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Abstract. Some classes of learning problems have been well-posed and investigated, especially the
ones of classification and regression. However, in practice we are often confronted with modified
learning tasks that deviate from these standard scenarios. In other words, given an application
problem, the assumptions made when treating it as a standard learning task are often not appropriate.
The consequence of an inadequate problem representation is, that either the learning performance in
terms of accuracy decreases, or some of the target hypotheses simply cannot be learned. In this paper
we present several nonstandard learning tasks, comprising learning drifting concepts, transductive
learning, learning with prior knowledge, and feature generation and selection, handling different
kinds of representation inadequacies. The corresponding studies have been conducted in connection
with the collaborative research center on computational intelligence (SFB 531).
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1 Introduction

Some classes of learning problems have been well-
posed and investigated. The task that has been
understood best is the one of concept learning
(classification): Given training examples X in a
representation language Lg, which are classified
according to an unknown Boolean function c(x)
and a space of hypotheses Ly, learn a Boolean-
valued function h € Ly, such that h(z) = c(z)
for all z. The quality of the learning result is
evaluated with respect to a test set of exam-
ples and a quality measure, most often accuracy
(h(z) = ¢(z)) and coverage (all z are handled by
h(z)). If the function to be learned is real-valued,
the learning task is called regression.

Deviations from the standard learning tasks in
learnability research are driven by the aim of de-
termining the exact border between polynomi-
ally learnable and not learnable concepts. In this
paper we outline some results achieved in our
project ”Identification and Formalization of Non-
standard Learning Tasks From Practical Applica-
tions” (B5) within the collaborative research cen-
ter ”Design and Management of Complex Techni-
cal Processes and Systems by Means of Compu-
tational Intelligence Methods” (SFB 531) study-
ing non-standard learning tasks that are driven by
real-world problems [4].

In practice we often meet modified learning tasks
that deviate from the standard scenario of classi-
fication and regression. In other words, given an
application problem, the assumptions made when
treating it as a standard learning task are often
not appropriate. As a consequence of this inap-
propriateness, either the learning performance in
terms of the predictive error (accuracy) decreases,
or some hypotheses simply cannot be learned.

In many real-world applications, the concept to
be learned changes over time. In reality we can-
not always assume a concept to be given once and
for all. The distribution of examples regarding the
labels is not always constant, but often changes
over time. The corresponding non-standard learn-
ing task is called learning drifting concepts.

It is not necessary for real-world problems to be
more difficult than the standard problems. Some-
times, we are given more knowledge than the stan-
dard learning tasks assume. Vapnik has raised the
question, why we should induce a hypothesis on
the basis of examples first and then apply our
learning result to a test set, if the given test set is
all of our problem. This means that sometimes we
know in advance the position or attributes of the
test examples that we have to classify. If this is
so, why not ease the learning task by directly ap-
proaching the test set? The non-standard learning



task of learning from labeled as well as unlabeled
examples is called transduction.

Another piece of information a user of machine
learning methods may have is the importance
or misclassification cost of particular examples.
While the standard tasks consider all examples
of equal worth and achievability, in medicine, for
instance, some critical observations can be made
only rarely, but are considered very important. If
a patient’s state can be measured by a particular
catheter and this catheter is only seldomly ap-
plied, we want to strengthen the influence of its
measurements on the learning result. As opposed
to background knowledge (i.e., a theory), prior
knowledge about examples can ease learning.

In cases where the example language Lg is not
expressive enough, the correct hypothesis cannot
be found by the learner. If, for instance, a learn-
ing algorithm can only separate data linearly, but
the positive examples are separated by a curve
(e.g., a polynomial) from the negative examples,
the target concept cannot be determined. A map-
ping from the original feature space to another one
may shape the examples, such that the learner can
recognize the target concept. The transformation
of Lg in order to ease learning is called feature
generation. A contrary situation occurs, if the ex-
ample language contains too many irrelevant or
redundant features. This often degrades the learn-
ing performance. Intuitively, we can imagine that
the true concept is hidden in the noise of irrelevant
descriptions. A solution to this problem is feature
selection, i.e., the process of removing redundant
or irrelevant features from the original feature set.

1.1 Overview

In the following section we give a short intro-
duction into the principles of support vector ma-
chines (SVM) (Section 2), since, due to its positive
theoretical and practical properties, this learning
method was intensively used in our experiments.
Subsequently, we briefly present results achieved
by studying different non-standard learning tasks:
learning drifting concepts (Section 3), transduc-
tion (Section 4), learning with prior knowledge
(Section 5), and feature generation and selection
(Section 6). To study these non-standard learning
tasks a flexible learning environment was needed.
A short description of an environment that fulfills
the necessary requirements is given in Section 7.
Finally, Section 8 summarizes the most important
results of our work and gives a short outlook to
open research topics in the field of non-standard
learning tasks.

2 Support Vector Machines

Support vector machines are based on the prin-
ciple of structural risk minimization (SRM) [32]
from statistical learning theory. In their basic
form, SVM learn linear decision rules,
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described by a weight vector @ and a threshold b.
The idea of structural risk minimization is to find
a hypothesis h for which one can guarantee the
lowest probability of error. For SVM, [32] shows
that this goal can be translated into finding the
hyperplane with maximum soft-margin. Comput-
ing this hyperplane is equivalent to solving the
following optimization problem:

Optimization Problem 1 (SVM (primal))

Minimize: V (,b,€) = g d+0 Y& (1)
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subject to:

In this optimization problem, the FEuclidean
length ||| of the weight vector is inversely pro-
portional to the soft-margin of the decision rule.
The constraints (2) require that all training ex-
amples are classified correctly up to some slack
&. If a training example lies on the “wrong” side
of the hyperplane, the corresponding &; is greater
or equal to 1. Therefore E?Zl &; is an upper bound
on the number of training errors. The factor C in
(1) is a parameter that allows trading-off training
error vs. model complexity.

For computational reasons, it is useful to solve the
Wolfe dual of optimization problem 1 instead of
solving optimization problem 1 directly [32].

Optimization Problem 2 (SVM (dual))
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Joachims has developed a fast algorithm for com-
puting the solution to this optimization problem
9, 12J: We use this algorithm implemented in
SV M'9ht for the classification and transduction'
experiments described in this paper.2

IThe learning task of transduction and the correspond-
ing optimization problems are described in Section 4.
28V MY9ht: available at hittp://sumlight.joachims.org/



Support vectors are those training examples &;
with a; > 0 at the solution. From the solution
of optimization problem 2, the decision rule can
be computed as

- =

The training example (Zysy, Yusy) for calculating b
must be a support vector with a,s, < C. Finally,
the training losses &; can be computed as

& =maz(l —y; [@ - T; + b],0).

For solving optimization problem 2 as well as ap-
plying the learned decision rule, it is sufficient
to be able to calculate inner products between
feature vectors. Exploiting this property, kernels
K(#1,Z>) for learning nonlinear decision rules can
be introduced. Depending on the type of kernel
function, SVM learn polynomial classifiers, radial
basis function (RBF) classifiers, or two layer sig-
moid neural nets. Such kernels calculate an inner
product in some feature space and replace the in-
ner product in the formulas above.

3 Learning Drifting Concepts

Most machine learning approaches assume that
the distribution underlying the training examples
and new unseen test examples is static, and that
a model, once learned on the training data, can be
applied to any new test example and does not need
any adjustments later on. For many real-world
machine learning tasks, however, where data is
collected over an extended period of time, its un-
derlying distribution is likely to change over time.
A typical example is information filtering, i.e., the
adaptive classification of text documents with re-
spect to a particular user interest. Information fil-
tering techniques are used, for example, to build
personalized news filters, which learn about the
news-reading preferences of a user or to filter e-
mail. Both the interest of the user and the docu-
ment content change over time. A filtering system
should be able to adapt to such concept changes.

This section describes a method first proposed in
[17] to recognize and handle concept changes with
support vector machines. The method maintains
a window on the training data. The key idea is
to automatically adjust the window size so that
the estimated generalization error is minimized.
The approach is both theoretically well founded
as well as effective and efficient in practice. Since
it does not require complicated parameterization,
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it is simpler to use and is more robust than compa-
rable heuristics. Experiments with simulated con-
cept drift scenarios based on real-world text data
compare the method with other window manage-
ment approaches. We show that it can effectively
select an appropriate window size in a robust way.

The problem of concept drift for the pattern recog-
nition problem can be formalized in the follow-
ing framework. Each example Z = (%,y) con-
sists of a feature vector Z € RN and a label
y € {—1,+1} indicating its classification. Data
arrives over time in batches. Without loss of gen-
erality these batches are assumed to be of equal
size, each containing m examples:
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% denotes the jth example of batch i. For
each batch ¢, the data is independently identi-
cally distributed with respect to a distribution
Pr;(Z,y). Depending on the amount and type of
concept drift, the example distribution Pr;(ZF,y)
and Pr;y1(Z,y) between batches will differ. The
goal of the learner L is to sequentially predict the
labels of the next batch. For example, after batch
t the learner can use any subset of the training
examples from batches 1 to ¢ to predict the labels
of batch ¢ + 1. The learner aims to minimize the
cumulated number of prediction errors.

In machine learning, changing concepts are often
handled by time windows of fixed or adaptive size
on the training data [23, 33, 18] or by weight-
ing data or parts of the hypothesis according to
their age and/or utility for the classification task
[29]. The latter approach of weighting examples
has already been used for information filtering in
incremental relevance feedback approaches [2, 3].
Here the earlier approach maintaining a window
of adaptive size is explored. For windows of fixed
size, the choice of a “good” window size is a com-
promise between fast adaptability (small window)
and good generalization in phases without concept
change (large window). The basic idea of adaptive
window management is to adjust the window size
to the current extent of concept drift.

The task of learning drifting or time-varying con-
cepts has also been studied in computational
learning theory. Learning a changing concept is in-
feasible if no restrictions are imposed on the type
of admissible concept changes®, but drifting con-
cepts are provably efficiently learnable (at least for
certain concept classes) if the rate or the extent
of drift is limited in particular ways.

3E.g., a function randomly jumping between the values
one and zero cannot be predicted by any learner with more
than 50 percent accuracy.



Helmbold and Long [8] assume a possibly perma-
nent but slow concept drift and define the extent
of drift as the probability that two subsequent
concepts disagree on a randomly drawn example.
Their results include an upper bound for the ex-
tend of drift maximally tolerable by any learner
and algorithms that can learn concepts that do
not drift more than a certain constant extent of
drift. Furthermore, they show that it is sufficient
for a learner to see a fixed number of the most re-
cent examples. Hence a window of a certain min-
imal fixed size allows to learn concepts for which
the extent of drift is appropriately limited. While
Helmbold and Long restrict the extend of drift,
[20] determine a maximal rate of drift that is ac-
ceptable by any learner, i.e., a maximally accept-
able frequency of concept changes, which implies
a lower bound for the size of a fixed window for
a time-varying concept to be learnable, which is
similar to the lower bound of Helmbold and Long.

In practice, however, it usually cannot be guar-
anteed that the application at hand obeys these
restrictions, e.g., a reader of electronic news may
change interests almost arbitrarily often and rad-
ically. Furthermore the large time window sizes,
for which the theoretical results hold, would be
impractical. Hence more application-oriented ap-
proaches rely on far smaller windows of fixed size
or on window adjustment heuristics that allow far
smaller window sizes and usually perform better
than fixed and/or larger windows [18, 33]. While
these heuristics are intuitive and work well in their
particular application domain, they usually re-
quire tuning their parameters, are often not trans-
ferable to other domains, and lack a proper theo-
retical foundation.

3.1 Window Adjustment by Optimizing
Performance

Our approach to handling drift in the distribution
of examples uses a window on the training data
and SVM (Section 2, [32]) as its core learning al-
gorithm. This window should include only those
examples which are sufficiently close to the current
target concept. Assuming the amount of drift in-
creases with time, the window includes the last n
training examples. Previous approaches used sim-
ilar windowing strategies. Their shortcomings are
that they either fix the window size [23] or involve
complicated heuristics [18, 33]. A fixed window
size makes strong assumptions about how quickly
the concept changes. While heuristics can adapt
to different speed and amount of drift, they in-
volve many parameters that are difficult to tune.

Here, we present an approach to selecting an ap-
propriate window size that does not involve com-
plicated parameterization. This is the first ap-
proach that is neither restricted to static con-
cepts nor requires an extensive parameterization
and that effectively and efficiently learns drifting
concepts. They key idea is to select the window
size so that the estimated generalization error on
new examples is minimized. To get an estimate of
the generalization error we use a special form of
Ea-estimates [11]. Ea-estimates are a particularly
efficient method for estimating the performance of
a SVM. They can be computed after only a sin-
gle SVM run on the training data. It is proven
in [11] that the {a-estimator of the error rate is
an approximate upper bound on the number of
leave-one-out errors in the training set, and it is
shown that the estimator is pessimistically biased,
overestimating the true error rate on average. Ex-
periments show that the bias is acceptably small
for text classification problems [11].

The window adjustment algorithm proposed here
uses £a-estimates in a particular way. At batch ¢,
it essentially tries various window sizes, training
a SVM for each resulting training set.
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For each window size, it computes a £a-estimate
based on the result of training. The £a-estimator
used here considers only the last batch, that is,
the m most recent training examples Zyy, .-, Zyny
This reflects the assumption that the most recent
examples are most similar to the new examples
in batch ¢+ 1. The window adjustment algorithm
selects the window size that minimizes the £a-
estimate of the error rate.

3.2 Experiments

Each of the following four data management ap-
proaches is evaluated in combination with the
SVM. In the full memory approach, the learner
generates its classification model from all previ-
ously seen examples, i.e., it cannot “forget” old
examples. With no memory, the learner always
induces its hypothesis only from the most recent
batch. This corresponds to using a window of the
fixed size of one batch. A window of the fixed size
of three batches is also used. Finally, for a window
of adaptive size, the window adjustment algorithm
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Figure 1 Comparison of the prediction error rates
for one of the three scenarios (scenario A, averaged
over 10 runs). The z-axis denotes the batch num-
ber and the y-axis the average prediction error.

proposed in the previous section adapts the win-
dow size to the current concept drift situation.

The experiments are performed in an informa-
tion filtering domain. Text documents are rep-
resented as attribute-value vectors (bag of words
model), where each distinct word corresponds to
a feature whose value is the TF/IDF-weight of
that word in that document. Words occurring less
than three times in the training data or occurring
in a given list of stop words are not considered.
Each document vector is normalized to unit length
to abstract from different document lengths. The
experiments use a subset of 2608 documents of
the data set of the Text REtrieval Conference
(TREC) consisting of English business news texts.
Each text is assigned to one or several categories,
five of which are considered here. For the experi-
ments, three concept change scenarios with differ-
ent types of concept drifts are simulated (see [17]
for more details). The texts are randomly split
into 20 batches of equal size containing 130 doc-
uments each (and hence leaving eight randomly
remaining documents unused in each trial). The
target concept, i.e. the correct label of a docu-
ment at a certain point in time (batch), reflects
whether that document is (currently) relevant to
the current user interest.

Table 1 shows the results of the different mem-
ory management approaches on the three simu-
lated scenarios averaged over ten runs and over
the 20 batches of each run. Figure 1 compares the
prediction error rate of the adaptive window size
algorithm with the non-adaptive methods (for sce-
nario A). In all three scenarios, the full memory

Table 1 Prediction error of all window manage-
ment approaches for three scenarios averaged over
10 trials with 20 batches each (standard sample
error in parentheses)

Scenario Full No Fixed Adaptive
Memory Memory Size Size

A: 20.36% 7.30% 7.96% 5.32%

(4.21%) (1.97%) (2.80%) (2.29%)

B: 20.25% 9.08% 8.44% 7.56%

(3.56%) (1.57%) (2.00%) (1.89%)

C: 7.74% 8.97% 10.17% 7.07%

(3.05%) (2.84%) (3.30%) (3.16%)

strategy and the adaptive window size algorithm
essentially coincide as long as there is no con-
cept drift. During this stable phase, both show
lower prediction error than the fixed size and the
no memory approach. At the point of concept
drift, the performance of all methods deteriorates.
While the performance of no memory and adap-
tive size recovers quickly after the concept drift,
the error rate of the full memory approach remains
high. Like before the concept drift, the no memory
and the fixed size strategies exhibit higher error
rates than the adaptive window algorithm in the
stable phase after the concept drift. This shows
that only the adaptive window size algorithm can
achieve a relatively low error rate over all phases
in all scenarios. This is also reflected in the average
error rates over all batches given in Table 1. The
adaptive window size algorithm achieves a low av-
erage error rate on all three scenarios. Similarly,
precision and recall are consistently high [17]. A
more detailed discussion of the results along with
additional figures illustrating the performance of
the different approaches in the three scenarios and
the automatically chosen window sizes as well as
results for the performance metrics recall and pre-
cision can be found in [17].

Summarizing this section, we proposed a new
method for handling concept drift with support
vector machines. The method directly implements
the goal of discarding irrelevant data with the
aim of minimizing generalization error. Exploiting
the special properties of SVM, we adapted {a-
estimates to the window size selection problem.
Unlike for the conventional heuristic approaches,
this gives the new method a clear and simple theo-
retical motivation. Furthermore, the new method
is easier to use in practical applications, since it
involves less parameters than complicated heuris-
tics. Experiments in an information filtering do-
main show that the new algorithm achieves a low
error rate and selects appropriate window sizes
over very different concept drift scenarios.



4 Transduction: Learning from La-
beled and Unlabeled Data

The idea of transduction was introduced by Vap-
nik (see Chapter 10 in [31]). Often it is not nec-
essary to learn a general classification rule for ar-
bitrary test examples. Instead, the easier problem
of only classifying a specific already known test
set with as few errors as possible has to be solved.
First experiments Joachims conducted in a text
classification domain showed that the minimiza-
tion of the probability of an error on a specific
test set leads to better results than learning a gen-
eral classification rule [10, 12]. Obviously the un-
labeled test examples provide additional informa-
tion for a transductive learner not only using the
labeled training examples, information about the
distribution of the test data that the learner can
leverage on. This section investigates when and
why transduction works better than the standard
induction approach. After reviewing transductive
support vector machines and providing a positive
and a negative case study, we discuss properties of
a domain that enable transduction to be helpful.

4.1 Transductive Support Vector Ma-
chines (TSVM)

Inductive support vector machines have already
been described in Section 2 along with the pri-
mal and dual optimization problems 1 and 2 they
solve. The description of transductive inference
here follows the presentation in [10]. For a learning
task P(Z,y) = P(y|%)P(Z) the learner L is given a
hypothesis space H of functions h : X — {—1,1}
and an i.i.d. sample Syq;, Of n training examples
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Each training example consists of a vector £ € X
and a binary label y € {—1,+1}. In contrast to
the inductive setting, the learner is also given an
i.i.d. sample Sies: Of k test examples

from the same distribution. The transductive
learner £ aims to select a function hy =
L(Strain, Stest) from H using Sirqin and Siest SO
that the expected number of erroneous predictions

k
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on the test examples is minimized. ©(a, b) is zero
if a = b, otherwise it is one. Solving this optimiza-
tion problem means finding a labeling y7, ..., y; of
the test data and a hyperplane < @,b >, so that
this hyperplane separates both training and test
data with maximum margin. To be able to handle
non-separable data, we can introduce slack vari-
ables &; similarly to the way we do with inductive
SVM.

Optimization Problem 3 (Transductive SVM)

Minimize over (y3,...,y5, W,b,&1, o, &ns &5, s &)

n k
1 s * *
SIBIP+CY 6 +C* )¢
i=0 j=0

subject to: rL W+ >1-¢
VEL gl 21—

11620
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C and C* are parameters set by the user. They
allow trading off margin size against misclassi-
fying training examples or excluding test exam-
ples. Joachims developed an algorithm to solve
this optimization problem efficiently [10, 12]. Here
SV M9 is also used for computing the solution
of this optimization problem (see also Section 2).

4.2 Transduction for Text Classification
and for Drifting Concepts

Empirical results show that unlabeled data can
help to significantly improve the performance of
text classifiers [10, 21, 24]. Joachims showed that
especially in case of few labeled examples and
many unlabeled examples, the use of unlabeled
data can improve the classification performance
significantly [10]. The transductive use of unla-
beled data also lets the performance drop more
gracefully if the number of labeled examples is re-
duced. As pointed out in [10, 12], it is well-known
in information retrieval that words in natural lan-
guage occur in strong co-occurrence patterns [30].
While some words are likely to occur in one doc-
ument, others are not. This type of information
is independent of the document labels and can be
exploited, if unlabeled data is used.* In addition to

4For example the words pepper and salt as well as the
words atom and physics have a high co-occurrence, while
e.g., pepper and atom only rarely co-occur. This is for ex-
ample helpful, if cooking recipes have to be separated from



the TSVM described above, there are other semi-
supervised methods for exploiting unlabeled data
(see [10] or [14] for a short overview).

In Section 3 information filtering was named as
a typical application, where the target concept
in a classification task, in this case the user in-
terest, may change over time, which makes the
learning task more difficult because the system
should adapt to such changes. Another difficulty
in this example domain is the fact that users often
give little feedback and expect a filtering system
to achieve a good performance, even if only a few
labeled training examples are provided.

This section proposes an extension of the method
for recognizing and handling concept changes with
support vector machines (Section 3 and [17]). The
extended method uses unlabeled data to reduce
the need for labeled data [14, 16]. Its basic idea
is to first use the algorithm described in [17] to
find the right window size on the labeled training
data, wingpered, using Ea-estimates for an induc-
tive SVM. Then an almost identical algorithm is
used to determine a good window size on the un-
labeled data, winyniapered, on the same stream of
documents using a-estimates for a transductive
SVM to estimate the prediction error on the test
set, leaving the window size wingpereq unchanged.

Why maintain separate window sizes wingpered
and winypiepereq for labeled and unlabeled data?
The probability P(y|#) describing the user in-
terest, i.e., the drifting concept captured by the
labeled data, may change at a rate other than
the probability P(Z), which describes the distri-
bution of documents identically underlying both
the labeled and unlabeled examples independent
of their labels. Hence it is sensible to use separate
windows to obtain the best information from both
probability distributions.

The window adjustment algorithm for the labeled
data using an inductive SVM and the training
data only has already been described in Section 3.
The modified window adjustment algorithm for
the unlabeled data [14] uses a transductive SVM.
According to the transductive setting, the test set,
i.e., the examples in the batch ¢+ 1 are used as un-
labeled examples in the optimization for learning
a TSVM. For text classification tasks with sta-
ble, i.e., non-drifting concepts, the performance
improvement of a TSVM as compared to an in-
ductive SVM is maximal for small sets of labeled

texts about atom physics, and the training documents con-
tain only some of these words, while the test documents
contain some of the others along with the corresponding
co-occurrences.

training examples and large sets of unlabeled ex-
amples used in addition [10]. Therefore not only
the relatively small test set is considered useful
unlabeled data, but also the unlabeled data in
the current time window of size winiupered, i-€.,
in the currently used part of the training set, and
all training examples outside this time window,
which are all treated as unlabeled examples, are
considered potentially useful. First experimental
results with this approach are encouraging [16].

4.3 Comparison of Inductive and Trans-
ductive Learning in a Semiconductor
Rare Fault Detection Domain

To evaluate the use of transduction in a com-
pletely different application domain, inductive
and transductive support vector machines (SVM
and TSVM, respectively) were applied to a clas-
sification task from electrical engineering, namely
a semiconductor rare fault detection task previ-
ously used as a benchmark for computational in-
telligence methods within the DFG Collaborative
Research Center on Computational Intelligence
(SFB 531). The data consist of bond resistance
values measured in stress tests with 34 high per-
formance transistors until these transistors failed.
Given the bond resistance values of such a transis-
tor of the last four time steps, the task is to predict
whether or not the transistor will fail within the
next seven time steps. The 34 time series of mea-
surements are split into 29 series for training and
5 time series for testing resulting in 1157 training
and 204 test examples for the time window of size
four time steps described above.

For evaluating whether transduction can help to
improve the performance of a support vector ma-
chine in this domain, we trained SVM and TSVM
with linear, RBF, and polynomial kernel on the
training data and compared their performance on
the test set. The TSVM was allowed to use the
complete test set (without its labels of course) in
its training. The experiments were performed us-
ing SV M9 [9. 12]. Table 2 shows the best re-
sults obtained by SVM and TSVM with these ker-
nels trying a few parameter variations (see [4] for
more details on the parameterization and the re-
sults). While for the linear kernel, the SVM seems
to benefit from transduction, it does not for the
other two kernels, i.e., RBF and polynomial ker-
nel. However, the differences in performance can-
not be considered statistically significant, since
the data set is used, exactly as for the previously
tested methods, on a fixed single split of the data
set into training and test data only. In contrast to



Table 2 Error of SVM and TSVM with different
kernels on the semiconductor fault detection task

SVM, SVM, SVM,

linear RBF poly-

kernel kernel nom
Error kernel
Induction: 10.80 % 9.20 % 9.20 %
Transduction: 9.60 % 10.00 % 10.00 %

the positive results in the text classification do-
main, there seems to be not much potential for
transduction on this failure detection data set.

4.4 Conclusions: When Does Transduc-
tion Work Well?

While transduction leads to performance improve-
ments in text classification tasks, where unlabeled
data can be used to lower error rates or to reduce
the need for labeled data, it does not seem to be
very helpful in the second case study of semicon-
ductor failure detection. So the questions arises,
what the difference between these two domains
is, and when transduction can be expected to be
helpful, i.e., which properties a domain should
have to benefit from transduction.

There are two intuitive reasons why transduction
works well in text classification domains. First,
as explained above, texts of similar or identical
topics show strong word co-occurrence patterns in
a sparse feature space. These co-occurrence pat-
terns often indicate a topic membership before the
topic label of a document is known. Hence un-
labeled examples can be used to better estimate
the boundaries of a topic than is possible from
fewer labeled examples alone. Second, as shown in
[10, 16], a learner particularly benefits from trans-
duction, if many unlabeled examples and only few
labeled examples are available. In most text clas-
sification domains, there are huge numbers of un-
labeled documents available, which usually by far
exceed the number of available labeled documents.
So in text classification tasks, transduction can
leverage from these two aspects.

The second domain, the rare fault detection task,
exhibits neither of these two properties. First,
the number of test examples is rather small com-
pared to the number of training examples. Sec-
ond, the feature space is not sparse, but very
dense, and it is not clear whether there are any
co-occurrence patterns within the two classes “will
fail (within seven time steps)” and “will not fail”.
Summarizing this discussion, good prerequisites
for transduction to work well seem to be strong

co-occurrence patterns between examples of the
same class and a large number of test examples
compared to the number of training examples.

5 Learning with Prior Knowledge

In machine learning one can distinguish two kinds
of knowledge, namely background knowledge and
prior knowledge. In the case of learning with prior
knowledge, the underlying learning task can be
eased by introducing additional, domain-specific
knowledge. This knowledge restricts the hypoth-
esis space and thus allows faster and/or better
learning. Background knowledge extends the ex-
amples and thus the search space and therefore
makes the learning task more difficult.

One classical setting for the learning task learning
with background knowledge is the following: The
learned hypothesis H has to be consistent not only
with the given example set E, but also with the
given background knowledge T', and any positive
but no negative example should be deducible from
the union of hypothesis h and background knowl-
edge T. This inclusion of background knowledge
complicates the given learning task [25], and re-
strictions of the representation formalism are nec-
essary to make learning possible in polynomial
time [13]. The inclusion of background knowledge
makes learning more difficult, because on the one
hand, more complex hypotheses can be built. On
the other hand, the integration of new knowledge
becomes harder the more knowledge is given, since
the number of possible inconsistencies increases.

In contrast to this kind of knowledge that en-
larges the hypothesis space, the use of prior knowl-
edge permits scaling down the hypothesis space
and/or controlling the search in the search space.
Restricting the hypothesis space adequately may
accelerate learning in terms of running time of
the algorithm and/or improve the learning perfor-
mance, e.g., in terms of classification/regression
error or cost on the test examples. This sec-
tion presents an approach to SVM making use of
prior knowledge about the importance of particu-
lar examples in an example set and appropriately
adapting the SVM optimization problem.

5.1 Using Additional User Knowledge in
Support Vector Machines

Many applications of machine learning involve the
learning of classifiers. Given a set of labeled train-
ing examples, the task is to learn a classifier for
predicting the labels of previously unseen exam-
ples. By providing the labels of the training exam-



ples, the users already specify a lot of their knowl-
edge about the classification problem at hand. In
some cases, however, the users may not be sat-
isfied with the result provided by the learning
method. Hence the users may want to specificy
additional knowledge about the problem or con-
straints on the desired solution and they may want
the learner to provide a classifier that better fits
their needs. The goal of this research is to allow
the users to specify additional knowledge about
the classification problem and to incorporate this
knowledge into the learning process. In [15] sup-
port vector machines [32] (Section 2) were chosen
as learning methods for classifiers, and weights for
individual training examples provided by the user
are considered in the training of SVM.

User knowledge about a domain can often be ex-
pressed by weights for the examples provided to
the learner. Consider for example a medical do-
main, where it is essential to classify critical cases
correctly, because a person’s life may depend on it,
while incorrect classifications of non-critical cases
may be more acceptable. Similarly, one can use
weights to enforce the proper classification of typ-
ical cases of a disease and to put less emphasis on
non-typical cases, i.e., cases where even the expert
is not sure or where the appearance of a disease is
not clearly recognizable. Weights can also be used
to express the confidence one has in the correct-
ness of the classification of the examples, e.g., to
express the reliability a certain example source.

We extended the formulation of the primal SVM
optimization problem (optimization problem 1 in
Section 2) for weighted examples and derived the
corresponding dual SVM optimization problem
[15]. For each training example #; € RN, the user
provides a label y; € {—1, +1}, indicating its clas-
sification and a weight C; € [0, 1] (or alternatively
C; € R1) indicating the importance of the cor-
rect prediction of the class label of this example
(i=1,..,n).

Optimization Problem 4 (SVM (with weights))

L o 1. .«
Minimize: V(i5,b, ) = W + i_zlci -&i
subject to: Vi iyl -Zi+b>1-¢&

?:15&20

6 Feature Selection and Generation

The non-standard learning tasks that are consid-
ered in this section are feature selection and fea-
ture generation. They can be viewed as two sides

of the representation problem, i.e., the problem of
finding an adequate representation language Lg
for the learning task at hand. In cases where this
language in terms of the original feature set is not
sufficient to describe the problem, feature genera-
tion helps to enrich the language by constructing
additional features. In cases where the represen-
tation language contains more features than nec-
essary, subset selection helps to simplify the lan-
guage [5]. In this section, we present a framework
that solves the representation problem by connect-
ing feature generation and selection in a combined
evolutionary approach.

6.1 Feature Generation Using Type-
Restricted Generators

Feature generation can be seen as the process of
creating features by applying feature constructors,
taking the original features as input and produc-
ing a modified feature set containing additional
constructed features. The main motivation for the
use of feature generation is to create hypotheses
that were not representable in the original repre-
sentation language [22].

We propose a general framework for the genera-
tion of features, subdividing the generation pro-
cess into the following main steps: Given a set
of features F' = fi,.., f, and feature generators
G = g1,..9x, we first choose a particular feature
generator g; € G for the generation process. Then,
by checking the types of all features in F', the com-
patible feature subsets F, = F,,,..,F,, C F are
determined with regard to the type restrictions of
the generator at hand.® Finally, the feature gener-
ator g; is applied to the set of compatible features
(or a subset thereof) and the resulting features are
added to the original feature set F'. The features
fi € F., are not restricted to original features but
can already be compound features that have pre-
viously been created by a generator. This genera-
tion concept allows a recursive and thus arbitrar-
ily complex feature generation. The set of applica-
ble feature constructors may include general func-
tions, such as basic mathematical operations, as
well as domain-specific generators. An obvious ad-
vantage of using type-restricted constructors is the
reduction of the set of constructible features to a
well-formed subset and thus the restriction of the
search space extension to useful subspaces. The
presented generator concept is an integral part of
the following approach that combines feature gen-
eration and selection in a common framework.

5The concept of meta-knowledge in terms of feature
types is described in more detail in Section 7.
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Figure 2 Combined wrapper-based feature selec-
tion and generation approach

6.2 Combined Approach to Feature Gen-
eration and Selection

In this section we introduce a wrapper-based ap-
proach [19], using a modified genetic algorithm
that incrementally selects and generates new fea-
tures and an induction algorithm as learning and
evaluation method. The general idea is to deploy
the positive search properties of conventional ge-
netic algorithms for the incremental adaptation
of a given feature space. Genetic algorithms have
proved to work well on feature selection problems,
where the search space produced by the initial fea-
ture set already contains the searched hypothesis
(see e.g. [34]). In cases where this premise is not
fulfilled, we have to create new features to ad-
equately extend the search space, which can be
done by applying the given feature generators to
feature subsets with compatible feature types.

According to our approach [26], the feature trans-
formation process, which is done by means of a
modified genetic algorithm, is wrapped around an
arbitrary induction algorithm. Thus, the genetic
algorithm conducts the search for a good feature
subset using the induction algorithm for the eval-
uation of the current feature subsets. The induc-
tion algorithm is run on a data set, which is usu-
ally partitioned into internal training and hold-out
sets, with different sets of features removed from
and added to the data accordingly. The process of
generating feature sets, using the modified genetic
algorithm, and evaluating these sets is repeated
until a given termination criterion is fulfilled. The
resulting feature set is chosen as the final set on
which to run the induction algorithm. The final
evaluation of the resulting classifier is done using
an independent test set that was not used during

Performance
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Crossover

Repeat until
termination criteria Mutation

Fitnes_s Feature Generation I
Evaluation

Figure 3 The modified genetic algorithm

the search (see Figure 2).

The key idea in using the incremental feature gen-
erator in the context of a genetic algorithm is that
any feature can be generated with a probability
P > 0 in a finite number of iterations, i.e., gener-
ations, given a particular generator and the orig-
inal features. Thus, more formally, given a fea-
ture set f; at time-point ¢, a generator G with
G(ft) = fiy1 and f being the searched feature,
the following proposition can be assumed:

f € lim G(f})

The basis for our combined approach to feature
generation and selection is a canonical genetic al-
gorithm, as e.g. described in [7]. It consists of an
n-tuple of binary strings b; of length I, where the
bits of each string are considered to represent sin-
gle features and where the n-tuple represents a
feature set. Following the terminology of biologic
evolution the operations performed on the popula-
tion are called mutation, crossover, and selection.
Each individual represents a feasible solution of
a given problem and its objective function value
@(b;) is said to be its fitness, which has to be max-
imized.

The task is to search for a good representation
by selecting and generating features. We there-
fore partially adapted the standard genetic algo-
rithm operators. Figure 3 shows the correspond-
ing modified genetic algorithm. Here, crossover re-
combines different feature sets and mutation se-
lects and accordingly deselects single features on
a particular chromosome, i.e., feature set. In addi-
tion to the set of standard GA operators for fea-
ture selection, we applied the presented feature
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values Henry and Langmuir on a two-substance
mixture, tested on different operator chains

generator. To ensure that the best individual of a
generation remains in the population, we used an
elitist selection strategy.

6.3 Experimental Evaluations

The combined approach was evaluated by an ap-
plication problem from the field of chromatog-
raphy. The learning task considered here was to
predict two components, or more exactly, the
four characteristic coefficients of a two-component
mixture. Each of the two components was given
in terms of a time series. Since the learning task
was a regression problem, the learning method
used throughout the following experiments is a
regression SVM [28]. The learning performance
was evaluated using relative error, comparing the
predicted and the real values of the four coef-
ficients (Henry and Langmuir constant for each
substance). Based on the structure of the over-
all learning task, we systematically compared the
performance of several learning chains, comprising
different types of data preprocessing in terms of
feature generation and selection. Figure 4 shows
the experimental results.

In the first experiment we simply used the orig-
inal (time series) features to learn and evaluate
an SVM model without any preprocessing steps.
Due to noise in the simulated measurements of the
original features, this operator chain only yielded
a poor prediction performance.

The second chain additionally contained a prepro-
cessing operator that generated numeric charac-
teristics from the original time series data. Since
the sensor readings might be noisy and perhaps

slightly shifted along the time axis between differ-
ent measurements, the individual feature in the
time series of an example, i.e., the concentra-
tion measured at one particular point of time, is
not very reliable. Accordingly, the construction of
these robust features significantly improved the
learning result.

Since it was not obvious which of the new and
which of the original features were really helpful in
solving the learning task, a feature selection step
was performed subsequent to the feature gener-
ation step to obtain a feature set well-suited to
the given learning task. Different feature selection
wrappers, namely forward selection (FS), back-
ward elimination (BE) [1], and a genetic algorithm
(GA) were employed, reducing the set of features
and increasing the learning performance in terms
of the prediction error.

Finally, we tested the combined approach on the
given learning problem. In this setting, feature
generation and selection were not used as subse-
quent preprocessing steps but intertwined in a fea-
ture wrapper approach. This approach yielded the
best prediction performance of all tested learning
chains.

7 Learning Environment YALE

As we have seen in the last sections, data often has
to be preprocessed to be usable by a given machine
learning method and to achieve an acceptable
level of prediction performance. One of the central
problems in this context is the choice of an ade-
quate example representation by a good set of fea-
tures. To handle this problem, it is often necessary
to construct complex experiment chains, com-
bining different preprocessing and learning steps,
rather than using a single learning scheme. To effi-
ciently study the described non-standard learning
tasks we built the flexible, platform-independent
learning environment YALE (Yet Another Learn-
ing Environment) [6, 27], which allows to easily
specify and execute such experiment chains.

7.1 Existing Environments

There already exist several machine learning and
data mining environments that provide a number
of methods from machine learning, statistics, and
pattern recognition. Two of the most popular non-
commercial environments are WEKA® (Waikato
Environment for Knowledge Analysis), developed
at University of Waikato, NZ, and MLC++7, first

Shttp://www.cs.waikato.ac.nz/ml/weka/
7http ://www.sgi.com/tech/mlc/



developed at Stanford University and then ex-
tended by Silicon Graphics, Inc. (SGI).

WEKA is a collection of machine learning algo-
rithms implemented in Java. It supports a large
number of learning methods for classification and
regression. WEKA offers some preprocessing algo-
rithms for the manipulation of features as well as
three basic feature selection schemes, namely the
feature correlation based approach, the wrapper
approach, and the filter approach. Additionally,
WEKA provides meta classifiers like bagging and
boosting. MLC++ is a library of C++ classes for
supervised machine learning. It provides a num-
ber of learning schemes similar to those used in
WEKA. Additionally, wrappers around these ba-
sic inducers such as a discretization filter, a bag-
ging wrapper, and a feature selection wrapper are
provided.

Unfortunately, none of these machine learning and
data mining environments is suited to handle the
considered non-standard learning tasks, because
they both neither support the composition and
analysis of complex operator chains consisting of
different nested preprocessing, learning, and eval-
uation steps nor sophisticated feature generators
for the introduction of new features. An additional
shortcoming of WEKA is its lacking scalability.
It expects the example set to fit completely into
main memory, which is not feasible for many data
mining tasks. Furthermore, it is very slow on large
data sets. YALEoffers a wrapper to the numerous
learners and clusterers provided by WEKA to of-
fer the same variety of methods within complex
operator chains without reimplementation.

7.2 General Concepts

Real-world learning tasks are often solved by a
sequence or combination of several data prepro-
cessing and machine learning methods. In YALE,
each of these methods is regarded as an operator.
A sequence of such operators is called an opera-
tor chain, wherat an operator chain again is an
operator, both in the sense of a definition as well
as in the object-oriented programming sense. Op-
erators may enclose other operators or operator
chains and are then often referred to as wrappers.
Typical examples of wrappers are cross validation
and feature selection wrappers. One central aspect
is, that by enclosing other operators or operator
chains, operators are arbitrarily nestable, so that
even complex experimental setups can be built.

Operators require certain objects to be present in
their input and guarantee others to be in their out-
put. During its execution, an operator may mod-

ify, remove, or add objects before passing the ob-
jects to the next operator in the operator chain.
YALE verifies that each operator receives its re-
quired inputs before executing an operator chain.
Among the objects passed between operators in an
operator chain are e.g. example sets, classification
and regression models, and performance evalua-
tion results. Operators are easily exchangeable by
other operators in order to support the compari-
son of different operators and operator chains for
the same subtasks. The only premise is that sub-
sequent operators in an operator chain, or more
generally all operators that share a common inter-
face, have conformable input and output types.

YALE can process data sets that can be described
in a single table, i.e., in an attribute-value vec-
tor format, in which each example is described
by an attribute-value vector of equal fixed length.
The scalability and applicability of the system is
achieved by a sophisticated data handling con-
cept. Data can be read from files, main memory,
or (as a future option) from a database, whichever
seems to be most appropriate for the current task.
This can be done without making changes in the
learning operators when varying the data source
or switching between keeping all or just one ex-
ample in main memory at a time.

While many learning systems do not consider ad-
ditional knowledge for the learning process, YALE
supports the optional use of meta-knowledge.
Therefore it provides an additional ontology-based
data structure specifying the meta-data of the
given attributes. The information about the at-
tribute types of an example is useful for feature
generators, which can check their applicability on
given attributes by verifying their attribute types.

YALE’s usability to support elaborate studies of
different non-standard learning tasks has success-
fully been demonstrated on several real-world ap-
plications (see e.g. Sections 3.2, 4, and 6.3).

8 Conclusion and Perspective

The assumptions that are often implicitly made
when treating an application problem as a stan-
dard learning tasks, such as classification or re-
gression, often do not hold in practical applica-
tions. The consequence of this inappropriateness
is that the learning performance decreases or par-
ticular hypotheses cannot be learned. In this pa-
per, several non-standard learning tasks includ-
ing learning drifting concepts, transduction, learn-
ing with prior knowledge, and feature generation
and selection have been studied, handling different



kinds of inadequate problem representations.

For many real-world classification tasks, the con-
cept to be learned may change over time and hence
does not remain static as assumed in the standard
learning task. Existing methods usually can only
handle static concepts or require extensive, often
domain-specific parameterization, to be adaptable
to changing concepts and to achieve a satisfiable
performance. In Section 3 we described and eval-
uated an effective and efficient method to learn
such drifting concepts without extensive parame-
terization.

In other classification tasks, unlabeled data is
available and can be used transductively to im-
prove the performance of the classifier or to re-
duce the number of labeled examples needed to
achieve an acceptable performance. We showed
how unlabeled examples can be used to support
the learning of drifting concepts and identified
domain properties enabling transduction to lead
to improved performance results. When a domain
meets these properties, transduction can signifi-
cantly reduce the need for labeled data and/or
lead to lower prediction errors than a comparable
inductive approach.

Sometimes the user wants to influence the learning
result and provides additional knowledge about
the domain. Section 5 showed a way how this may
be done by extending SVM to use weighted exam-
ples.

In Section 6 we stated that, in cases where the
original feature set is inadequate regarding the
given learning task, one can significantly improve
the learning performance by adding relevant fea-
tures by means of feature generation and remov-
ing irrelevant features by applying feature selec-
tion methods. Furthermore, a framework was pre-
sented that applies feature generation and selec-
tion in a combined approach using an evolution-
ary based feature wrapper. This approach yielded
an improved prediction performance compared to
simple feature selection wrappers not using an ad-
ditional feature generation component.

Section 7 proposed YALE, a learning environment
supporting the study of non-standard learning
tasks, especially the tasks mentioned above. YALE
easily allows the execution and evaluation of com-
plex nested chains of data preprocessing and ma-
chine learning operators.

One of the main future objectives is the consider-
ation of learning tasks on a meta-level. The cen-
tral question in this context is, in which form the
configuration of learning tasks, i.e. the choice of a

particular feature and example set, the concrete
parameter settings, the choice of a specific learn-
ing method etc. can be automated.
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