from applying � in s with which probability. The question we tackle now is, how to assemble

these distributions to determine the average number of times an action will be performed when

executing a plan, or the probability to end up in one of its leaf nodes.

The basic tools we use here are Markov chains. For those readers unfamiliar with Markov

chain theory, we give a brief introduction in Appendix A, which they are advised to consult before

continuing with this section. All other readers should run into no problems from just skipping

Appendix A.

The basic idea of mapping plans to Markov chains is to associate a plan with an absorbing

Markov chain whose state set includes the plan's T -nodes set. Transient states of the chain cor-

respond to the T -nodes in the plan. Its absorbing states are interpreted to denote that the plan

execution is over, which may occur in two cases:

� the current world situation is represented by a leaf W -node of the plan, i.e., the plan does

not prescribe to apply any subsequent action in the current situation, either because the

corresponding W -node is incorrect, or because the situation it represents matches the goal;

� the current world situation is among those that should have been expected as a result of

a given action, but is not represented as a W -node successor of a T -node labeled with this

action in the plan, i.e, this T -node is incomplete.

To cope with these cases, we introduce two types of absorbing Markov states, additionally to

states representing T -nodes. Finish states are labeled with dummy actions applied in L-worlds

corresponding to W -node leaves of the plan, and Inc states are labeled with dummy actions that

are applied when the current world situation is not represented as a W -node that a complete plan

would have to include. The probability law of the Markov chain follows the probabilities provided

by the action formalism. Before giving the constructive de�nition how to generate the associated

Markov chain of a plan, let us give an example.

Figure 7 shows the Markov chain associated with the L-worlds version of the correct and

complete plan �

c

from Figure 4,

8

and its transition matrix. In �

c

, there is a transition from

the state labeled with start to the T -node labeled with spin through the L-world V

2

. Since

p

s

c

(V

2

) = 0:64, there is a transition in the Markov chain from the state labeled with start to the

state labeled with spin, with probability 0.64. The unique leaf of �

c

is labeled with V

4

. Hence, we

have one unique Finish state in the Markov chain. Since V

4

is obtained from back2up applied in V

3

and from table2up applied in V

1

, and since p

(back2up;V

3

)

(V

4

) = 0:8 and p

(table2up;V

1

)

(V

4

) = 0:6, we

have two transitions leading to the state labeled with �nish(V

4

) in the chain: one with probability

0.8 from the state labeled with back2up , and one with probability 0.6 from the state labeled with

table2up .

Before giving an example of an incorrect and incomplete plan, let us �rst formally de�ne the

chain associated with an arbitrary plan.

8

L-worlds version means: It is essentially the same plan like �

c

, only with its possible worlds W

i

exchanged by

its corresponding possible L-worlds V

i

.
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start

spin

table2up

0.36

0.64 0.5

0.6

0.4
T0

T1

T2

0.5

T3

1T4
finish(V4)

back2up
0.2

0.8

T

0

T

1

T

2

T

3

T

4

0

B

B

B

B

@

T

0

T

1

T

2

T

3

T

4

0 0:36 0:64 0 0

0 0 0:4 0 0:6

0 0 0:5 0:5 0

0 0 0 0:2 0:8

0 0 0 0 1

1

C

C

C

C

A

Figure 7: The Markov chain associated with the L-worlds version of �

c

, and its transition matrix.

0 probability transitions are omitted in the graphical representation.

De�nition 18 (Markov chain associated with a plan) Let 	 = (s; g;K;A) be a planning

problem description, P the associated probabilistic background knowledge, and � a plan for 	.

For any T -node � in � and any non-root T -node �

0

in �, let

Succ(�;�) = fv j there exists a successor � of � in � labeled with vg)

Pre(�

0

;�) = the label of the predecessor of �

0

in �

Let furthermore T (�) be the set of T -nodes in �, and let T

0

(�) be de�ned as follows

9

T

0

(�) = f Finish(v) j v is the label of a leaf of � g

[ f Inc(Start ; v) j v 2 Poss

K

j

L

(s) n Succ(Start ;�) g

[ f Inc(�; v) j � 2 � is a non-root T -node labeled with �

and v 2 r

K

j

L

(�; Pre(�;�)) n Succ(�;�) g

The Markov chain associated with �, noted by the triple hfX

t

; t = 0; 1; : : :g; T (�) [ T

0

(�); �i, is

the family fX

t

; t = 0; 1; : : :g of random variables taking values in the set of states T (�) [ T

0

(�),

such that the conditional probability distribution � of X

t+1

is de�ned as:

�(X

t+1

= �

0

j X

t

= � ) =

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

p

s

(Pre(�

0

;�)) for � = Start and �

0

2 T (�)

p

s

(v) for � = Start and �

0

= Finish(v)

p

s

(v) for � = Start, �

0

= Inc(Start ; v)

p

(�;Pre(�;�))

(Pre(�

0

;�)) for � 2 T (�) labeled with � and �

0

2 T (�)

p

(�;Pre(�;�))

(v) for � 2 T (�) labeled with � and �

0

= Finish(v)

p

(�;Pre(�;�))

(v) for � 2 T (�) labeled with � and �

0

= Inc(�; v)

1 for � 2 T

0

(�) and �

0

= �

0 otherwise

9

For any Finish(v), resp. Inc(�; v) Markov state, we assume that there exists a corresponding action called

�nish(v), resp. inc(�;v), which is de�ned in the analogous way used for start in de�nition 7.
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Figure 8: Incorrect and incomplete plan �

0

c

and its associated Markov chain with its transition

matrix

Figure 8 shows the incorrect and incomplete plan �

0

c

for our cup example, and its associated

Markov chain. The root T -node in �

0

c

is incorrect, because it has a W -node labeled with V

6

as

successor, and V

6

is not a possible L-world in s

c

. Hence, the transition probability from Start to

the state labeled with wait (the successor of the T -node labeled with V

6

in �

0

c

) is p

s

c

(V

6

) = 0.

Start is also incomplete: it should have a W -node labeled with V

2

as successor. Hence, there is a

transition from Start to the state labeled with inc(Start ; V

2

) in the Markov chain, with probability

p

s

c

(V

2

) = 0:64. The same case arises with spin , which should also result in V

2

. The two leaves of

�

0

c

being respectively labeled with V

3

and V

4

|the former leaf being incorrect|the two respective

Finish absorbing states are inserted in the Markov chain.

4.2.4 De�ning the Rating Function for Possible Worlds Plans

The sections 4.2.2 and 4.2.3 deliver the tools for de�ning for possible worlds plans what this

section 4.2 is all about in general: a rating function on plans. In the light of the intended use

of the rating for de�ning correctness in the limit, we de�ne it as (and call it) the correctness and

completeness degree (ccd) of a plan. Like the proper notions of plan correctness and completeness,

ccd is de�ned inductively, starting at the nodes, and generalizing to plans then.

According to De�nitions 8 and 9, there are three types of nodes of interest when de�ning

correctness and completeness of plans. These nodes are Start, the other T -nodes of the plan, and

the W -node leaves of the plan, to which we want to assign a degree of correctness and completeness.

The respective ccd function is speci�ed in De�nition 19. Before presenting it, we comment on the

respective de�nition steps and motivate our choice. We give the comments for L-worlds, but they

apply analogously to full worlds.
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T -node correctness degree. De�nition 8 says a T -node is correct i� it has no \wrong" W -

node successor. This means that if Succ(�;�) is the set of possible L-worlds labeling the W -nodes

successors of T -node � in plan �, then Succ(�;�) must be included in the set of possible L-worlds

that are expected as labels of successors of � . These latter L-worlds are in Poss

K

j

L

(s) for the Start

node, and in r

K

j

L

(�; v) for a non-root T -node labeled with � and whose W -node predecessor is

labeled with v. The correctness degree for T -nodes is then chosen to be inversely proportional to

the number of \wrong" L-worlds in Succ(�;�). Having n denote set di�erence, the degree is more

exactly:

1

card(Succ(Start;�)nPoss

K

j

L

(s))+1

for Start

1

card(Succ(�;�)nr

K

j

L

(�;v))+1

for non-root T -nodes

Leaf W -node correctness. De�nition 8 says a leaf is correct i� it matches the goal g of the

problem, where \matching" means that the goal is derivable from the respective possible L-world.

This could be translated directly into the measure of leafW -node correctness by saying that leaves

matching the goal get a 1, and all others 0.

We want to allow for a bit more 
exibility. We assume the user has to de�ne a utility function

on L-worlds that is goal-oriented in the sense that it yields 1 i� the goal is true in some L-world.

More precisely, we assume there is a function u : Poss

K

j

L

�L ! [0; 1] such that

u(v; g)

�

= 1 for v and g s.t. K [ v ` g

< 1 otherwise

Given such a goal-oriented utility function u, the correctness degree for a leaf labeled with v is

u(v; g).

T -node completeness degree. De�nition 9 says a T -node is complete i� it has at least all

the \right" W -nodes successors. This means that if Succ(�;�) is the set of possible L-worlds

labeling the W -nodes successors of T -node � in plan �, then Succ(�;�) must be a superset of

the set of possible L-worlds that are expected as labels of successors of � . We could then proceed

in analogy to T -node correctness to measure the extent to which this property holds. However,

there exists a more accurate measure here, because the L-worlds in Succ(�;�) can be considered as

random variables. Thus, we choose to measure the T -node completeness degree as the probability

of Succ(�;�); given that the initial situation s holds for � = Start, or, respectively, given that � is

applied in v, for a non-root T -node � labeled with � whose predecessor is labeled with v. Hence,

the degree is

�

p

s

(Succ(Start ;�)) for Start

p

(�;v)

(Succ(�;�)) for non-root T -nodes

There is no completeness degree for plan leaves, since completeness does not depend on them, see

De�nition 9.

Node correctness and completeness degree. We choose to de�ne the degree of correctness

and completeness of each T -node as the product of the two respective degrees, and that of a leaf

as its correctness degree.

Plan correctness and completeness degree. De�nitions 8 and 9 say a plan is correct and

complete i� all its nodes of interest are correct and complete. We then choose to measure the extent

to which a plan is correct and complete, as the average degree of correctness and completeness per

node encountered during its execution. As the formal de�nition of the correctness and completeness

degree of a plan looks a bit lengthy, we don't repeat it here from the following De�nition 19. It

involves essentially two terms, averaging over the ccd value of, �rst, all T -nodes, and, second, all
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leaves, via the Finish states of the Markov chain.

10

These two terms are then weighed and added,

where the weight factors must sum to 1 and re
ect the relative importance given to �nal execution

states and to non-�nal ones.

The following de�nition summarizes the above informal explanations.

De�nition 19 (Node and Plan Correctness and Completeness Degrees)

Let � be a plan for the planning problem description 	 = (s; g;K;A); P the probabilistic back-

ground knowledge, and u the goal-oriented utility function. For any task � in �, let Succ(�;�) be

de�ned as follows:

Succ(�;�) = fv j there exists a successor � of � in � labeled with vg

Degree of root correctness and completeness: The degree of correctness and completeness

of Start in � wrt. 	 is

ccd

	

(Start;�) =

p

s

(Succ(Start ;�))

card(Succ(Start ;�) n Poss

K

j

L

(s)) + 1

Degree of non-root T -node correctness and completeness: Let � be a non-root T -node in

� labeled with � and let � labeled with v be its predecessor in �. The degree of correctness

and completeness of � in � wrt. 	 is

ccd

	

(�;�) =

p

(�;v)

(Succ(�;�))

card(Succ(�;�) n r

K

j

L

(�; v)) + 1

Degree of leaf correctness and completeness: Let � labeled with v be a leaf of �. The degree

of correctness and completeness of � in � wrt. 	 is

ccd

	

(�;�) = u(v; g)

Degree of plan correctness and completeness: Let the Markov chain associated with � be

hfX

t

; t = 0; 1; : : :g; T [ T

0

; �i. The degree of correctness and completeness of � wrt. 	 is

ccd

	

(�) = c

1

� ccd

T�node

+ c

2

� ccd

leaf

;

where c

1

; c

2

are positive real constants such that c

1

+ c

2

= 1, and

ccd

T�node

=

X

�2T

 

ccd

	

(�;�) �

1

X

t=0

�(X

t

= � j X

0

= Start)

!

X

�2T

1

X

t=0

�(X

t

= � j X

0

= Start)

ccd

leaf

=

X

Finish(�)2T

0

�

ccd

	

(�;�) � lim

t!1

�(X

t

= Finish(�) j X

0

= Start)

�

Fortunately, the correctness and completeness degree for a plan can be computed from the fun-

damental matrix of its associated Markov chain, and from the matrix representing the transitions

from the transient states to the absorbing states of this chain, as stated in the following propo-

sition. To see the claimed equality, one has simply to substitute the elements of the respective

vectors for their values given in appendix A (for N

0

and (N � R)

0

), and in the proposition itself

(for U;U

0

and

!

1

); therefore, we give no formal proof here.

10

De�nition 19 does not treat Inc states in a special way. In e�ect, the ccd rating does not properly reward if

the goal is accidentally achieved by an Inc node. As the planner itself or its rating is not the central topic of this

paper, we allow for this slight sloppyness, which simpli�es matters.
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Proposition 20 (Computation of ccd) Let � be a plan for the planning problem description

	 = (s; g;K;A); P the probabilistic background knowledge, and u the utility function. Let fur-

thermore N , resp. R be the fundamental matrix, resp. the matrix representing the transitions from

transient states to absorbing states, of the Markov chain associated with �. The following equation

is correct:

ccd

	

(�) = c

1

(N

0

� U )

(N

0

�

!

1

)

+ c

2

(N � R)

0

� U

0

;

where

� N

0

is the �rst row (i.e., the row corresponding to Start) of the matrix N of the chain,

� (N � R)

0

is the �rst row of the matrix N � R,

� U is a column vector containing the degrees of completeness and correctness of the T -nodes

of the plan,

�

!

1

is a column vector of the same dimension as U , consisting only of 1's, and

� U

0

is the column vector containing the degree of correctness and completeness of theW -nodes

corresponding to the Finish states of the chain, and 0 for the Inc states.

As an immediate consequence of Proposition 20, we see that ccd

	

maps plans to [0; 1] and that

ccd

	

(�) = 1 i� � is a correct and complete plan. Hence, we can state

Corollary 21 ccd

	

is a rating function.

Finally, let us give an example and compute ccd

	

c

(�

0

c

), where 	

c

and P

c

are de�ned as before.

De�ne u

c

(v; g) = 1 i� K

c

[ v ` g, and 0 otherwise; and let c

1

= c

2

= 0:5. We have:

T

0

T

1

T

2

T

3

N

0

= ( 1 0:36 0:144 0 )

T

4

T

5

T

6

T

7

(N � R)

0

= ( 0:216 0:072 0:072 0:64 )

ccd

	

c

(T

0

;�

0

c

) = 0:36=2 = 0:18

ccd

	

c

(T

1

;�

0

c

) = 1=1 = 1

ccd

	

c

(T

2

;�

0

c

) = 0:5=1 = 0:5

ccd

	

c

(T

3

;�

0

c

) = 1=1 = 1

ccd

	

c

(V

3

;�

0

c

) = 0

ccd

	

c

(V

4

;�

0

c

) = 1

U =

T

0

T

1

T

2

T

3

0

B

B

@

0:18

1

0:5

1

1

C

C

A

U

0

=

T

4

T

5

T

6

T

7

0

B

B

@

1

0

0

0

1

C

C

A

Therefore,

ccd

	

c

(�

0

c

) = 0:5 �

0:18 + 0:36 + 0:072

1 + 0:36 + 0:144

+ 0:5 � 0:216 ' 0:31

As said previously, it is reasonable to demand that the rating of a plan be updatable during

the execution of this plan, according to additional information that becomes available. First,

this can be useful for an executor. If several plans are available for solving a problem, it can

begin the execution with the plan with the best a-priori rating, but interrupt this execution and

switch to another plan whenever this one becomes of higher rating. Second, this can be useful

for on-line planners, which incrementally improve the correctness and completeness of some part

of a plan during its execution. Based on the material just presented, it is straightforward to
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de�ne a continually updating version of ccd. Assume the current state of the plan execution (i.e.,

the currently executed task) is �

0

. We have to substitute in De�nition 19 every occurrence of

X

0

= Start with X

0

= �

0

; moreover, the computation of the rating's update must use the N and

(N � R) matrices' rows corresponding to �

0

. Further detail concerning this issue lies outside of

this paper's scope.

4.3 De�ning Correctness, Ltd.

We �nally use the rating function to de�ne limited correctness, as announced several times above.

We do not consider the special case of possible worlds planning here; our planner pascale2, which

shows correctness in the limit with respect to the ccd function, is discussed in the subsequent

Section 5.

The notion of correctness in the limit is based on the following idea. Standard notions of planner

correctness and completeness (as given in De�nitions 11 and 12) require that a planner generate

all correct and complete plans for a problem, and only these. Practically, that is too restrictive.

In particular, as long as nothing is assumed about preferences among correct and complete plans

(like plan cost or plan generation time, as brie
y addressed at the beginning of Section 4.2), it

is even worthless to require generating more than one such plan: one is as good as all the others

then. Furthermore, if the number of computation steps available to generate plans is small, then

even incomplete and incorrect plans may be of interest. Using a rating function for measuring the

\degree" of plan correctness and completeness, we consequently require that the plans a planner

delivers get more correct and more complete as run time increases, and that a correct and complete

plan is returned eventually at some step t. Of course, we do not require that a limitedly correct

planner is really given as much as t steps, nor do we assume that it stops running then: it may

continue, searching for plans that are not only correct and complete, but also maximize some other

plan quality function.

De�nition 22 (Planner correctness in the limit) Let % be a family of rating functions. A

planner (P; A

P

) is correct in the limit wrt. %, i� for all problems 	:

1. if there is a plan that is correct and complete wrt. 	, then the planner will eventually deliver

a correct and complete plan, i.e., then there exists t 2 A

P

(	) such that %

	

(P(	)(t)) = 1,

and

2. the ratings of the plans that the planner returns increase monotonically as planning steps

increase, i.e., for all t

1

; t

2

2 A

P

(	), if t

2

� t

1

then %

	

(P(	)(t

2

)) � %

	

(P(	)(t

1

))

We will use the terms limited correctness, limitedly correct, resp., as short forms of correctness in

the limit, resp., correct in the limit.

Comparing this de�nition with the one of \pure" planner correctness (De�nition 11), a remark-

able theoretical di�erence is that limited correctness requires that at least one correct and complete

plan be returned, whereas the normal correctness does not. This may be interpreted as a 
avor of

\completeness in the limit" in this concept of limited correctness. The de�nition guarantees, on

the other hand, that a limitedly correct planner actually turns to a correct planner after the magic

number of t steps, for which there is no analogy with respect to completeness. Even with this

idea in mind, the monotonicity condition is more restrictive than might be considered necessary:

another reasonable variant of limited correctness could require planner correctness after the �rst

correct and complete plan has been delivered, but not insist on monotonicity.

However, the very idea of planner correctness in the limit makes sense only if plan correctness

and completeness is the dominant factor in an overall measure of plan quality; and if this is the case,

then it seems reasonable to require a non-arbitrary, somewhat predictable behavior of the planner

output with respect to this factor. There may be additional criteria to discriminate di�erent correct

and complete plans, measured by particular other quality sub-functions. We neither require nor

exclude these.
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Let us state some observations concerning the de�nition; all these observations follow directly

from the respective other de�nitions, which is why we do not formally prove them.

� While the de�nition of a rating function ensures that they all rate P(	)(t) with 1, i.e., item

(1) is independent of rating functions, it is not required that a plan �

1

rated higher than

�

2

by some rating function %, is also rated higher than �

2

by some other rating function %

0

.

Consequently, a planner that is limitedly correct wrt. % need not be so wrt. %

0

, because it

may violate the monotonicity condition (2) for %

0

.

� All correct planners that eventually return plans for all solvable problems, i.e., A

P

(	) 6= ;

for all solvable 	, are limitedly correct wrt. to all rating functions|as should intuitively be

expected. Consequently, all correct and complete planners are limitedly correct wrt. to all

rating functions.

� Incorrect, incomplete, and both incorrect and incomplete planners may be limitedly correct

wrt. some rating function.

The latter item is of most importance here. For good reasons, practical planners tend to be

highly incorrect and incomplete. The notion of correctness in the limit allows them to keep this

salvaging property, yet being put into a clear relationship to an arbitrarily neatly or idealistically

de�ned action calculus.

Of course, being able to establish this relationship does not come for free. Even assuming that

a limitedly correct planner is built in the ex ante fashion (i.e., have the action calculus �rst, and

build the planner then), it still requires designing an appropriate rating function and building the

planner accordingly. However, we are convinced that this e�ort is worth being taken, if the goal

is to build planners delivering plans with a clear semantics, yet operating under realistic run time

constraints.

5 pascale2|An Anytime Uncertainty Planner

To complete the description of the case of our case study, it remains to sketch the planner pascale2

we have constructed; in particular, we have to show that it is limitedly correct wrt. the ccd rating

function. We summarize what we had to implement, sketch how we did it, draw the conclusions

from this sketch, and present an example. Note that pascale2 is not described here as the

objective of our work|in which case its description would have been more detailed|but just as

the byproduct or example of our view of planner construction. Aspects of it or its predecessor are

presented in more depth elsewhere [23, 24].

The work described in the previous sections yields precise functional speci�cations for the

following planner components:

1. the possible worlds formalism for L-worlds, including the rj

L

function,

2. the computation of the probability distributions over the space of possible L-worlds,

3. the manipulation of possible worlds plans, and

4. the plan rating function ccd, including generation and handling of the Markov chains asso-

ciated with plans.

Implementing these components is far from trivial, at least if their run time is something to worry

about. Note in particular that computing the a-priori probability distribution p over the set of

possible L-worlds requires computing all possible L-worlds; this can be done prior to planning and

once for each new domain, but it is inherently costly. Given the possible L-worlds, computing

an approximation of p is easy and relatively e�cient following the lines of [4]. Concerning the
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computation of the possible L-worlds resulting from the performance of an action, [5] describes an

algorithm for doing that relatively e�ciently, which is, however, not yet used in pascale2.

An important point for the following description is that pascale2 calculates and inserts into

the plan the exact result of applying an action in some possible L-world. As a consequence, all

T -nodes in a pascale2-plan are correct and complete, all pascale2-plans are complete, and only

their leaves may be incorrect. This, in turn, simpli�es the calculation of the ccd value of the plans,

since the �rst term in the calculation (cf. Proposition 20) always equals the c

1

constant.

Even if the issue of how to implement the above components is crucial for obtaining a usable

planner, we sacri�ce a more thorough description for saving space and refer to the given references.

The pascale2 component that must be discussed, however, is:

5. the search strategy for traversing the space of possible L-world plans.

This strategy is not constructively speci�ed by the formalism; it is just constrained if the planner

is supposed to be correct in the limit. pascale2 is not correct and not complete, and we have

mentioned above (4.3) that the order in which plans are generated is crucial for such planners'

property of being limitedly correct, because of the monotonicity requirement for the plan rating.

Figure 9 speci�es a somewhat simpli�ed version of pascale2's core in pseudo-code and in-

formally describes its top-level sub-procedures. Obviously, it performs a best-�rst backtracking

search through a search space consisting of plans. Note that this procedure practically excludes

completeness of the planner using it, as it will discard, among others, all correct and complete

plans whose quality is not higher than the one of an already found correct and complete plan.

While this is the case for pascale2, it is in no way necessary. Variants of the other well-known

basic search strategies could also have been used for this basic procedure.

The step size (in the sense of the planner de�nition 10) is an iteration through the mainwhile-

loop. The procedure is trivially any-step for this step de�nition, i.e., it can return a plan after

any step, namely, best-plan. (We will show a protocol of the respective best-plans for the example

problem 	

c

below.) Owing to the use of the global variable best-plan, the procedure can trivially

be made interruptible at any time after the initialization phase, provided that the assignment to

this variable within the while loop is atomic.

The measure used to order plans is given by the sub-procedure quality(	;�). The value it

returns can be identical to ccd

	

(�), but we do not require that this be the case. In general, one

might use more sophisticated quality functions that take, e.g., operator cost, execution time, or

plan generation time into account, maybe even weighing it with the probability data provided by

the Markov chain. pascale2 allows for the 
exibility of using such a quality function. However,

to be correct in the limit, it su�ces that the planning procedure use a quality function that is

order-preserving wrt. ccd in the sense of the following lemma. Formally proving this lemma would

be technically e�ortful, which is why we don't do it here; the intuitive argument, however, should

be obvious, given the search strategy de�ned by the o�-line-plan procedure and the role played by

the quality procedure.

Lemma 23 The procedure o�-line-plan in Figure 9 yields a limitedly correct planner, if for all

problems 	 its sub-procedure quality(	;�) is order-preserving wrt. ccd

	

in the sense that

1. if quality(	;�

1

) > quality(	;�

2

), then ccd

	

(�

1

) � ccd

	

(�

2

), and

2. if there is a correct and complete plan for 	, then there is a plan � such that ccd

	

(�) = 1,

and for all �

0

: if ccd

	

(�

0

) < 1, then quality(	;�) > quality(	;�

0

).

To give an impression of pascale2's behavior, we show its results for the cup domain problem

	

c

. We choose quality(	;�) = ccd

	

(�), i.e., correctness in the limit is guaranteed. Figure 10

shows how the quality of the available best plan monotonically increases over run time, ending up

at 1 after 3.6 seconds; the respective plan �

00

c

is shown in Figure 11.

Looking at �gure 11, one can see how pascale2 expands the current plan in depth �rst manner,

expanding the most probable outcome of the last inserted task �rst. Consequently, a plan that is
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function o�-line-plan (problem,max-step) =

best-plan := empty-plan(problem);

search-space := [ best-plan ];

current-step := 0;

while search-space 6= [] and current-step < max-step

current-step := current-step + 1;

current-plan := head(search-space);

if quality(problem,current-plan) > quality(problem,best-plan)

then best-plan := current-plan �;

T := last-inserted-task(current-plan);

L := select-maximal-probable(current-plan,T,problem);

if L 6= nil

then successors := order(expand(current-plan,L,problem));

search-space := append(successors,tail(search-space)) �

end;

return best-plan

empty-plan(	) builds a plan embryo containing the Start T -node and the possible

models of the initial situation of problem 	.

quality(	;�) returns a quality value of plan � for the problem 	.

last-inserted-task(�) returns the lastly inserted T -node in plan �.

select-maximal-probable(�; �;	) returns the leaf of plan � that is maximally proba-

ble to be reached from T -node � , unless one of the leaves that can be reached from

� matches the goal of problem 	. In that case, returns the leaf that is maximally

probable to be reached from Start and does not match this goal. If there is none,

then returns nil.

expand(�; l;	) returns the list of valid plans resulting from the expansion of plan �

at leaf l, using the available actions of problem 	. Returns nil for correct and

complete plans.

order(�) orders the list of plans � in decreasing order of the quality(	;�) procedure.

Figure 9: pascale2's core procedure (simpli�ed), and its top-level sub-procedures. It is assumed

that the utility of all T -nodes equals 1.
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not yet correct and complete in general may well correctly and completely describe what happens

most probably if its execution is started, although it is not yet �nished. This behavior of pascale2

is the clue to the rapid increase of the ccd value at the beginning of the run time. (after 0.8 seconds,

ccd already has a value of 0.87.)

Since quality equals ccd for this experiment, there is no strictly better plan than �

00

c

. As the

criterion for returning other plans is a proper increase in quality, pascale2 does not return any

other correct and complete plans, e.g., the �

c

plan discussed earlier. Changing the comparison

criterion between the quality of the current plan and the best-plan to � would lead to returning

additional correct and complete plans. Note that the goal-oriented utility function for this example

was specially designed for the didactic purpose of yielding a relatively slow convergence towards a

correct and complete plan; using di�erent such functions, pascale2 would have generated other

plans|in most cases considerably faster than here.

pascale2 is implemented in Standard ML on a SUN Sparc IPX workstation.

6 Conclusion and Open Issues

The purpose of an action formalism is to specify the reasoning about prerequisites and consequences

of actions that an ideally rational agent should perform. A planner has to do reasoning about

prerequisites and consequences of actions, but if it insists on doing it in an idealistic way, then it is

likely to fail on most realistic usage constraints for practical applications. Consequently, it seems

the camp of interesting planners and the camp of interesting action formalisms are way apart.

Our idea to build a bridge between the two camps is to interpret the reasoning behavior of

planners as an approximation of the ideal reasoning as speci�ed by the formalism. If a planner is

correct in the limit and is given enough time, then it is guaranteed to deliver plans up to the ideal

as set by the action formalism; given less time, the degrees of incorrectness and incompleteness

of plans found until then can be quanti�ed by the plan rating, providing an exact measure of the

deviation relative to the ideal. Designing planners in this spirit of ex ante helps solve the often-

deplored problem of lack of formal background for plans and planners, and it provides a handle

for planner designers to making use of work from the camp of action formalisms.

The case study we have provided along with the generic piers for building such bridges demon-

strates that they cannot only be built between highly restrictive formalisms and very classical

planners. Moreover, the study is a written testimony for the fact that we do not claim turning

an action formalism into a planner is always straightforward. Maybe there is a straightforward

planner for every action formalism (one for the possible (L-)worlds formalism was the forerunner

of pascale2, called pascale [23]), but that is not our point. Starting from requirements for a

particular planner (like expressivity of the action language, anytime behavior, or quality features

for plans), we assume that the action formalism to lay under this particular planner will nearly

never be available o�-the-shelf. The e�ort for restricting the formalism, designing plans, de�ning

the rating function, and �nally building the planner will still be considerable. But we think the

potential result is worth a try.

The study also exempli�es or reveals a number of open issues in the general idea of building

planners ex ante. Let us address some of them, starting with special issues and turning more and

more general. We will not discuss pascale2 in particular: it was just used as the experiment in

this study and is more thoroughly discussed elsewhere [24].

Alternative de�nitions of correctness in the limit. While notions like limited correctness

of planners and correctness and completeness of plans will play key rolls in every method for

turning action formalisms into planners, they may well be de�ned di�erently, re
ecting di�erent

assumptions or domain characteristics. Let us �rst consider limited correctness.

De�nition 22 requires monotonicity of the rating function % over time. However, other versions

of limited correctness can be thought of. First, monotonicity of % might be considered unnecessary
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during the phase where no correct and complete plan has been found yet. This would enable the

planner to choose more freely which plan to consider currently best. However, revisiting Figure 10,

pascale2's rating converges smoothly (modulo the inevitable discontinuity) towards 1 for 	

c

and

the parameter setting chosen; such a smooth convergence would at least be discouraged by skipping

the monotonicity requirement. Second|just pushing further the argument for freedom of choice|

even after having found a correct and complete plan, the planner might be allowed to return plans

that are incorrect and incomplete, leaving as the only constraint on limited completeness that the

planner return a correct and complete plan sometime.

The point is: the monotonicity requirement does no harm; in particular it does in no way

(as one might suspect) force the planner into local plan optima from which there is no escape.

However, it restricts the choice of possible rating functions. It is not yet determined whether this

particular restriction is in general wise or obstructive.

Plan quality vs. rating functions. Closely related with the previous point, it is a crucial

question, what the determining factor is for considering plans \good" or \bad". If plan correctness

and completeness is not this factor, then the monotonicity requirement for rating functions will

most probably be troublesome. We assume there may exist domains in which this is the case.

Consequently, it remains an open question to de�ne a more general version of limited correctness

that constrains the planner behavior, yet allows an arbitrary quality function to guide the planner

behavior|or at least a quality function that is less restricted than by the order-preservingness

conditions in Lemma 23. In pascale2, we allow for using much more general quality de�nitions

than those yielding limited correctness, involving, e.g., operator cost. This very fact shows that we

see the practical necessity to do something about a more generous combination between a strict

rating function and a general quality measure.

The value of computation. Russell and Wefald [19] advocate the idea to meta-reason during

planning, to determine whether or not acting based on the plan developed so far pays more than

trying to enhance the plan quality by further planning. The idea is to de�ne the expected utility

of developing the recent plan and weigh it against the expected utility of acting right away.

This idea does not depend on whether or not the planner is based on some action formalism.

However, it nicely suits our particular blueprint for basing planners on action formalisms using

planner correctness in the limit. In particular, expected plan rating increase can be a major factor

in determining the expected utility of further developing the plan. It is a point for future work to

explicitly include the possibility for the meta-reasoning view into this blueprint.

Action formalisms to base planners on. In the introduction of this paper, we have stated

a basic hypothesis for our work (see the paragraph labeled with (1)), involving the requirement

that the formalism to lay under the ex ante planner construction be \reasonable". We still have

to explain what this means.

In fact, we do not see any theoretical constraints on the formalism. In particular, it need not

be decidable or even itself be in any way e�ciently implementable, because we have assumed that

a planner implementation use a restricted version of the formalism or an implementation that

approximates the real results of the formalism itself. In the latter case, the formalism is of course

only the approximative formal basis of the plans that the planner generates, which might be a

drawback for the overall goal of the ex ante planner construction of obtaining plans and planner

behavior with a clear semantics.

Consequentially, the only|inherently fuzzy|requirement on the formalism itself is that it

allow to de�ne a restricted version or approximation that both makes sense and is e�ciently

implementable. The latter point is crucial if the goal is building practical planners, as reasoning

in its action formalism lies at the heart of every planner. We have no recipe or theory for telling

which formalism allows for de�ning a reasonable restriction, or how to obtain it.
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General applicability of the approach. We have presented our work as a case study for our

supposedly more general method of ex ante planner construction. The crucial question is whether

this method is really generally applicable|be it in precisely the way we have described here, or in

some variation regarding the steps, notions, and de�nitions we have used. This question cannot

yet be answered conclusively.

In particular, while we see a fair amount of work that is closely related to single aspects of ours,

we are not aware of other work under the same or a comparable perspective. To repeat pointers

to related work from above, there is related work

� about anytime generation of plans [7]|but it does not ground the plan quality in the �rm

semantics provided by an action formalism;

� about giving plans a formal semantics [15]|but it is ex post, hence does not help the planner

designers, and does not deal with limited correctness;

� about implementing given formal action or planner models [2, 16]|but it strives for imple-

menting a planner that \directly" uses the formalism, which is instructive for understanding

the formalism and the particular planning aspect it focuses on, but is a dead end with respect

to building practical planners based on more expressive formalisms.

Consequently, answering the question whether our proposed method of planner construction is

generally applicable, would amount to generalizing from one complex experience, which, as common

sense tells, is better avoided. However, both this experience and theoretical analysis did not reveal

any very basic obstacles, and our �rst results reported here appear su�ciently promising that

our plans for further work include studying further cases, i.e., attempting to turn other action

formalisms into other planners, and study the general pattern behind.
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Figure 12: A Markov chain and its transition matrix.

A Markov Chain Basics

A Markov chain is a stochastic process whose probabilistic transition through a set of states at

some instant t+ 1 depends only on the state at the preceding instant t, and not on the states the

chain passed through prior to time t. If, furthermore, the transition probabilities do not depend

on t but remain stationary over time, the chain is said to be stationary. Stationary chains can by

de�nition be represented by a single transition matrix relating the probability of the succeeding

state to the current state.

De�nition 24 (Markov chain, transition matrix) AMarkov chain is a family of random vari-

ables fX

t

; t = 0; 1 : : :g taking values in a set of states S, such that the conditional probability

distribution � of the state at time t + 1 has the following property for all t 2 f0; 1; : : :g and all

s

0

; : : : ; s

t+1

2 S:

�(X

t+1

= s

t+1

j X

t

= s

t

; : : : ; X

0

= s

0

) = �(X

t+1

= s

t+1

j X

t

= s

t

)

A Markov chain is stationary if and only if for all t 2 f0; 1; : : :g and all s

i

; s

j

2 S:

�(X

t+1

= s

j

j X

t

= s

i

) = m

ij

for some constant m

ij

2 [0; 1]. The transition matrix for a stationary Markov chain is the matrix

with entries m

ij

.

A classical example of a process that can be modeled as a stationary Markov chain is a random

walk. A particle moves between �ve points p

1

; : : : ; p

5

on a line. At each step, it can go from one

point to the right with probability r, and from one point to the left with probability 1 � r. It

moves until it reaches one of the two boundaries of the line, and remains at this boundary. The

corresponding stationary chain and its transition matrix are shown in Figure 12.

We are interested here in a special type of stationary chain called absorbing chain. An absorbing

chain is a stationary chain with two types of states: transient states, which can be left on at least

one path that never returns, and absorbing states, which cannot be left once entered. It is easy to

see that the random walk is an absorbing chain. p

1

and p

5

are absorbing, while the other states are

transient. The transition matrix of an absorbing chain can be divided into 4 submatrices as shown

below, where the submatrix Q denotes transitions from transient to transient states, R denotes

transitions from transient to absorbing states, I is the identity matrix, and O consists only of 0's.

trans:

abs:

�

trans: abs:

Q R

O I

�
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These submatrices can be used to compute quantitative information about the process modeled as

an absorbing chain. The matrix I � Q always has an inverse N , called the fundamental matrix,

where N = (I �Q)

�1

=

P

1

t=0

Q

t

. The de�nition of N implies that its ij

th

element is the average

number of times transient state s

j

will be entered before an absorbing state is reached, given that

we are in transient state s

i

. That is, for two transient states s

i

and s

j

:

N

i;j

=

1

X

t=0

�(X

t

= s

j

jX

0

= s

i

)

Furthermore, the ij

th

element of matrix N � R is the probability of reaching absorbing state s

j

,

given that we are in transient state s

i

. That is, for transient state s

i

and absorbing state s

j

:

(N � R)

i;j

= lim

t!1

�(X

t

= s

j

jX

0

= s

i

)

Note that this probability of reaching an absorbing state can also be viewed as the average number

of times the absorbing state will be entered before the process becomes stable.

B The Equivalence Between Using Worlds and L-worlds

In Section 4.1.2, we postponed the proof of the claim that using full worlds and using L

c

-worlds is

equivalent in the cup domain. This is the place to deliver it.

What we are heading for is a statement of the form

K

c

[ r

K

c

(�; s) is logically equivalent to K

c

[ r

K

c

j

L

c

(�; s)

for every formula s 2 L

c

and every cup domain action �. There are di�erent ways to get there.

The tedious one is to check it for all actions and all sets of possible worlds. Instead, we state two

more generally applicable conditions, the conjunction of which is su�cient for the equivalence to

hold. These two conditions are true for the cup domain.

11

The �rst condition needed is spanningness, as stated in De�nition 13. For the cup domain, it

can be easily veri�ed that L

c

is spanning wrt. K

c

.

The second condition requires each postcondition Post

i;j

of � to be su�ciently precise, so as

to ensure, for any possible world w verifying Pre

i

, the uniqueness of the possible world having the

minimal di�erence with w, among the possible worlds veri�ying Post

i;j

. This property, which we

call alternative-wise result uniqueness, is formally de�ned as follows.

De�nition 25 (Alternative-wise result uniqueness) Let � be an action as in De�nition 4. �

yields alternative-wise unique results i� for every possible world w and every precondition Pre

i

of

�:

if w [K j= Pre

i

and j 2 f1; : : : ; l(i)g

then there is exactly one possible world w

0

such that Di�(w;w

0

) is (set inclusion)

minimal among the possible worlds satisfying Post

i;j

.

Again, it can be easily veri�ed that all actions in the cup domain are alternative-wise result unique.

In fact, this property already got used in Section 4.2.2 (see Footnote 7).

The required proposition, then, is the following. As stated above, its antecedent is true for the

cup domain; hence it implies the required equivalence.

Proposition 26 (Equivalence Theorem) Let � be an action, L a subset of the ground atoms

of L, and K the background knowledge.

If L is spanning w.r.t. K and if � yields alternative-wise unique results, then K [ r

K

(�; s) is

logically equivalent to K [ r

K

j

L

(�; s) for every formula s 2 L.

11

Note that [3] contains a similar proposition stating the reqiured equivalence (Proposition 15). However, it is

not applicable here because the independence property is not true for L

c

.
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Proof Let w be a possible world, wj

L

its corresponding possible L-world, Pre

i

a precondition

of �, such that K [ w j= Pre

i

, and let Post

i;j

(j 2 f1; : : : l(i)g) be a postcondition of �. The

equivalence is demonstrated in three steps.

� By alternative-wise result uniqueness, there is a unique possible world w

0

among those ver-

ifying Post

i;j

such that for every possible world w

00

6= w

0

verifying Post

i;j

Di�(w;w

0

) �

Di�(w;w

00

). This implies that w

0

is the unique possible world verifying Post

i;j

such that for

every possible world w

00

6= w

0

verifying Post

i;j

:

{ Di�(w;w

0

) � Di�(w;w

00

), or

{ every causal change set of (w;w

0

) is a causal change set of (w;w

00

) and not vice versa.

Hence, according to the closeness de�nition on possible worlds (De�nition 3)

w-Closest

K

(Post

i;j

) = fw

0

g (5)

� By de�nition of L-worlds, w implies wj

L

, and, as L is spanning, wj

L

[ K implies w [ K.

Hence wj

L

[K is logically equivalent to w [K, and

wj

L

[K j= Pre

i

i� w [K j= Pre

i

(6)

This means that the same branch of � gets applied in a possible world and in its corresponding

possible L-world.

� Let us prove that:

wj

L

-Closest

K

j

L

(Post

i;j

) = fw

0

j

L

g (7)

where w

0

j

L

is the possible L-world corresponding to w

0

.

First, recall that wj

L

-Closest

K

j

L

(Post

i;j

) = fw

0

j

L

g i� w

0

j

L

veri�es Post

i;j

(i.e., w

0

j

L

[

K j= Post

i;j

), and for every possible L-world w

00

j

L

6= w

0

j

L

verifying Post

i;j

, we have

Di�(wj

L

; w

0

j

L

) � Di�(wj

L

; w

00

j

L

).

By alternative-wise result uniqueness, we know that for every possible world w

00

6= w

0

veri-

fying Post

i;j

, we have Di�(w;w

0

) � Di�(w;w

00

). By spanningness, there must be X;Y that

are sets of ground literals of L not in L, such that

Di�(wj

L

; w

0

j

L

) [X � Di�(wj

L

; w

00

j

L

) [ Y

where w

0

j

L

and w

00

j

L

, by an argument similar to that of (6), both statisfy Post

i;j

.

Since X and Di�(wj

L

; w

0

j

L

), as well as Y and Di�(wj

L

; w

00

j

L

) are disjoint sets, it must be

the case that

{ Di�(wj

L

; w

0

j

L

) = Di�(wj

L

; w

00

j

L

) and X � Y , or that

{ Di�(wj

L

; w

0

j

L

) � Di�(wj

L

; w

00

j

L

) and X � Y

However, the �rst case cannot occur: it implies that w

0

j

L

= w

00

j

L

, which by spaningness

implies that w

0

= w

00

, contradicting the hypothesis. Hence we have shown that for every pos-

sible L-world w

00

j

L

6= w

0

j

L

satisfying Post

i;j

it is true that Di�(wj

L

; w

0

j

L

) � Di�(wj

L

; w

00

j

L

).

Thus, we have proved (7).

� From (5), (7), and spaningness, we have

K [ wj

L

-Closest

K

j

L

(Post

i;j

) is logically equivalent to K [ w-Closest

K

(Post

i;j

);

which, using (6), transfers from single worlds and postconditions to arbitrary formulas and the

result functions r

K

and r

K

j

L

, respectively. As w;�; Pre

i

were chosen arbitrarily, the claimed

equivalence follows.


