
UNIVERSIT

�

AT DORTMUND

Fachbereich Informatik

Lehrstuhl VIII

K

�

unstliche Intelligenz

Grdt: Enhancing Model-Based Learning for Its

Application in Robot Navigation

LS{8 Report 5

Volker Klingspor

Dortmund, January 1, 1994

Universit�at Dortmund

Fachbereich Informatik

University of Dortmund

Computer Science Department

Forschungsberichte des Lehrstuhls VIII (KI), Research Reports of the unit no.VIII (AI)

Fachbereich Informatik Computer Science Department

der Universit�at Dortmund of the University of Dortmund

ISSN 0943-4135

Anforderungen an:

Universit�at Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

ISSN 0943-4135

Requests to:

University of Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

e-mail: reports@ls8.informatik.uni-dortmund.de

ftp: kimo.informatik.uni-dortmund.de:pub/Reports

Grdt: Enhancing Model-Based Learning for Its

Application in Robot Navigation

1

LS{8 Report 5

Volker Klingspor

Dortmund, January 1, 1994

Universit�at Dortmund

Fachbereich Informatik

1

This work is partially funded by the European Community under the project B-Learn II

(P7274) and the Ministry for Sciences and Research of the German federal state Nordrhein-

Westfalen

Abstract

Robotics is one of the most challenging applications for the use of machine learning.

Machine learning can o�er an increase in
exibility and applicability in many robotic

domains. In this paper, we sketch a framework to apply inductive logic programming

(ILP) techniques to learning tasks of autonomous mobile robots. We point out di�erences

between three existing algorithms used within this framework and their results. Since

all of these algorithms have problems in solving the tasks, we developed grdt (grammar

based rule discovery tool), an algorithm combining their ideas and techniques.

CONTENTS 1

Contents

1 Introduction 2

2 Representation and Scenario 2

3 Di�erent ILP algorithms 5

3.1 Foil : 6

3.1.1 General description of Foil : 6

3.1.2 Learning results in doorway domain : : : : : : : : : : : : : : : : : : 6

3.2 Grendel : 7

3.2.1 General description of Grendel : 7

3.2.2 Learning results in the doorway domain : : : : : : : : : : : : : : : : 8

3.3 Rdt : 10

3.3.1 General description of Rdt : 10

3.3.2 Learning results in the doorway domain : : : : : : : : : : : : : : : : 12

4 Grdt: Learning with rule schemata de�ned by grammars 13

4.1 Grammars de�ning sets of rule schemata : 13

4.2 The algorithm of grdt : 14

4.3 Learning results : 16

5 Conclusion 18

2 2 REPRESENTATION AND SCENARIO

1 Introduction

In contrast to most of the robot systems actually used, future systems must have more

user-friendly human-system interfaces, must be adaptable and portable to new, previously

unknown environments, and must be able to handle uncertain and unknown events [Dill-

mann, 1993]. Presently, commands are most often given on the level of real coordinates

or at best by names of objects of which the positions the system knows. Flexible and

user-friendly systems demand for commands in terms of concepts. Then, the user is not

called to specify concrete objects like a speci�c door in the command. Instead, he can

tell the robot to perform an action with any instance of a concept, e.g., he can tell the

robot to go to the next a priori unknown door and enter the room. To execute this kind

of commands, the robot must be able to classify the objects it perceives with its sensors,

i.e., to assign them to concepts. Additionally, the system must be able to perform actions

with these objects like moving through the doorway of the door found. [Morik and Rieger,

1993] have shown that this requires perceptual features and action features to be inte-

grated, and perceptual features to be action oriented and action features to be perception

oriented. They developed a representation for these operational concepts based on �rst

order logic.

To simplify the adaptation and the transmission of systems to new environments and

new tasks, the rules to classify the perceptions should be learned by the system. In recent

years, many algorithms for machine learning were developed, some of them able to learn

in restricted �rst order logic. Nevertheless, applying these algorithms to real systems like

autonomous mobile robots is a another challenging task.

In this paper, we will �rst present the representation of the perceptions of a mobile

robot and a scenario used for learning, both developed by [Morik and Rieger, 1993]. In

Section 3, we will describe three di�erent learning algorithms of inductive logic program-

ming, ILP, the research area of learning Horn clause programs. We will also describe the

results we got from applying these learning algorithms to our learning tasks. In Section 4,

the new algorithm grdt combining several ideas of these algorithms is presented, able

to solve the learning problems we introduced. The paper ends with a short conclusion in

Section 5.

2 Representation and Scenario

Suppose we have a robot moving through a known environment and measuring distances

to objects while moving, using ultrasonic sensors. In our experiments, we used data of

traces through a simple room (Figure 1). Most often, the robot moves along or through

a doorway

1

. Figure 2 shows the measurements the robot gets from a left side sensor of

the robot, called sensor 5, while entering the room diagonally through the doorway. This

path is indicated as thicker line in Figure 1. The x-axis displays the time points of the

measurements, the y-axis shows the measured distances. In the �rst part of the trace, the

sensor gets no echo because the left hand side of the robot is empty. Then, the robot senses

two times the door frames and three times the side of the cupboard. During the next three

measurements, again the robot gets no echo, because the front side of the cupboard does

1

The data were prepared by the University of Karlsruhe.

3

Trace 24

Figure 1: Room with traces

Distances

Timepoints

2218 2614 16

Figure 2: Distances measured by sensor 5 in trace 24

4 2 REPRESENTATION AND SCENARIO

not re
ect the sonar beam back to the robot. The last measurements represent the wall.

To be able to apply the sensed distances to more than this object, it is necessary to

construct features from these measurements, i.e., we need a �rst step of abstraction. For

this task, a sequence of measurements of a single sensor is divided into intervals of linear

changes of measured distances. A symbol is attached to every interval dependent on the

gradient of its function. The resulting sequence of these basic features for the example is:

no measurement (trace24, Or, sensor5, 1, 14,).

decreasing (trace24, Or, sensor5, 14, 15, -22).

incr peak (trace24, Or, sensor5, 15, 16, 47).

decreasing (trace24, Or, sensor5, 16, 18, -30).

no measurement (trace24, Or, sensor5, 18, 22,).

decreasing (trace24, Or, sensor5, 22, 26, -30).

The arguments of these predicates are the trace number, the orientation of the sensor

relative to the world coordinates, the sensor number, the start and the end time point of

the sequence and a value equivalent to the gradient. For example, the last line represents

a sequence of decreasing measurements, measured by sensor 5 in trace 24 from the 22th

to the 26th time point. The chain of time points determines the need of �rst order logic

as representation language

2

.

Since we want to learn from classi�ed examples, the user must classify the traces, e.g.:

\in trace 24, the robot moved diagonally through the doorway". From this classi�cation,

from information about the environment, and from the measurements, examples at di�er-

ent representation levels are generated. The �rst level describes situations, in which a sin-

gle sensor sensed a particular constellation of edges. For example, the fact s jump(trace24,

sensor5, 14, 18, diagonal) represents that sensor 5 sensed a jump in trace 24 from time

point 14 to 18, i.e., two parallel walls got sensed in sequence, while the robot moved diag-

onally along this jump. At the next representation level, situations are gathered, in which

di�erent sensors belonging to the same group of sensors out of several given groups sensed

the same single sensor features. E.g., the fact sg jump(trace24, left side, 14, 18, diagonal)

expresses that the left side sensors sensed a jump, while the robot moved diagonally along

the jump. At the highest representation level, we combine features of di�erent sensor

groups, e.g., the left side and the right side sensors, to describe the perceptual part of

operational concepts.

Our aim is to use machine learning to �nd rules describing the concepts of each level

in terms of the next lower level. First, we need rules describing single sensor features by

patterns of basic features. Such a rule could be:

decreasing(Tr, , Se, T

1

, T

2

,) &

incr peak(Tr, , Se, T

2

, T

3

,) &

decreasing(Tr, , Se, T

3

, T

4

,)

--> s jump(Tr, Se, T

1

, T

4

, diagonal).

2

Learning the semantic of basic features and how to compute them, is another learning task, that will

be solved by the University Dortmund within the project BLEARN-II.

5

or

stable(Tr, , Se, T

1

, T

2

,) &

decr peak(Tr, , Se, T

2

, T

3

,) &

stable(Tr, , Se, T

3

, T

4

,)

--> s jump(Tr, Se, T

1

, T

4

, parallel).

The second kind of rules are sensor group feature descriptions. For these rules, we need

additional knowledge about the class membership of the sensors in the particular traces.

We try to learn rules combining single sensor features like in the following rule:

s jump(Tr, Se

1

, T

1

, T

2

, diagonal) &

s jump(Tr, Se

2

, T

3

, T

4

, diagonal) &

sclass(Tr, Se

1

, , , left side) &

sclass(Tr, Se

2

, , , left side) &

d1succ(T

1

, T

3

) & d1succ(T

2

, T

4

)

--> sg jump(Tr, left side, T

1

, T

4

, diagonal).

The �rst two premises express that two sensors perceived a jump while the robot moved

diagonally along this jump. The next two premises guarantee that these two sensors belong

to the sensor class left side. The last two premises relate the start and end time points to

be sure that the perceptions are chronologically close enough. These rules should classify

the perceptions of the robot while it moves in new and unknown environments. Then,

the robot is able to interpret commands of the conceptual level and to execute actions

according to these commands. Also, it can monitor whether the actions are performed

correctly, because it can compare the measurements it got with the expected perceptions

and it can change the further planned actions, if it sensed unexpected values.

In this paper, two learning task are used to describe the behavior of the learning

algorithms. In the �rst task, we try to learn descriptions for the single sensor feature

s jump. We calculated 2129 basic features from 17472 measurements in 28 traces. In

these traces, 206 times a sensor perceived a jump. For the second task, we use the

206 occurrencies of s jump to learn descriptions for sensor group features. Because of

the large number of sensor classes we de�ned, we have 225 examples of the sensor group

feature sg jump.

3 Di�erent ILP algorithms

E�cient machine learning in full �rst order logic is impossible because �rst order logic is

undecidable. Most �rst order logic learners operate on more or less restricted Horn clause

logic. The most frequent restriction used by these ILP-algorithms is to abstain from proper

functions. There are additional syntactical restrictions like learning linked clauses only,

i.e., clauses with all the arguments linked via the premises to the head arguments of the

clause. The restriction used determines the complexity of the learning task and possibly

the need of further semantical heuristics leading the search into areas of special interest

and pruning parts that seem to be uninteresting.

I will now present three ILP-algorithms. The �rst one learns linked Horn clause pro-

grams using a semantical heuristic useful in many domains. The other two algorithms

6 3 DIFFERENT ILP ALGORITHMS

use di�erent kinds of an explicit de�nition of the hypothesis space, so that it can be re-

duced. In the third algorithm, a complete search in the restricted hypothesis space will

be performed.

3.1 Foil

foil [Quinlan, 1990] is presently one of the most acknowledged ILP-algorithms. It attracts

attention because of applicability and good results in various domains without the need of

additional knowledge, e.g., in form of syntactical structures as described in the next two

sections.

3.1.1 General description of Foil

foil's hypothesis space is linked Horn clause programs. To handle this huge space, parts

of it will be pruned semantically during learning by a heuristic. This heuristic leading

search through the hypothesis space to �nd a short path to a good hypothesis, is the

information gain, well-known from the propositional learner id3 [Quinlan, 1986].

foil's algorithm can be described as follows:

{ while positive examples are still uncovered by the previously learned rules

{ while negative examples are still covered by the recent hypothesis

{ build all specializations of the recent hypothesis by extending the clause by

a linked literal

{ calculate the information gain for all these specializations

{ choose the specialization with the best information gain for the next iter-

ation

The hypothesis space is searched depth-�rst, the choice of the next hypothesis only

depends on the heuristic. Clearly, using a heuristic, it is possible that interesting parts of

the hypothesis space are pruned erroneously. foil's heuristic evaluates a hypothesis only

dependent on the newly added literal. This makes the system shortsighted, since it rejects

the addition of literals of which the positive e�ect is seen only after more literals have

been added. So foil cannot learn all rules of its hypothesis space: it is an incomplete

algorithm.

3.1.2 Learning results in doorway domain

We applied foil to our two learning tasks. In the �rst case, learning patterns of basic

features to describe single sensor features, foil learned a single rule:

3.2 Grendel 7

no measurement(Tr, , Se, T

k

, T

1

,) &

stable(Tr, , Se, T

1

, T

2

,) &

incr peak(Tr, , Se, T

2

, T

3

,) &

something happened(Tr, , Se, T

3

, T

n

,) &

straight to(Tr, , Se

i

, T

i

, T

j

,)

--> s jump(Tr, Se, T

1

, T

3

, M).

3

This rule might separate the positive examples from the negative examples

4

, but it

is an unsatisfying rule for our application for two reasons. First, with this rule, the

classi�cation of s jump not only depends on the measurements during the perception of

the jump, but also on the measurements before and after the jump (premises 1 and 4).

Second, the pattern of the speci�ed sensor is combined with perceptions of an arbitrary

other sensor possibly directed to another orientation. This constellation is only given in

the environment we learn from, it cannot be expected in other environments.

foil was also applied to the second learning task: learning descriptions for sensor

group features. The result shows that exclusively using of information gain is insu�cient

to lead the search. foil needs much time for learning, we cancelled the experiment after

26 hours with only 3 learned rules. Additionally, the learned rules cannot be used for our

task. For instance, the �rst learned rule was:

d1succ(T

1

, F) &

s jump(Tr, Se

1

, T

1

, T

2

, Mov) &

sg jump(Tr, Sc

1

, F, T

2

, Mov) &

sclass(Tr, Se

2

, J, K, L) &

s jump(Tr

2

, Se

3

, J, F, O)

--> sg jump(Tr, Sclass, T

1

, T

2

, Mov).

This rule relates the given situation with arbitrary sensors, traces and so on. The

longer the rules become, the more disucc-premises are added, relating many uninteresting

time points of arbitrary sensor features.

Since foil, one of the best learning algorithms with heuristic search, is unable to learn

the intended concept descriptions, we need algorithms restricting capable of the hypothesis

space by syntactical structures to lead the learning into areas of expected rules.

3.2 Grendel

3.2.1 General description of Grendel

grendel [Cohen, 1991, Cohen, 1992, Cohen, 1993] is a learning algorithm based on foil.

Representation language, search strategy, and hypothesis evaluation are identical. The

important di�erence is the way grendel specializes hypotheses. This specialization can

be determined by the user with a grammar explicitly de�ning the hypothesis space. This

grammar is an extended context free grammar: instead of usual terminal and nonterminal

symbols, terminal and nonterminal literals are used. In each specialization step, only

3

Variables beginning with an underscore do not occur twice, they are anonymous.

4

foil uses the closed world assumption, so examples not given are considered negative ones.

8 3 DIFFERENT ILP ALGORITHMS

body(s jump(Tr, Se, Beg, End, Mov)) ! or(Mov), seq(Tr, Se, Beg, End).

seq(Tr, Se, Beg, End) ! bf(Tr, Se, Beg, End).

seq(Tr, Se, Beg, End) ! bf(Tr, Se, Beg, I), seq(Tr, Se, I, End).

or(Mov) ! m parallel(Mov).

or(Mov) ! m diagonal(Mov).

or(Mov) ! m straight to(Mov).

or(Mov) ! m straight away(Mov).

bf(T, S, B, E) ! stable(T, , S, B, E,).

bf(T, S, B, E) ! increasing(T, , S, B, E,).

bf(T, S, B, E) ! decreasing(T, , S, B, E,).

bf(T, S, B, E) ! incr peak(T, , S, B, E,).

bf(T, S, B, E) ! decr peak(T, , S, B, E,).

bf(T, S, B, E) ! straight to(T, , S, B, E,).

bf(T, S, B, E) ! straight away(T, , S, B, E,).

bf(T, S, B, E) ! no measurement(T, , S, B, E,).

bf(T, S, B, E) ! no movement(T, , S, B, E,).

Figure 3: grendel's grammar to learn single sensor feature descriptions

those specializations will be generated and tested that can be derived by the grammar in

one step. Then, all these new hypotheses will be evaluated. grendel uses a heuristic

similar to the information gain used by foil. The only di�erence is that this heuristic does

not only depend on the part of the hypothesis generated up to now, i.e., on the terminal

literals of the hypothesis. Instead, grendel builds all further grammatical derivations of

the hypothesis and calculates the information gain also based on the further covered and

uncovered examples. So grendel is more foresighted than foil.

3.2.2 Learning results in the doorway domain

We applied grendel to our two learning tasks. We had to de�ne grammars for both

tasks. They are displayed in Figures 3 and 4

5

. It was easy to create the grammar for

this task. In short time, grendel learned all patterns describing sensor features. The

following rule is one example for the rules learned with grendel:

diagonal(Mov) &

decreasing(Tr, Se, , T

1

, T

2

,) &

incr peak(Tr, Se, , T

2

, T

3

,) &

decreasing(Tr, Se, , T

3

, T

4

,)

--> s jump(Tr, Se, T

1

, T

4

, Mov).

But grendel's grammars are very domain speci�c, because the predicate names occur

in the grammar. For every change of a predicate name, the grammar must be changed.

5

Terminal symbols are typed sans serif in this and all further �gures, nonterminals slanted. Predicate and

argument variables are written upper case, predicate names and constant arguments lower case. Learnable

variables (rdt) are typed italic.

3.2 Grendel 9

body(sg jump(Tr,SCl,T

1

,T

2

,M)) ! sc(SCl), or(M),

sequence(SF, Tr, SCl, T

1

, T

2

, M).

sequence(SF, Tr, SCl, T

1

, T

2

, M) ! part1(SF, Tr, SCl, T

1

, T

2

, M, -1, Se

new

),

seq1(SF, Tr, SCl, T

1

, T

2

, M, Se

new

).

sequence(SF, Tr, SCl, T

1

, T

2

, M) ! seq2(SF, Tr, SCl, M, , T

1

, T

2

).

seq1(SF, Tr, SCl, T

1

, T

2

, M, Se) ! []

seq1(SF, Tr, SCl, T

1

, T

2

, M, Se) ! part1(SF, Tr, SCl, T

1

, T

2

, M, Se, Se

new

),

seq1(SF, Tr, SCl, T

1

, T

2

, M, Se

new

).

part1(SF, Tr, SCl, T

1

, T

2

, M, Se, Se

new

) ! sf(SF, Tr, Se

new

, T

1

, T

2

, M),

sclass(Tr, Se

new

, , , SCl),

Se < Se

new

.

seq2(SF, Tr, SCl, M, T

old

, T

i

, T

last

) ! part2(SF, Tr, SCl, M, T

old

, T

i

, T

last

),

seq2(SF, Tr, SCl, M, T

old

, T

i

, T

last

) ! part2(SF, Tr, SCl, M, T

old

, T

i

, T

new

),

seq2(SF, Tr, SCl, M, T

i

, T

new

, T

last

).

part2(SF, Tr, SCl, M, T

old

, T

i

, T

new

) ! sf(SF, Tr, Se, T

i

, T

new

, M),

di�(T

old

, T

i

),

sclass(Tr, Se, , , SCl).

sf(SF, Tr, Se, T

1

, T

2

, M) ! SFC where sensor feature(SF),

SFC =.. [SF, Tr, Se, T

1

, T

2

, M].

sc(SCl) ! SCC where sensor class(SCl),

SCC =.. [SC, SCl].

or(M) ! ORC where movement(M),

ORC =.. [M, Or].

di�(T

1

,T

2

) ! d1succ(T

1

,T

2

).

di�(T

1

,T

2

) ! d2succ(T

1

,T

2

).

di�(T

1

,T

2

) ! d3succ(T

1

,T

2

).

di�(T

1

,T

2

) ! d4succ(T

1

,T

2

).

Figure 4: grendel's grammar to learn sensor group feature descriptions

10 3 DIFFERENT ILP ALGORITHMS

BF(Tr, , Se, T

1

, T

2

,)

! SF(Tr, Se, T

1

, T

2

, Movement)

BF(Tr, , Se, T

1

, T

2

,) &

BF(Tr, , Se, T

2

, T

3

,)

! SF(Tr, Se, T

1

, T

3

, Movement)

.

.

.

BF(Tr, , Se, T

1

, T

2

,) &

BF(Tr, , Se, T

2

, T

3

,) &

.

.

.

BF(Tr, , Se, T

5

, T

6

,) &

BF(Tr, , Se, T

6

, T

7

,)

! SF(Tr, Se, T

1

, T

7

, Movement)

Figure 5: rdt's rule schemata to learn single sensor feature descriptions

Moreover, the name of the goal predicate must be speci�ed in the grammar, so a grammar

is applicable to only one goal concept.

In contrast to the good result of the �rst task, the result of learning sensor group

feature descriptions was unsatisfactory. First, it was very complicated to create a correct

grammar. Only lazy macros (the grammar rules with the keyword \where")

6

enabled us

to specify that some predicate names must be the same in di�erent steps of specialization.

Second, grendel needs much time for each hypothesis test, because it calculates the

information gain dependent on further derivations of the grammar and the number of

these derivations is very high. We cancelled the experiment after a long time without

having learned any rule. But the generated hypotheses look promising.

3.3 Rdt

The last learning algorithm to be presented, rdt [Kietz and Wrobel, 1992], is based

on ideas of [Emde, 1987]. rdt di�ers signi�cantly from the two previously described

algorithms. The representation formalism of mobal, into which rdt is integrated, is

more powerful than foil's and grendel's, because negated literals are allowed to occur

in the clauses. Additionally, rdt is able to distinguish positive, negative, unknown, and

contradictory examples.

3.3.1 General description of Rdt

To restrict the hypothesis space, rdt uses rule schemata (also called rule models) de-

scribing sets of learnable rules. These rule schemata are second order logic rules. Their

predicate variables are successively instantiated during learning. After each instantiation,

6

grendel expands a lazy macro A ! B where P by proving P and adding a grammar rule A� ! B�,

where � is the used substitution, for every possible proof [Cohen, 1993]. Since only a �nite set of context

free rules are added, the language remains context free.

3.3 Rdt 11

Pattern(Trace, Sensor

1

, T

1

, T

2

, Movement) &

sclass(Trace, Sensor

1

, , , Class)

! sg pattern(Trace, Class, T

1

, T

2

, Movement).

Pattern(Trace, Sensor

1

, T

11

, T

12

, Movement) &

Pattern(Trace, Sensor

2

, T

21

, T

22

, Movement) &

succ(T

11

, T

21

) &

sclass(Trace, Sensor

1

, , , Class) &

sclass(Trace, Sensor

2

, , , Class)

! sg pattern(Trace, Class, T

11

, T

22

, Movement).

Pattern(Trace, Sensor

1

, T

1

, T

2

, Movement) &

Pattern(Trace, Sensor

2

, T

1

, T

2

, Movement) &

Sensor

1

< Sensor

2

&

sclass(Trace, Sensor

1

, , , Class) &

sclass(Trace, Sensor

2

, , , Class)

! sg pattern(Trace, Class, T

1

, T

2

, Movement).

Pattern(Trace, Sensor

1

, T

11

, T

12

, Movement) &

Pattern(Trace, Sensor

2

, T

21

, T

22

, Movement) &

Pattern(Trace, Sensor

3

, T

31

, T

32

, Movement) &

succ(T

11

, T

21

) & succ(T

21

, T

31

) &

sclass(Trace, Sensor

1

, , , Class) &

sclass(Trace, Sensor

2

, , , Class) &

sclass(Trace, Sensor

3

, , , Class)

! sg pattern(Trace, Class, T

11

, T

32

, Movement).

Pattern(Trace, Sensor

1

, T

1

, T

2

, Movement) &

Pattern(Trace, Sensor

2

, T

1

, T

2

, Movement) &

Pattern(Trace, Sensor

3

, T

1

, T

2

, Movement) &

Sensor

1

< Sensor

2

& Sensor

2

< Sensor

3

&

sclass(Trace, Sensor

1

, , , Class) &

sclass(Trace, Sensor

2

, , , Class) &

sclass(Trace, Sensor

3

, , , Class)

! sg pattern(Trace, Class, T

1

, T

2

, Movement).

Figure 6: Some of rdt's rule schemata to learn sensor group feature descriptions

12 3 DIFFERENT ILP ALGORITHMS

s jump(Trace, Sensor

1

, T

11

, T

12

, parallel) &

s jump(Trace, Sensor

2

, T

21

, T

22

, parallel) &

d1succ(T

11

, T

21

) &

sclass(Trace, Sensor

1

, , , left side) &

sclass(Trace, Sensor

2

, , , left side)

! sg jump(Trace, left side, T

11

, T

22

, parallel).

s jump(Trace, Sensor

1

, T

1

, T

2

, diagonal) &

s jump(Trace, Sensor

2

, T

1

, T

2

, diagonal) &

s jump(Trace, Sensor

3

, T

1

, T

2

, diagonal) &

Sensor

1

< Sensor

2

& Sensor

2

< Sensor

3

&

sclass(Trace, Sensor

1

, , , right side) &

sclass(Trace, Sensor

2

, , , right side) &

sclass(Trace, Sensor

3

, , , right side)

! sg jump(Trace, right side, T

1

, T

2

, diagonal).

Figure 7: Sensor group feature descriptions learned by rdt

rdt evaluates the new possibly partially instantiated hypothesis. This evaluation is quite

di�erent from the way the other algorithms evaluate the hypotheses. It counts the number

of covered positive and negative examples, the number of uncovered positive examples, the

total number of examples, and how many additional facts can be derived by this hypoth-

esis. The user can build an arbitrarily complex expression using these items, and hence

decide in which case a hypothesis will be accepted.

In contrast to the algorithms previously described, rdt searches through the whole

hypothesis space. Only if no further specialization of a hypothesis leads to an acceptable

rule, this part of the hypothesis space will be pruned, since completeness is preserved in

this case. This case occurs, for example, if the number of covered positive examples of the

tested hypothesis is less than the number required to accept the hypothesis.

3.3.2 Learning results in the doorway domain

Since the structure of the expected rules can be speci�ed and this structure is well known

in our domain, rdt learns good rules in both applications. But we need a large num-

ber of rule schemata to solve the learning task. For the �rst task, we have one schema

for each expected pattern length (see Figure 5). rdt orders the rule schemata by �-

subsumption [Plotkin, 1970, Plotkin, 1971]. This allows pruning, if a hypothesis is already

too special to be accepted. But the used schemata are not comparable by �-subsumption,

none of two schemata is more general than the other. Therefore, exactly the same partial

patterns were tested for each schema. Clearly, this behavior slows rdt down. So rdt

needed about twenty hours to learn exactly the same rules as grendeldid.

In the second learning task, we have much more complicated rule schemata; Figure 6

shows some of them. Nevertheless, learning is very fast, because the breadth of the

hypothesis space, i.e., the number of instantiable predicates, is small. Figure 7 shows

some of the learned rules. Unfortunately, it is again necessary to enter rule schemata of

13

di�erent length, thus increasing the e�ort of entering and decreasing the clarity of the set

of schemata.

4 Grdt: Learning with rule schemata de�ned by gram-

mars

Testing and comparing the di�erent learning methods yields the following results:

� The information gain heuristic does not guide learning to the desired hypotheses.

Additional knowledge about the syntactical structure of the preferred rules is neces-

sary.

� Rule schemata and grammars can be used to describe these structures, but rule

schemata are unwieldy because of the static length of each schema. Grammars of

grendel are unwieldy because of the predicate names to be �xed in the grammar

and the problem of demanding for the same predicate names in di�erent iterations.

� The additional information gain heuristic of grendel may be very costly.

� The choice of the con�rmation criterion of rdt is much more
exible than the

pruning algorithm used by grendel.

Why not combining ideas of grendel and rdt to get a more powerful learning al-

gorithm for our domain? The result is an algorithm using grammars to describe rule

schemata instead of de�ning rules immediately. These rule schemata will be created suc-

cessively during learning and will be used by an rdt-like algorithm instantiating the

predicate variable and testing the generated partial hypotheses.

4.1 Grammars de�ning sets of rule schemata

We will now introduce the use of grammars de�ning sets of rule schemata with a sequence

of examples. In our �rst example rules should be learned where one object must be

classi�ed to two concepts to apply the learned rule. For this task one rule schema is

necessary:

P(X) & Q(X) ! Concl(X)

rdt tries to �nd predicate names for the predicate variables Q and P satisfying the con-

�rmation criterion. This rule schema can be described with a single context free grammar

rule:

Concl(X) ! P(X), Q(X).

In the case that the object X is not classi�ed to a �xed number of concepts to derive

the conclusion, rule schemata of di�erent length are necessary:

P

1

(X) ! Concl(X)

P

1

(X) & P

2

(X) ! Concl(X)

P

1

(X) & P

2

(X) & P

3

(X) ! Concl(X)

.

.

.

14 4 GRDT: LEARNING WITH RULE SCHEMATA DEFINED BY GRAMMARS

The maximal necessary length of the rule schemata must be known a priori to learn all

suggested rules. The following grammar de�nes an in�nite set of rule schemata of the

previous structure:

Concl(X) ! IT(X).

IT(X) ! P(X).

IT(X) ! P(X), IT(X).

Both previously described learning tasks can also be easily described with grendel's

grammars. The only di�erence is that grendel requires �xing the predicate names to be

used in the grammar. Instead of this, grdt determines them in runtime during learning.

In the next learning task rules describing transitivity should be learned. Therefore, an

arbitrary predicate occurs multiple times as premise of the rule:

P(X

1

, X

2

) ! Concl(X

1

, X

2

).

P(X

1

, X

2

) & P(X

2

, X

3

) ! Concl(X

1

, X

3

).

P(X

1

, X

2

) & P(X

2

, X

3

) & P(X

3

, X

4

) ! Concl(X

1

, X

4

).

.

.

.

These rules can be described by grendel's grammars only for a �xed set of predicate

names, for each one an own branch must be built. grdt's grammars allows the user to

use predicate variables as arguments of nonterminal literals. Then the predicate variables

of the di�erent iterations which are normally di�erent by de�nition are uni�ed. The

following example shows a grammar de�ning the previously displayed rule schemata:

Concl(X

s

, X

e

) ! IT(P, X

s

, X

e

).

IT(P, X

p

, X

e

) ! P(X

p

, X

e

).

IT(P, X

p

, X

e

) ! P(X

p

, X

2

), IT(P, X

2

, X

e

).

4.2 The algorithm of grdt

This section brie
y describes the new algorithm grdt. The algorithm starts with the goal

predicate as conclusion and generates the �rst hypothesis depending on the grammar. It

then searches the hypothesis space in depth-�rst order from general to special hypotheses.

Every iteration consists of three steps:

1. Specialization of the hypothesis

2. Test of the hypothesis

3. Evaluation of the test

Specialization The specialization step consists of four alternatives:

� if the hypothesis contains an uninstantiated predicate variable,

try to �nd an admissible instantiation of this variable; (backtrackable)

� else if the hypothesis contains a nonterminal symbol,

try to expand the nonterminal; (backtrackable)

4.3 Learning results 15

Concl(Tr, Se, T

1

, T

2

, M) ! seq(Tr, Se, T

1

, T

2

, M).

seq(Tr, Se, T

i

, T

2

, M) ! BF(Tr, , Se, T

i

, T

2

,).

seq(Tr, Se, T

i

, T

2

, M) ! BF(Tr, , Se, T

i

, T

j

,),

seq(Tr, Se, T

j

, T

2

, M).

Figure 8: A grdt grammar to learn single sensor feature descriptions

� else if the hypothesis contains a constant to be learned,

try to �nd an admissible value for this constant; (backtrackable)

� else

no further specialization is possible, start backtracking.

Hypothesis test The following items will be counted like rdt does:

� number of covered positive examples;

� number of faultyly covered negative examples;

� number of uncovered positive examples;

� number of previously unknown facts that can be derived from the hypothesis;

� total number of examples.

If not all the predicate variables, constants to learn, and nonterminal symbols of the

hypothesis are instantiated, the hypothesis is called partial.

Evaluation of the test Depending on the hypothesis test and the parameter set, the

hypothesis will be evaluated. The following cases may appear:

� if the hypothesis is too special (i.e., the pruning criterion is satis�ed)

stop specializing and start backtracking;

� else if the hypothesis is partial,

continue specialization;

� else if the hypothesis is accepted (i.e., the con�rmation criterion is satis�ed)

store the rule and start backtracking. Further specialization is not sensible because

all more special rules are subsumed by the learned one;

� else

the hypothesis is too general, but cannot be expanded; start backtracking.

16 4 GRDT: LEARNING WITH RULE SCHEMATA DEFINED BY GRAMMARS

Concl(Tr, SCl, T

1

, T

2

, M) ! sf comb(Tr, SCl, T

1

, T

2

, M).

sf comb(Tr, SCl, T

1

, T

2

, M) ! SF(Tr, Se, T

1

, T

2

, M),

sclass(Tr, Se, , , SCl),

sf comb1(SF, Tr, SCl, T

1

, T

2

, M, Se).

sf comb(Tr, SCl, T

1

, T

2

, M) ! SF(Tr, Se, T

1

, T

i

, M),

sclass(Tr, Se, , , SCl),

sf comb2(SF, Di�, Tr, SCl, M, T

1

, T

2

).

sf comb1(SF, Tr, SCl, T

1

, T

2

, M, Se

old

) ! [].

sf comb1(SF, Tr, SCl, T

1

, T

2

, M, Se

old

) ! SF(Tr, Se, T

1

, T

2

, M),

sclass(Tr, Se, , , SCl),

Se

old

< Se,

sf comb1(SF, Tr, SCl, T

1

, T

2

, M, Se).

sf comb2(SF, Di�, Tr, SCl, M, T

old

, T

last

) ! SF(Tr, Se, T

1

, T

last

, M),

sclass(Tr, Se, , , SCl),

Di�(T

old

, T

1

).

sf comb2(SF, Di�, Tr, SCl, M, T

old

, T

last

) ! SF(Tr, Se, T

1

, T

2

, M),

sclass(Tr, Se, , , SCl),

Di�(T

old

, T

1

),

sf comb2(SF, Di�, Tr, SCl, M, T

1

, T

last

).

Figure 9: A grdt grammar to learn sensor group feature descriptions

4.3 Learning results

We tested grdt with our two learning tasks. The used grammars are displayed in

Figures 8 and 9. First we will describe the way the grammar to learn single sensor features

(Fig. 8) will be expanded and the predicate variables instantiated. The algorithm starts

with the �rst grammar rule:

Concl(Tr, Se, T

1

, T

2

, M) ! seq(Tr, Se, T

1

, T

2

, M).

Since seq is a nonterminal, the �rst specialization is the expansion of seq, using the second

rule. This results in the rule schema:

BF(Tr, , Se, T

1

, T

2

,) ! Concl(Tr, Se, T

1

, T

2

, M).

This rule schema contains the predicate variable BF, for which an acceptable instantiation

must be found. In our domain, this may be one of the basic features, e.g., increasing.

After this instantiation, the rule schema cannot be further specialized, because no

further nonterminal, no predicate variable and no constant to be learned exists. So the

algorithms starts backtracking using the third rule. Applying this rule results in the rule

schema:

BF(Tr, , Se, T

1

, T

2

,) & seq(Tr, Se, T

2

, T

3

, M) ! Concl(Tr, Se, T

1

, T

e

, M).

Once again, grdt tries to instantiate the predicate variable BF. If an acceptable predicate

could be found (increasing in our example), the hypothesis will be further specialized,

4.3 Learning results 17

because the nonterminal seq can be expanded. The following two rule schemata will be

generated in the next steps:

increasing(Tr, , Se, T

1

, T

i

,) &

BF(Tr, , Se, T

2

, T

3

,)

! Concl(Tr, Se, T

1

, T

3

, M).

increasing(Tr, , Se, T

1

, T

2

,) &

BF(Tr, , Se, T

2

, T

3

,) &

seq(Tr, Se, T

3

, T

e

, M)

! Concl(Tr, Se, T

1

, T

e

, M).

This specialization step iterates until a hypothesis is found that is acceptable or to special.

For testing grdt we used a con�rmation criterion accepting a hypothesis if it covers

at least one positive example. rdt, grdt and grendel

7

learned exactly the same rules,

only the time they needed, displayed in Table 1, di�ers. foil cannot be compared with

the other algorithms. Because of its huge e�ort of memory, we had to restrict the learning

to only one of the 28 traces to get a result at all.

The grammar used for the second learning task (Fig. 9) must be explained, too. It

consists of two branches, sf comb1 and sf comb2, alternatively generated by the nontermi-

nal sf comb. SF and DIFF are predicate variables, which should be equal in each iteration

step. To reach this goal, they are passed to the next iteration as an argument of a non-

terminal literal. sclass is a �xed domain predicate which have not to be learned. For the

argument variables M and SCL constants must be learned. This grammar allows to learn

two kinds of rules. First, cases are covered where the di�erent sensors of a class sense the

same feature at the same time, e.g.:

s line(Tr, Se

1

, T

1

, T

2

, parallel) & sclass(Tr, Se

1

, , , front right corner) &

s line(Tr, Se

2

, T

1

, T

2

, parallel) & sclass(Tr, Se

2

, , , front right corner) &

Se

1

< Se

2

--> sg line(Tr, front right corner, T

1

, T

2

, parallel).

The second kind of rules covers cases, where the di�erent sensors sense the features

with a �xed delay, e.g.

s jump(Tr, Se

1

, T

1

, T

2

, diagonal) & sclass(Tr, Se

1

, , , left side) &

s jump(Tr, Se

2

, T

3

, T

4

, diagonal) & sclass(Tr, Se

2

, , , left side) &

s jump(Tr, Se

2

, T

5

, T

6

, diagonal) & sclass(Tr, Se

3

, , , left side) &

d2succ(T

1

, T

3

) & d2succ(T

3

, T

5

) &

d2succ(T

2

, T

4

) & d2succ(T

4

, T

6

)

--> sg jump(Tr, left side, T

1

, T

6

, diagonal).

Again, we compared the learning results of the algorithms and again we used a con�r-

mation criterion accepting hypotheses, if they cover one positive example for rdt. gren-

del is applied without use of the noise handlings parts, also accepting hypothesis covering

one example. foil learned rules senseless for our domain and grendel does not terminate

within two days. The time used by the algorithms for solving this task is also displayed

in Table 1.

7

grendel was applied without use of its abilities to handle noise

18 5 CONCLUSION

grendel rdt grdt # Examples # Facts

s line 35 min 8 h 42 min 1 h 42 min 718 2847

s jump 24 min 7 h 10 min 1 h 37 min 206 2335

sg line > 2 days 3 h 9 min 1 h 13 min 567 3488

sg jump > 2 days 30 min 9 min 225 2534

Table 1: Time used for learning

foil grendel rdt grdt

repr.

formalism

function free

Horn clause logic

see foil function

free Horn clause

logic (neg. liter-

als allowed)

see rdt

hypoth. space

restrictions

linked clauses antecedent descr.

grammars

rule schemata grammars de�n-

ing rule schemata

search control top-down top-down top-down top-down

depth �rst depth �rst breadth �rst depth �rst

controlled by

heuristic

contr. by gram-

mar and heuristic

contr. by rule

schemata, compl.

contr. by gram-

mar, complete

learning task 1 insu�cient result good result, fast good result, slow good result, fast,

simple grammar

learning task 2 insu�cient result no result, com-

plex grammar

good result, fast,

large set of rule

schemata

good result, fast,

grammar simpler

than grendel's

Table 2: Comparison of the di�erent learning algorithms

5 Conclusion

In this paper, we have presented a learning scenario in the domain of navigation of au-

tonomous mobile robots. We have compared the characteristics of three learning algo-

rithms, foil, grendel and rdt (see also Table 2). Each of these algorithms lacks some

properties useful for our tasks. So we combined ideas of the algorithms and built a new

one, grdt. We tested grdt in our doorway domain and indicated that it is able to

learn e�ciently in large domains, if the user can determine the syntactical structure of the

expected rules by a grammar. Thus, the algorithm can be applied to real domains like

learning descriptions for operational concepts.

The advantages of grdt in contrast to grendel are that the syntactical structure can

be de�ned more easily and the con�rmation criterion be chosen more
exibly. Nevertheless,

there are problems left.

The specialization step, presented in Section 4.2, does not guarantee that the new hy-

pothesis is really more special than the one before. Having grammars de�ning derivations

without any specialization of the derived rules, the algorithm not necessarily terminates.

If it terminates, it ful�lls a complete search through the hypothesis space de�ned by the

grammar. This behavior of grdt is derived from the completeness of rdt.

Another problem concerns the way how to exclude multiple search of the same part of

the hypothesis space, if di�erent derivations of the grammar yield the same hypotheses.

REFERENCES 19

References

[Cohen, 1991] Cohen, W. W. (1991). Grammatically biased learning: Learning horn the-

ories using an explicit antecedent description language. Technical report, AT & T Bell

Laboratories. (submitted to AIJ).

[Cohen, 1992] Cohen, W. W. (1992). The Grendel learning system. Technical report, AT

& T Bell Laboratories.

[Cohen, 1993] Cohen, W. W. (1993). Rapid prototyping of ILP systems using explicit

bias. Submitted to the 1993 IJCAI workshop on ILP.

[Dillmann, 1993] Dillmann, R. (1993). Entwicklungstendenzen und Anwendungen sym-

bolischer Lernverfahren in der Robotik. In Herzog, O., Christaller, T., and Sch�utt, D.,

editors, Grundlagen und Anwendungen der K�unstlichen Intelligenz { 17. Fachtagung

f�ur KI, Informatik aktuell, pages 28 { 43, Berlin. Springer-Verlag.

[Emde, 1987] Emde, W. (1987). Non-cumulative learning in METAXA.3. In Proceedings

of IJCAI-87, pages 208{210, Los Altos, CA. Morgan Kaufman. An extended version

appeared as KIT-Report 56, Techn. Univ. Berlin.

[Giordana and Saitta, 1990] Giordana, A. and Saitta, L. (1990). Abstraction { a gen-

eral framework for learning. In Procs. AAAI{Workshop on Automatic Generation of

Approximations and Abstractions, pages 245 { 256.

[Kaiser et al., 1993a] Kaiser, M., Klingspor, V., Mill�an, J., Moneta, C., Morik, K., and

Rieger, A. (1993a). B-Learn II: Deliverable 401. Behavioural Learning II, ESPRIT

Project 7274, University of Karlsruhe.

[Kaiser et al., 1993b] Kaiser, M., Klingspor, V., Mill�an, J., Moneta, C., Morik, K., and

Rieger, A. (1993b). B-Learn II: Deliverable 402. Behavioural Learning II, ESPRIT

Project 7274, University of Karlsruhe.

[Kietz, 1993] Kietz, J.-U. (1993). Some lower bounds for the computational complexity

of inductive logic programming. In Brazdil, P., editor, Proceedings of the European

Conference on Machine Learning, pages 115 { 123. Springer-Verlag.

[Kietz and Wrobel, 1992] Kietz, J.-U. and Wrobel, S. (1992). Controlling the complexity

of learning in logic through syntactic and task-oriented models. In Muggleton, S., editor,

Inductive Logic Programming, chapter 16, pages 335 { 360. Academic Press, London.

Also available as Arbeitspapiere der GMD No. 503, 1991.

[Knieriemen, 1991] Knieriemen, T. (1991). Autonome Mobile Roboter { Sensordatenin-

terpretation und Weltmodellierung zur Navigation in unbekannter Umgebung. Reihe

Informatik. BI-Wissenschaftsverlag, Mannheim.

[Morik and Rieger, 1993] Morik, K. and Rieger, A. (1993). Learning action-oriented per-

ceptual features for robot navigation. In Giordana, A., editor, Workshop notes: Learn-

ing Robots of the ECML-93. Also available as Research Report 3, Univ. Dortmund,

Informatik VIII, D-44221 Dortmund.

20 REFERENCES

[Morik et al., 1993] Morik, K., Wrobel, S., Kietz, J.-U., and Emde, W. (1993). Knowledge

Acquisition and Machine Learning { Theory, Methods, and Applications. Academic

Press, London.

[Plotkin, 1970] Plotkin, G. D. (1970). A note on inductive generalisation. Machine Intel-

ligence, 5:153 { 163.

[Plotkin, 1971] Plotkin, G. D. (1971). A further note on inductive generalisation. Machine

Intelligence, 6:101 { 124.

[Quinlan, 1986] Quinlan, R. (1986). Induction of decision trees. Machine Learning,

1(1):81{106.

[Quinlan, 1990] Quinlan, R. (1990). Learning logical de�nitions from relations. Machine

Learning, 5:239 { 266.

[Shapiro, 1981] Shapiro, E. Y. (1981). An algorithm that infers theories from facts. In

Proceedings of IJCAI-81, pages 446 { 451, Los Altos, CA. Kaufmann.

