Detecting Concept Drift with Support Vector Machines

Ralf Klinkenberg
Thorsten Joachims

KLINKENBERG@LS8.CS.UNI-DORTMUND.DE
JOACHIMS@LS8.CS.UNI-DORTMUND.DE

Informatik VIII., Universitat Dortmund, Baroper Str. 301, 44221 Dortmund, Germany

http://www—-ai.cs.uni-dortmund.de/

Abstract

For many learning tasks where data is col-
lected over an extended period of time, its
underlying distribution is likely to change. A
typical example is information filtering, i.e.
the adaptive classification of documents with
respect to a particular user interest. Both
the interest of the user and the document
content change over time. A filtering sys-
tem should be able to adapt to such concept
changes. This paper proposes a new method
to recognize and handle concept changes with
support vector machines. The method main-
tains a window on the training data. The
key 1dea 1s to automatically adjust the win-
dow size so that the estimated generalization
error is minimized. The new approach is both
theoretically well-founded as well as effective
and efficient in practice. Since it does not re-
quire complicated parameterization, it is sim-
pler to use and more robust than comparable
heuristics. Experiments with simulated con-
cept drift scenarios based on real-world text
data compare the new method with other
window management approaches. We show
that it can effectively select an appropriate
window size in a robust way.

1. Introduction

Machine learning methods are often applied to prob-
lems, where data is collected over an extended period
of time. In many real-world applications this intro-
duces the problem that the distribution underlying
the data is likely to change over time. For exam-
ple, companies collect an increasing amount of data
like sales figures and customer data to find patterns
in the customer behaviour and to predict future sales.
As the customer behaviour tends to change over time,
the model underlying successful predictions should be
adapted accordingly.

The same problem occurs in information filtering, i.e.
the adaptive classification of documents with respect
to a particular user interest. Information filtering tech-
niques are used, for example, to build personalized
news filters, which learn about the news-reading pref-
erences of a user or to filter e-mail. Both the interest of
the user and the document content change over time.
A filtering system should be able to adapt to such con-
cept changes.

This paper proposes a new method for detecting and
handling concept changes with support vector ma-
chines. The approach has a clear theoretical moti-
vation and does not require complicated parameter
tuning. After reviewing other work on adaptation to
changing concepts and shortly describing support vec-
tor machines, this paper explains the new window ad-
justment approach and evaluates it in three simulated
concept drift scenarios on real-world text data. The
experiments show that the approach effectively selects
an appropriate window size and results in a low pre-
dictive error rate.

2. Concept Drift

Throughout this paper, we study the problem of con-
cept drift for the pattern recognition problem in the
following framework. Each example ' = (¥, y) consists
of a feature vector £ € RY and a label y € {—1,+1}
indicating its classification. Data arrives over time in
batches. Without loss of generality these batches are
assumed to be of equal size, each containing m exam-
ples.

’5(‘171)7 2(‘1,“7)7 2(‘21)7 ’5(‘2,7’)’1)7] ’5(‘21)7 'é(;m): Z_(’t-l—Ll)t E('t-}-lm)

%) denotes the j-th example of batch i. For each batch
i the data is independently identically distributed with
respect to a distribution Pr;(Z,y). Depending on the
amount and type of concept drift, the example distri-
bution Pr;(#,y) and Pr;;1(Z,y) between batches will
differ. The goal of the learner £ is to sequentially pre-
dict the labels of the next batch. For example, after

batch ¢ the learner can use any subset of the training
examples from batches 1 to t to predict the labels of
batch ¢ + 1. The learner aims to minimize the cumu-
lated number of prediction errors.

In machine learning, changing concepts are often han-
dled by time windows of fixed or adaptive size on the
training data (Mitchell et al., 1994; Widmer & Kubat,
1996; Lanquillon, 1997; Klinkenberg & Renz, 1998) or
by weighting data or parts of the hypothesis according
to their age and/or utility for the classification task
(Kunisch, 1996; Taylor et al., 1997). The latter ap-
proach of weighting examples has already been used
for information filtering in the incremental relevance
feedback approaches of Allan (1996) and Balabanovic
(1997). In this paper, the earlier approach maintaining
a window of adaptive size is explored. More detailed
descriptions of the methods described above and fur-
ther approaches can be found in Klinkenberg (1998).

For windows of fixed size, the choice of a “good”
window size is a compromise between fast adaptiv-
ity (small window) and good generalization in phases
without concept change (large window). The basic
idea of adaptive window management is to adjust the

window size to the current extent of concept drift.

The task of learning drifting or time-varying concepts
has also been studied in computational learning the-
ory. Learning a changing concept is infeasible, if no
restrictions are imposed on the type of admissible con-
cept changes,! but drifting concepts are provably effi-
ciently learnable (at least for certain concept classes),
if the rate or the extent of drift is limited in particular
ways.

Helmbold, & TLong (1994) assume a possibly perma-
nent but slow concept drift and define the ezxtent of
drift as the probability that two subsequent concepts
disagree on a randomly drawn example. Their results
include an upper bound for the extend of drift maxi-
mally tolerable by any learner and algorithms that can
learn concepts that do not drift more than a certain
constant extent of drift. Furthermore they show that it
is sufficient for a learner to see a fixed number of the
most recent examples. Hence a window of a certain
minimal fixed size allows to learn concepts for which
the extent of drift is appropriately limited.

'E.g. a function randomly jumping between the values
one and zero cannot be predicted by any learner with more
than 50% accuracy.

While Helmbold and Long restrict the extend of drift,
Kuh et al. (1991) determine a maximal rate of drift
that is acceptable by any learner, i. e. a maximally
acceptable frequency of concept changes, which implies
a lower bound for the size of a fixed window for a time-
varying concept to be learnable, which is similar to the
lower bound of Helmbold and Long.

In practice, however, it usually cannot be guaran-
teed that the application at hand obeys these restric-
tions, e.g. a reader of electronic news may change
his interests (almost) arbitrarily often and radically.
Furthermore the large time window sizes, for which
the theoretical results hold, would be impractical.
Hence more application oriented approaches rely on
far smaller windows of fixed size or on window adjust-
ment heuristics that allow far smaller window sizes
and usually perform better than fixed and/or larger
windows (Widmer & Kubat, 1996; Lanquillon, 1997;
Klinkenberg & Renz, 1998). While these heuristics are
intuitive and work well in their particular application
domain, they usually require tuning their parameters,
are often not transferable to other domains, and lack
a proper theoretical foundation.

Syed et al. (1999) describe an approach to incremen-
tally learning support vector machines that handles
virtual concept drift implied by incrementally learning
from several subsamples of a large training set, but
they do not address the problem of (real) concept drift
addressed here.

3. Support Vector Machines

The window adjustment approach described in this
paper uses support vector machines (Vapnik, 1998)
as their core learning algorithm. Support vector ma-
chines are based on the structural risk minimization
principle (Vapnik, 1998) from statistical learning the-
ory. In their basic form, SVMs learn linear decision
rules

+1, f&d-Z+6>0

h(Z) = sign{w -+ b} = {_1: clse (1)

described by a weight vector & and a threshold 5. The
idea of structural risk minimization is to find a hypoth-
esis h for which one can guarantee the lowest proba-
bility of error. For SVMs, Vapnik (1998) shows that
this goal can be translated into finding the hyperplane
with maximum soft-margin.? Computing this hyper-
plane is equivalent to solving the following optimiza-
tion problem.

2See Burges (1998) for an introduction to SVMs.

Optimization Problem 1 (SVM (primal))

- 1
minimize: V(#,b,&) = 513 L+ C ;Ez (2)
subject to: oy A+ > 16 (3)
?:1 El > 0 (4)

In this optimization problem, the Euclidean length
||| of the weight vector is inversely proportional to
the soft-margin of the decision rule. The constraints
(3) require that all training examples are classified cor-
rectly up to some slack &;. If a training example lies on
the “wrong” side of the hyperplane, the corresponding
& is greater or equal to 1. Therefore Y | & is an
upper bound on the number of training errors. The
factor C in (2) is a parameter that allows trading-off
training error vs. model complexity.

For computational reasons it is useful to solve the
Wolfe dual (Fletcher, 1987) of optimization problem 1
instead of solving optimization problem 1 directly

(Vapnik, 1998).

Optimization Problem 2 (SVM (dual))

n 1 n n
minimize: W(&) = —ZOH- §Zzyiyjaiaj(fi'fj) (5)
i=1

i=1j=1

subject to: Z yia; =0 (6)
i=1

?:1:0§ai§0 (7)

In this paper, SV M'9" (Joachims, 1999) is used for
computing the solution of this optimization problem.?
Support vectors are those training examples #; with
a; > 0 at the solution. From the solution of optimiza-
tion problem 2 the decision rule can be computed as

n
E =Y 0y (F-F) and b= yus —@-Fusw (8)
i=1

The training example (Zysv, Yusv) for calculating b
must be a support vector with a,s, < C. Finally, the
training losses & can be computed as § = maz(1 —

For both solving optimization problem 2 as well as ap-
plying the learned decision rule, it is sufficient to be
able to calculate inner products between feature vec-
tors. Exploiting this property, Boser et al. introduced
the use of kernels K (¥, #3) for learning non-linear de-
cision rules. Depending on the type of kernel func-
tion, SVMs learn polynomial classifiers, radial basis

SV M 9" is available at http://www-ai.informatik.
uni-dortmund.de/svm _light

function (RBF) classifiers, or two layer sigmoid neu-
ral nets. Such kernels calculate an inner-product in
some feature space and replace the inner-product in
the formulas above.

4. Window Adjustment by Optimizing
Performance

Our approach to handling drift in the distribution of
examples uses a window on the training data. This
window should include only those example which are
sufficiently “close” to the current target concept. As-
suming the amount of drift increases with time, the
Pre-
vious approaches used similar windowing strategies.
Their shortcomings are that they either fix the win-
dow size (Mitchell et al., 1994) or involve compli-
cated heuristics (Widmer & Kubat, 1996; Lanquillon,
1997; Klinkenberg & Renz, 1998). A fixed window size
makes strong assumptions about how quickly the con-
cept changes. While heuristics can adapt to different
speed and amount of drift, they involve many param-
eters that are difficult to tune. Here, we present an
approach to selecting an appropriate window size that

window includes the last n training examples.

does not involve complicated parameterization. They
key idea 1s to select the window size so that the es-
timated generalization error on new examples is min-
imized. To get an estimate of the generalization er-
ror we use a special form of {a-estimates (Joachims,
2000). {a-estimates are a particularly efficient method
for estimating the performance of a SVM.

4.1 £(a-Estimators

Ea-estimators are based on the idea of leave-one-out
estimation (Lunts & Brailovskiy, 1967). The leave-
one-out estimator of the error rate proceeds as follows.
From the training sample S = ((Z1,11), -, (ZFn.¥n))
the first example (#1,y;) is removed. The resulting
sample S\ = ((F9,y2), - - (Fn, yn)) is used for train-
ing, leading to a classification rule h\ﬁl. This classifi-
cation rule is tested on the held out example (&7, y1).
If the example is classified incorrectly it is said to pro-
duce a leave-one-out error. This process is repeated
for all training examples. The number of leave-one-
out errors divided by n is the leave-one-out estimate
of the generalization error.

While the leave-one-out estimate is usually very accu-
rate, it is very expensive to compute. With a training
sample of size n, one must run the learner n times.
Ea-estimators overcome this problem using an upper
bound on the number of leave-one-out errors instead
of calculating them brute force. They owe their name

to the two arguments they are computed from. E is
the vector of training losses at the solution of the pri-
mal SVM training problem. & is the solution of the
dual SVM training problem. Based on these two vec-
tors — both are available after training the SVM at
no extra cost — the £a-estimators are defined using
the following two counts. With R% being the max-
imum difference of any two elements of the Hessian
(i.e. R > maxz & (K(Z.7) — K(Z.2'))).

d=|{i: (R} +&) > 1}] (9)

counts the number of training examples, for which the
quantity a; R4 + & exceeds one. Since the document
vectors are normalized to unit length in the experi-
ments described in this paper, here Ry = 1. It is
proven in Joachims (2000) that d is an approximate
upper bound on the number of leave-one-out errors in
the training set. With n as the total number of train-
ing examples, the {a-estimators of the error rate is
S P2)
Err?a(hg): HZ (O‘ZRA+EZ) Z 1}| (10)

n

The theoretical properties of this £ a-estimator are dis-
cussed in Joachims (2000). Tt can be shown that the
estimator is pessimistically biased, overestimating the
true error rate on average. Experiments show that the
bias is acceptably small for text classification problems
and that the variance of the {a-estimator is essentially
as low as that of a holdout estimate using twice as
much data. It is also possible to design similar esti-
mators for precision and recall, as well as combined
measures like F'1 (Joachims, 2000).

4.2 Window Adjustment Algorithm

A window adjustment algorithm has to solve the fol-
lowing trade-off. A large window provides the learner
with much training data, allowing it to generalize well
given that the concept did not change. On the other
hand, a large window can contain old data that is no
longer relevant (or even confusing) for the current tar-
get concept. Finding the right size means trading-off
the quality against the number of training examples.

To answer this question the window adjustment algo-
rithm proposed in the following uses £a-estimates in
a particular way. At batch ¢, it essentially tries var-
ious window sizes, training a SVM for each resulting
training set.

Z-(‘tl), Z(tm) (11)

E(’t—Ll): EA] E(’t—lm): Z_(’tl): (] E(’tm) (12)
Z_(’t—zl): cee E(‘t—?m): E(’t—Ll): cee E(‘t—lm): Z_(’tl): tee E(’tm) (13)

For each window size it computes a £a-estimate based
on the result of training. In contrast to the previous
section, the £a-estimator used here considers only the
last batch, that is the m most recent training examples

Z1): - Aem)
Hi:1<i<mA (ag)RA+Eg) > 1}

m

Errl (he)= (14)

This reflects the assumption that the most recent ex-
amples are most similar to the new examples in batch
t + 1. The window size minimizing the {a-estimate of
the error rate 1s selected by the algorithm.

The algorithm can be summarized as follows:

e input: S training sample consisting of
t batches containing m examples each

e for he {0,...t— 1}

— train SVM on examples Zpy); .- Zm)
— compute {a-estimate on examples
Fe): -+ Zom)

e output:
(a-estimate

window size which minimizes

5. Experiments
5.1 Experimental Setup

Each of the following data management approaches is
evaluated in combination with the SVM:

o “Pull Memory”: The learner generates its classi-
fication model from all previously seen examples,
i.e. it cannot “forget” old examples.

e “No Memory”: The learner always induces its hy-
pothesis only from the most recent batch. This
corresponds to using a window of the fixed size of
one batch.

e Window of “Fized Size”: A window of the fixed
size of three batches 1s used.

e Window of “Adaptive Size”: The window adjust-
ment algorithm proposed in the previous section
adapts the window size to the current concept
drift situation.

The experiments are performed in an information fil-
tering domain, a typical application area for learning
drifting concept. Text documents are represented as
attribute-value vectors (bag of words model), where
each distinct word corresponds to a feature whose

Table 1. Relevance of the categories in the concept change scenarios A, B, and C.

Sce- || Cate- || Probability of being relevant for a document of the specified category at the specified time step (batch)
nario | gory | 0 | 1 [2 |3 |4 |5 |6 |7 |89 |10]11|12]13]|14]15]|16 |17 |18 |19
A 1 101010101010 |10}10|10|10(00(00]|00]|00|00|0.0]0.0|0.0|0.0]0.0

3 00|00 (000000 |00]|00|0O0f0O0|00|10]|10(10(10]|1.0]|10|1.0]|1.0]1.0]|1.0

B 1 10(10{10{10|10|10|1.0|1.0|08|06 |0.4]0.2]|00|00(0.0/]0.0]0.00.00.0]0.0

3 00|00 (|00 |000.0|00|00|00]0.2]04]|06]|08|10[1.0]|1.0]|10|1.0]1.0]1.0]|1.0

C 1 t10(10{10{10|10(|10}10{10|10|00(00|1.0|10|10(10|1.0]|1.0|1.0|1.0]1.0

3 0.0|00 (0000000000 |0O0f0O0|1.0]|10]|00(|00]0.0]0.0]0.0|0.0]0.0]0.0]0.0

value is the “ltc”-TF/IDF-weight (Salton & Buckley,
1988) of that word in that document. Words occurring
less than three times in the training data or occurring
in a given list of stop words are not considered. Each
document feature vector is normalized to unit length
to abstract from different document lengths.

The performance of a classifier 1s measured by the
three metrics prediction error, recall, and precision.
Recall is the probability, that the classifier recognizes
a relevant document as relevant. Precision is the prob-
ability, that a document classified as relevant actually
is relevant. All reported results are estimates averaged
over ten runs.

The experiments use a subset of 2608 documents of
the data set of the Text RFEtrieval Conference (TREC)
consisting of English business news texts. Each text is
assigned to one or several categories. The categories
considered here are 1 (Antitrust Cases Pending), 3
(Joint Ventures), 4 (Debt Rescheduling), 5 (Dumping
Charges), and 6 (Third World Debt Relief). For the
experiments, three concept change scenarios are simu-
lated. The texts are randomly split into 20 batches of
equal size containing 130 documents each.* The texts
of each category are distributed as equally as possible
over the 20 batches.

Table 1 describes the relevance of the categories in
the three concept change scenarios A, B, and C. For
each time step (batch), the probability of being rele-
vant (interesting to the user) is specified for documents
of categories 1 and 3, respectively. Documents of the
classes 4, 5, and 6 are never relevant in any of these
scenarios. In the first scenario (scenario A), first doc-
uments of category 1 are considered relevant for the
user interest and all other documents irrelevant. This
changes abruptly (concept shift) in batch 10, where
documents of category 3 are relevant and all others ir-
relevant. In the second scenario (scenario B), again

*Hence, in each trial, out of the 2608 documents, eight
randomly selected texts are not considered.

first documents of category 1 are considered relevant
for the user interest and all other documents irrele-
vant. This changes slowly (concept drift) from batch
8 to batch 12, where documents of category 3 are rele-
vant and all others irrelevant. The third scenario (sce-
nario C') simulates an abrupt concept shift in the user
interest from category 1 to category 3 in batch 9 and
back to category 1 in batch 11.

5.2 Results

Figure 1 compares the prediction error rates of the
adaptive window size algorithm with the non-adaptive
methods. The graphs show the prediction error on the
following batch. In all three scenarios, the full mem-
ory strategy and the adaptive window size algorithm
essentially coincide as long as there is no concept drift.
During this stable phase, both show lower prediction
error than the fixed size and the no memory approach.
At the point of concept drift, the performance of all
methods deteriorates. While the performance of no
memory and adaptive size recovers quickly after the
concept drift, the error rate full memory approach re-
mains high especially in scenarios A and B. Like before
the concept drift, the no memory and the fixed size
strategies exhibit higher error rates than the adaptive
window algorithm in the stable phase after the concept
drift. This shows that the no memory, the fixed size,
and the full memory approaches all perform subopti-
mally in some situation. Only the adaptive window
size algorithm can achieve a relatively low error rate
over all phases in all scenarios. This is also reflected
in the average error rates over all batches given in Ta-
ble 2. The adaptive window size algorithm achieves a
low average error rate on all three scenarios. Similarly,
precision and recall are consistently high.

The behavior of the adaptive window algorithm is best
explained by looking at the window sizes it selects.
Figure 2 shows the average training window ranges.
The bottom of each graph depicts the time and extent

of concept drift in the corresponding scenario. For

50

45

40

Error Rate (in %)
N N w w
o (&) o o

.
a

10

50

45

40

Error Rate (in %)
N N w w
o (&) o a

.
a

10

50

45

40

Error Rate (in %)
N N w w
o (&) o a

.
a

10

T T
Adaptive Size o—
No Memory -+-
Fixed Size -&--
Full Memory -x

Batch

Adaptive Size <—
No Memory -+

Fixed Size -&--
Full Memory -x

T
Adaptive Size <—
No Memory -+
Fixed Size -&--
Full Memory -x

Figure 1. Comparison of the prediction error rates for sce-
nario A (top), B (middle), and C (bottom). The x-axis

denotes the batch number and the y-axis the average pre-

diction error.

-
©
T

18 R
17 B -
16 — B
15 — Bl

|

13 + —0 g
12 o © 4
11 o0 4
10 R
9 i
§ 8 ¢ © -
87} 4
6o © -
5p—— 4
44— 4
3¢—o B
24— -
14— B
I I I I I I L I L
0 260 520 780 1040 1300 1560 1820 2080 2340

Window Range

W

18 R
17 — 5 4
16 — B
15 - o © i
14 o— -
13 —0 4
12 o—0 4
11 —0 4
10 R

Batch

P NWAOON® O
|

1
ot
R
—
+ + + + - + + -+
1 L I L L 1 L L L
0 260 520 780 1040 1300 1560 1820 2080 2340
Window Range
T T T T T T T
19
18 - 4
17 B
16 + —0 -
15 - o> © Bl

hl

Batch |
P NWHAUOON®O©OR

T

L

L |
0 260 520 780 1040 1300 1560 1820 2080 2340
Window Range

Figure 2. Window size and range for scenario A (top), B
(middle), and C (bottom). The y-axis denotes the batch
number. Each horizontal line marks the average training
window range selected at that batch number. The bottom
part of each graph depicts the location and type of the
concept shift.

Table 2. Error, accuracy, recall, and precision of all window
management approaches for all scenarios averaged over 10
trials with 20 batches each (standard sample error in paren-
theses).

Full No Fixed Adaptive
Memory | Memory Size Size

Scenario A:
Error || 20.36% 7.30% 7.96% 5.32%
(4.21%) | (1.97%) | (2.80%) || (2.29%)
Recall || 51.69% 74.42% 77.64% 85.35%
(8.37%) | (4.61%)| (6.07%) || (4.93%)
Precision || 64.67% | 91.29% | 87.73% 91.61%
(8.38%) | (5.10%)| (5.93%) | (5.11%)

Scenario B:
Error || 20.25% 9.08% 8.44% 7.56%
(3.56%) | (1.57%) | (2.00%) | (1.89%)
Recall || 49.35% 67.22% 73.85% 76.70%
(7.01%) | (5.04%) | (5.51%) || (5.42%)
Precision || 65.09% | 88.86% | 87.19% 88.48%
(6.80%) | (3.67%) | (4.18%) || (3.89%)

Scenario C:
Error 7.74% 8.97% 10.17% 7.07%
(3.05%) | (2.84%) | (3.30%) || (3.16%)
Recall || 76.54% 63.68% 68.18% 78.17%
(6.26%) | (5.27%) | (7.05%) || (6.34%)
Precision || 83.15% | 87.67% | 79.00% 87.38%
(6.69%) | (7.06%) | (8.09%) | (6.99%)

scenario A the training window increases up to the
abrupt concept change after batch 10, covering almost
all examples available for the current concept. Only in
batches 5 to 10 the average training set size is slightly
smaller than maximally possible. Our explanation is
that for large training sets a relatively small number of
additional examples does not always make a “notice-
able” difference. After the concept change in batch 10
the adaptive window size algorithm now picks train-
ing windows covering only those examples from after
the drift as desired. A similar behavior is found for
scenario B (Figure 2, middle). Since the drift is less
abrupt, the adaptive window size algorithm interme-
diately selects training examples from both concepts
in batch 11. After sufficiently many training examples
from the new distribution are available, those earlier
examples are discarded. The behavior of the adaptive
window size algorithm in scenario C is reasonable as
well (Figure 2, bottom). A particular situation occurs
in batch 12. Here the window size exhibits a large
variance. For 8 of the 10 runs the algorithm selects
a small training set size of one batch, while for the
remaining 2 runs it selects all available training exam-
ples starting with batch 1. Here there appears to be
a borderline decision between accepting 2 (out of 12)
batches of “bad” examples or just training on a single

batch.

Error Estimate (in %)
50

40 &

Error Estimate —<—
Minimum Error Estimate ----

30

20

10

Window Range

Figure 3. Average {a-estimates at different batches and for
varying training window sizes for scenario A. The dashed
curve marks the beginning of the window with the lowest
error estimate.

Further insight on how the algorithm selects the win-
dow size is gained from figure 3. It plots the average
Ea-estimate in scenario A over all batches and for vary-
ing window size. The z;-axis denotes the number of
the current batch (increasing from right to left) and
the zs-axis the batch of the window start. The dashed
line indicates the beginning of the window with the
lowest estimate in the batch. The graph shows that
the error estimate decreases with growing window size
in batches 1 to 10. After batch 10, the estimate accu-
rately reflects the concept change. The error estimate
decreases with training windows growing towards the
abrupt concept change. If the window is enlarged be-
yond this change, the estimated error increases steeply
as expected.

6. Summary and Conclusions

In this paper, we proposed a new method for han-
dling concept drift with support vector machines. The
method directly implements the goal of discarding ir-
relevant data with the aim of minimizing generaliza-
tion error. Exploiting the special properties of SVMs,
we adapted fa-estimates to the window size selec-
tion problem. Unlike for the conventional heuristic
approaches, this gives the new method a clear and
simple theoretical motivation. Furthermore, the new
method is easier to use in practical applications, since
it involves less parameters than complicated heuris-
tics. Experiments in an information filtering domain
show that the new algorithm achieves a low error rate
and selects appropriate window sizes over very differ-
ent concept drift scenarios.

An open questions is how sensitive the algorithm is
to the size of individual batches. Since in the current
version of the algorithm the batch size determines the
estimation window, the variance of the window size is

likely to increase with smaller batches. It might be
necessary to select the estimation window size inde-
pendent of the batch size. A shortcoming of most ex-
isting algorithms handling concept drift (an exception
is Lanquillon (1999)) is that they can detect concept
drift only after labeled data is available. That is, after
the learning algorithm starts making mistakes. While
this appears unavoidable for concept drift with respect
to Pr(y|Z), it might be possible to detect concept drift
in Pr(Z) earlier by using transductive support vector
machines.

Acknowledgments

This work was supported by the DFG Collaborative
Research Center on Complexity Reduction in Multi-
variate Data (SFB 475) and by the DFG Collabora-
tive Research Center on Computational Intelligence

(SFB 531).

References

Allan, J. (1996). Incremental relevance feedback for
information filtering. Proceedings of the Nineteenth
ACM Conference on Research and Development in
Information Retrieval (pp. 270-278). New York:
ACM Press.

Balabanovic, M. (1997). An adaptive web page rec-
ommendation service. Proceedings of the First In-
ternational Conference on Autonomous Agents (pp.

378-385). New York: ACM Press.

Burges, C. (1998). A tutorial on support vector ma-
chines for pattern recognition. Data Mining and
Knowledge Discovery, 2, 121-167.

Fletcher, R. (1987). Practical methods of optimization
(2nd edition). New York: Wiley.

Helmbold, D. P., & Long, P. M. (1994). Tracking drift-
ing concepts by minimizing disagreements. Machine
Learning, 14, 27-45.

Joachims, T. (1999). Making large-scale SVM learning
practical. In B. Scholkopf, C. Burges, & A. Smola
(Eds.), Advances in kernel methods - Support vector
learning. Cambridge, MA, USA: MIT Press.

Joachims, T. (2000). Estimating the generalization
performance of a SVM efficiently. Proceedings of the
Seventeenth International Conference on Machine
Learning. San Francisco: Morgan Kaufman.

Klinkenberg, R. (1998). Maschinelle Lernverfahren
zum adaptiven Informationsfiltern bei sich veran-
dernden Konzepten. Masters thesis, Fachbereich In-
formatik. Universitat Dortmund. Germany.

Klinkenberg, R., & Renz, 1. (1998). Adaptive infor-
mation filtering: Learning in the presence of con-
cept drifts. Workshop Notes of the ICML-98 Work-

shop on Learning for Text Categorization (pp. 33—
40). Menlo Park, CA, USA: AAAT Press.

Kuh, A., Petsche, T., & Rivest, R. (1991). Learning
time-varying concepts. Advances in Neural Informa-
tion Processing Systems (pp. 183-189). San Mateo,
CA, USA: Morgan Kaufmann.

Kunisch, G. (1996). Anpassung und Fualuierung
statistischer Lernverfahren zur Behandlung dy-
namischer Aspekte in Data Mining. Masters thesis,
Fachbereich Informatik, Universitat Ulm, Germany.

Lanquillon, C. (1997). Dynamic Neural Classification.
Masters thesis, Fachbereich Informatik, Universitat
Braunschweig, Germany.

Lanquillon, C. (1999). Information filtering in chang-
ing domains. Working Notes of the IJCAI-99 Work-
shop on Machine Learning for Information Filtering
(pp. 41-48). Stockholm, Sweden.

Lunts, A., & Brailovskiy, V. (1967). Evaluation of
attributes obtained in statistical decision rules. En-
gineering Cybernetics, 3, 98-109.

Mitchell, T., Caruana, R., Freitag, D., McDermott, J.,
& Zabowski, D. (1994). Experience with a learning
personal assistant. Communications of the ACM,

37, 81-91.
Salton, G., & Buckley, C. (1988). Term weighting ap-

proaches in automatic text retrieval. Information
Processing and Management, 24, 513-523.

Syed, N. A., Liu, H., & Sung, K. K. (1999). Handling
concept drifts in incremental learning with support
vector machines. Proceedings of the Fifth Interna-

tional Conference on Knowledge Discovery and Data
Mining. New York: ACM Press.

Taylor, C., Nakhaeizadeh, G., & Lanquillon, C. (1997).
Structural change and classification. Workshop
Notes of the ECML-97 Workshop on Dynamically
Changing Domains: Theory Revision and Context
Dependence Issues (pp. 67-78).

Vapnik, V. (1998). Statistical learning theory. Chich-
ester, GB: Wiley.

Widmer, G., & Kubat, M. (1996). Learning in the
presence of concept drift and hidden contexts. Ma-
chine Learning, 23. 69-101.

