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Abstract

The task of information �ltering is to classify texts
from a stream of documents into relevant and non-
relevant, respectively, with respect to a particu-
lar category or user interest, which may change
over time. A �ltering system should be able to
adapt to such concept changes. This paper ex-
plores methods to recognize concept changes and
to maintain windows on the training data, whose
size is either �xed or automatically adapted to the
current extent of concept change. Experiments
with two simulated concept drift scenarios based
on real-world text data and eight learning meth-
ods are performed to evaluate three indicators for
concept changes and to compare approaches with
�xed and adjustable window sizes, respectively, to
each other and to learning on all previously seen
examples. Even using only a simple window on
the data already improves the performance of the
classi�ers signi�cantly as compared to learning on
all examples. For most of the classi�ers, the win-
dow adjustments lead to a further increase in per-
formance compared to windows of �xed size. The
chosen indicators allow to reliably recognize con-
cept changes.

Introduction

With the amount of online information and commu-
nication growing rapidly, there is an increasing need
for reliable automatic information �ltering. Informa-
tion �ltering techniques are used, for example, to build
personalized news �lters, which learn about the news-
reading preferences of a user, or to �lter e-mail. The
concept underlying the classi�cation of the documents
into relevant and non-relevant may change. Machine
learning techniques particularly ease the adaption to
(changing) user interests.
This paper focuses on the aspect of changing concepts

in information �ltering. After reviewing the standard
feature vector representation of text and giving some
references to other work on adaption to changing con-
cepts, this paper describes indicators for recognizing
concept changes and uses some of them as a basis for a
window adjustment heuristic that adapts the size of a
time window on the training data to the current extent

of concept change. The indicators and data manage-
ment approaches with windows of �xed and adaptive
size, respectively, are evaluated in experiments with two
simulated concept drift scenarios on real-world text data.

Text Representation

In Information Retrieval, words are the most common
representation units for text documents and it is usually
assumed, that their ordering in a document is of minor
importance for many tasks. This leads to an attribute-
value representation of text, where each distinct word
wi corresponds to a feature with the number of times it
occurs in the document d as its value (term frequency,
TF (wi; d)). To reduce the length of the feature vector,
words are only considered as features, if they occur at
least 3 times in the training data and are not in a given
list of stop words (like \the", \a", \and", etc.).
For some of the learning methods used in the exper-

iments described in this paper, a subset of the features
is selected using the information gain criterion (Quin-
lan 1993), to improve the performance of the learner
and/or speed up the learning process. The remaining
components wi of the document feature vector are then
weighted by multiplying them with their inverse doc-
ument frequency (IDF). Given the document frequency
DF (wi), i. e. the number of documents word wi oc-
curs in, and the total number of documents jDj, the
inverse document frequency of word wi is computed as

IDF (wi) = log jDj
DF (wi)

. Afterwards each document fea-

ture vectors is normalized to unit length to abstract
from di�erent document lengths.
In the experiments described in this paper, the per-

formance of a classi�er is measured using the three
metrics accuracy, recall, and precision. Accuracy is
the probability, that a random instance is classi�ed cor-
rectly, and is estimated as the number of correct classi-
�cations divided by the total number of classi�cations.
Recall is the probability, that the classi�er recognizes a
relevant document as relevant, and is computed as the
number of relevant documents found relevant by the
classi�er divided by the total number of relevant doc-
uments. Precision is the probability, that a document
found relevant by the classi�er actually is relevant, and
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is estimated by the number of relevant documents found
relevant by the classi�er divided by the total number of
documents found relevant by the classi�er.

Adapting to Changing Concepts

In machine learning, changing concepts are often han-
dled by using a time window of �xed or adaptive size
on the training data (see for example (Widmer & Ku-
bat 1996), (Lanquillon 1997)) or weighting data or
parts of the hypothesis according to their age and/or
utility for the classi�cation task ((Kunisch 1996),
(Taylor, Nakhaeizadeh, & Lanquillon 1997)). The lat-
ter approach of weighting examples has already been
used in information �ltering by the incremental rele-
vance feedback approach (Allan 1996) and by (Bala-
banovic 1997). In this paper, the earlier approach of
maintaining a window of adaptive size on the data and
explicitly recognizing concept changes is explored in the
context of information �ltering. A more detailed de-
scription of the techniques described above and further
approaches can be found in (Klinkenberg 1998).
For windows of �xed size, the choice of a \good"

window size is a compromise between fast adaptabil-
ity (small window) and good and stable learning results
in phases without or with little concept change (large
window). The basic idea of the adaptive window man-
agement is to adjust the window size to the current
extent of concept drift. In case of a suspected concept
drift or shift, the window size is decreased by dropping
the oldest, no longer representative training instances.
In phases with a stable concept, the window size is in-
creased to provide a large training set as basis for good
generalizations and stable learning results. Obviously,
reliable indicators for the recognition of concept changes
play a central role in such an adaptive window manage-
ment.

Indicators for Concept Drifts

Di�erent types of indicators can be monitored to detect
concept changes:

� Performance measures (e. g. the accuracy of the cur-
rent classi�er): independent of the hypothesis lan-
guage, generally applicable.

� Properties of the classi�cation model (e. g. the com-
plexity of the current rules): dependent on a par-
ticular hypothesis language, applicable only to some
classi�ers.

� Properties of the data (e. g. class distribution, at-
tribute value distribution, current top attributes ac-
cording to a feature ranking criterion, or current char-
acteristic of relevant documents like cluster member-
ships): independent of the hypothesis language, gen-
erally applicable.

The indicators of the window adjustment heuristic of
the FLORA algorithms (Widmer & Kubat 1996), for
example, are the accuracy and the coverage of the cur-
rent concept description, i. e. the number of positive

instances covered by the current hypothesis divided by
the number of literals in this hypothesis. Obviously the
coverage can only be computed for rule-based classi-
�ers.
The window adjustment approach for text classi�ca-

tion problems proposed in this paper, only uses per-
formance measures as indicators, because they can be
applied across di�erent learning methods and are ex-
pected to be the most reliable indicators. For the com-
putation of performance measures like accuracy, user
feedback about the true class of a �ltered document is
needed. In some applications only partial user feed-
back is available to the �ltering system. For the ex-
periments described in this paper, complete feedback
about all �ltered documents is assumed. In most infor-
mation �ltering tasks, the irrelevant documents signi�-
cantly outnumber the relevant documents. Hence a de-
fault rule predicting all new documents to be irrelevant
can achieve a high accuracy, because the accuracy does
not distinguish between di�erent types of misclassi�ca-
tions. Obviously the accuracy alone is only of limited
use as performance measure and indicator for text clas-
si�cation systems. Therefore the measures recall and
precision are used as indicators in addition to the accu-
racy (see section Text Representation above). because
they measure the performance on the smaller, ususally
more important class of relevant documents.

Adaptive Window Adjustment

The documents are presented to the �ltering system in
batches. Each batch is a sequence of several documents
from the stream of texts to be �ltered. In order to recog-
nize concept changes, the values of the three indicators
accuracy, recall, and precision are monitored over time
and the average value and the standard sample error
are computed for each of these indicators based on the
last M batches at each time step. Each indicator value
is compared to a con�dence interval of � times the stan-
dard error around the average value of the particular in-
dicator, where the con�dence niveau � is a user-de�ned
constant (� > 0). If the indicator value is smaller than
the lower end point of this interval, a concept change
is suspected. In this case, a further test determines,
whether the change is abrupt and radical (concept shift)
or rather gradual and slow (concept drift). If the cur-
rent indicator value is smaller than its predecessor times
a user-de�ned constant � (0 < � < 1), a concept shift
is suspected, otherwise a concept drift.
In case of a concept shift, the window is reduced to

its minimal size, the size of one batch (jBj), in order to
drop the no longer representative old examples as fast
as possible. If only a concept drift has been recognized,
the window is reduced less radically by a user-de�ned
reduction rate 
 (0 < 
 < 1). This way some of the
old data is kept, because it still is at least partially
representative for the current concept. This establishes
a compromise between fast adaptivity via a reduction of
the window size and stable learning results as a result
of a su�ciently large training data set. If neither a
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Category Name of the Category Number of
Documents

1 Antitrust Cases Pending 400
3 Joint Ventures 842
4 Debt Rescheduling 355
5 Dumping Charges 483
6 Third World Debt Relief 528

Total 2608

Table 1: Categories of the TREC data set used in the
experiments.

concept shift nor a drift is suspected, all seen examples
are stored, in order to provide a training set of maximal
size, because in case of a stable concept, text classi�ers
usually perform the better, the more training examples
they have.
While in real applications an upper bound for the

size of the adaptive window seems reasonable, no such
bound was used for the experiments described in this
paper. Figure 1 describes the window adjustment
heuristic. For the �rst M0 initial batches, the win-
dow size is not adapted, but left at its initial value
of jW0j to establish the average indicator values and
their standard errors. jWtj denotes the current win-
dow size and jWt+1j the new window size. jBj is
the number of documents in a batch. Acct is the
current accuracy value, Acct�1 is the previous ac-
curacy value, AvgM (Acc) is the average accuracy of
the last M batches, and StdErrM(Acc) is the stan-
dard error of the accuracy on the last M batches.
Rect, Rect�1, AvgM (Rec), and StdErrM (Rec) denote
the corresponding recall values, and Prect, Prect�1,
AvgM (Prec), and StdErrM (Prec) the corresponding
precision values.

Experiments

The experiments described in this paper are based on
a subset of the data set of the Text REtrieval Confer-
ence (TREC). This data set consists of English busi-
ness news texts from di�erent sources. These texts are
usually assigned to one or several categories. Here the
categories 1, 3, 4, 5, and 6 were used. Table 1 shows
the names of these categories along with the numbers of
documents assigned to them. For the experiments, two
concept change scenarios are simulated. The texts are
randomly split into 20 batches of equal size containing
130 documents each1. The texts of each category are
distributed as equally as possible to the 20 batches.
In the �rst scenario (scenario A), �rst documents

of category 1 (Antitrust Cases Pending) are considered
relevant for the user interest and all other documents
irrelevant. This changes abruptely (concept shift) in
batch 10, where documents of category 3 (Joint Ven-
tures) are relevant and all others irrelevant. Table 2

1Hence, in each trial, out of the 2608 documents 8 ran-
domly selected texts are not considered.

speci�es the probability of being relevant for documents
of each category for each time step (batch). Classes 4,
5, and 6 are never relevant.
In the second scenario (scenario B), again �rst docu-

ments of category 1 (Antitrust Cases Pending) are con-
sidered relevant for the user interest and all other doc-
uments irrelevant. This changes slowly (concept drift)
from batch 8 to batch 12, where documents of category
3 (Joint Ventures) are relevant and all others irrelevant.
Table 3 speci�es the probability of being relevant for
documents of each category for each time step (batch).
Classes 4, 5, and 6 are never relevant.

Experimental Setup

The experiments are performed according to the batch
learning scenario, i. e. the learning methods learn a
new classi�cation model whenever they receive a new
batch of training documents. Each of the following data
management approaches is tested in combination with
each of the learning methods listed further below:

� \Full Memory": The learner generates its classi�ca-
tion model from all previously seen examples, i.e. it
cannot \forget" old examples.

� \No Memory": The learner always induces its hy-
pothesis only from the least recently seen batch. This
corresponds to using a window of the �xed size of one
batch.

� Window of \Fixed Size": A window of the �xed size
of three batches is used.

� Window of \Adaptive Size": The window adjustment
heuristic (�gure 1) is used to adapt the window size
to the current concept drift situation.

For the adaptive window management approach,
the initial window size is set to three batches
(jW0j := 3 � jBj), the number of initial batches to �ve
(M0 := 5), and the number of batches for the averaging
process to 10 (M := 10). The width of the con�dence
interval is set to � := 5:0, the factor � := 0:5, and
the window reduction rate 
 := 0:5. These values are
arbitrarily set and not result of an optimization.
The parameters of the learning methods listed below

were found to perform well in a prelimenary experiment
for a di�erent classi�cation task on the TREC data set,
but not optimized for the concept drift scenarios inves-
tigated here: the Rocchio Algorithm (Rocchio Jr. 1971)
as the most popular learning method from information
retrieval with � := 1:0 and � := 1:0 and a treshold �
determined via v-fold cross validation (v = 4), a Naive
Bayes Classi�er (Joachims 1997), the PrTFIDF Algo-
rithm (Joachims 1997), a distance-weighted k-Nearest
Neighbors (k-NN) method (Mitchell 1997) with k := 5,
the Winnow Algorithm (Littlestone 1988) from algo-
rithmic learning theory with a learning rate 
 := 1:1
and 40 iterations for learning, a Support Vector Ma-
chine (SVM) (Vapnik 1995) with polynomial kernel and
polynom degree one (= linear kernel), the symbolic rule
learner CN2 (Clark & Boswell 1991) using the default
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Procedure DetermineNewWindowSize (jWtj, M, �, �, 
)

if ((Acct < AvgM (Acc)� � � StdErrM (Acc)) and (Acct < � �Acct�1)) or

((Rect < AvgM (Rec)� � � StdErrM (Rec)) and (Rect < � �Rect�1)) or

((Prect < AvgM(Prec)� � � StdErrM (Prec)) and (Prect < � � Prect�1))

then jWt+1j := jBj; /* concept shift suspected: reduce window size to one batch */

else if (Acct < AvgM (Acc)� � � StdErrM (Acc)) or

(Rect < AvgM (Rec)� � � StdErrM (Rec)) or

(Rect < AvgM (Prec)� � � StdErrM (Prec))

then jWt+1j := max(jBj; jWtj � 
 � jWtj); /* concept drift suspected: reduce window size by 
 � 100% */

else jWt+1j := jWtj + jBj; /* stable concept suspected: grow window by one batch */

return jWt+1j;

Figure 1: Window adjustment heuristic for text categorization problems.

Cate- Relevance of the categories for each batch
gory 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 2: Relevance of the categories in concept change scenario A (abrupt concept shift in batch 10).

paramters to induce unordered rules, and the symbolic
decision tree and rule learning system C4.5 (Quinlan
1993) using the default parameters to induce a deci-
sion tree, to transform it to an ordered rule set, and to
post-prune the resulting rules. In the experiments de-
scribed here, Winnow is not used as an online learner,
but as a one-shot learner in the batch learning scenario
like all other methods listed above. Whenever a new
batch of documents is to be processed, Winnow learns
its classi�cation model on the current set of training
documents in 40 iterations. For Winnow, C4.5, and
CN2 the 1000 best attributes according to the infor-
mation gain criterion were selected. All other methods
used all attributes. The results reported in the follow-
ing sections were obtained by averaging over the results
of four trials for each combination of learning method,
data management approach, and concept drift scenario.

Experimental Results for Scenario A
(Concept Shift)

Table 4 compares accuracy, recall, and precision of all
combinations of learning methods and data manage-
ment approaches averaged over 4 trials according to
scenario A (table 2). In addition, this table compares
a pair of data management approaches in each of its
three right most columns. Column \(2) vs. (1)" is the
performance gain obtained by using approach (2) (No
Memory) instead of (1) (Full Memory), i. e. the di�er-
ences of the performance measures of these approaches.
Accordingly, the last two columns compare the Adap-
tive Size approach to the approaches with �xed window
size, i. e. No Memory and Fixed Size, respectively.
Column \(2) vs. (1)" shows that for all learning

methods a signi�cant improvement is achieved by us-
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Figure 2: Accuracy of CN2 in combination with the
di�erent data management approaches for scenario A.

ing the simple No Memory window approach instead of
learning on all known examples (Full Memory). The
average gain is 11:8% in accuracy, 25:8% in recall, and
23:6% in precision. An additional improvement can be
achieved by using the Adpative Size approach instead
of an approach with �xed window size (see columns
\(4) vs. (2)" and \(4) vs. (3)" in table 4). The average
gain of Adaptive Size compared to the best approach
with a window of �xed size is 1:7% in accuracy, 4:4%
in recall, and 2:4% in precision. A closer look at the
last two columns of table 4 shows, that some meth-
ods like CN2, C4.5, the SVM, Winnow, Rocchio, and
k-NN achieve signi�cant gains by using Adaptive Size,
while other methods like PrTFIDF and Naive Bayes do
not show a signi�cant improvement. For PrTFIDF, the
precision actually drops by more than 3:2%.
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Cate- Relevance of the categories for each batch
gory 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3: Relevance of the categories in concept change scenario B (slow concept drift from batch 8 to batch 12).

Full Memory No Memory Fixed Size Adaptive Size (2) vs. (1) (4) vs. (2) (4) vs. (3)
(1) (2) (3) (4)

Rocchio Accuracy 75.95% 84.63% 87.93% 89.38% +08.68% +04.75% +01.45%
Recall 49.77% 93.59% 87.41% 91.74% +43.82% {01.85% +04.33%

Precision 48.64% 61.77% 70.43% 72.91% +13.13% +11.14% +02.48%
Naive Accuracy 81.96% 93.59% 91.97% 93.97% +11.63% +00.38% +02.00%
Bayes Recall 68.51% 86.96% 84.67% 88.18% +18.45% +01.22% +03.51%

Precision 67.63% 87.32% 84.69% 87.68% +19.69% +00.36% +02.99%
PrTFIDF Accuracy 80.67% 88.18% 87.44% 88.87% +07.51% +00.69% +01.43%

Recall 85.33% 93.49% 93.31% 94.19% +08.16% +00.70% +00.88%
Precision 56.78% 67.66% 66.21% 64.42% +10.88% {03.24% {01.79%

k-NN Accuracy 79.32% 91.26% 90.14% 92.33% +11.94% +01.07% +02.19%
Recall 49.82% 76.60% 74.45% 80.74% +26.78% +04.14% +06.29%

Precision 63.34% 87.14% 84.29% 87.02% +23.80% {00.12% +02.73%
Winnow Accuracy 74.48% 89.94% 89.15% 91.64% +15.46% +01.70% +02.49%

Recall 41.44% 70.09% 70.77% 78.33% +28.65% +08.24% +07.56%
Precision 48.46% 83.12% 82.03% 85.95% +34.66% +02.83% +03.92%

SVM Accuracy 79.48% 92.64% 91.80% 94.48% +13.16% +01.84% +02.68%
Recall 51.03% 74.24% 77.11% 83.95% +23.21% +09.71% +06.84%

Precision 64.65% 91.27% 87.32% 91.49% +26.62% +00.22% +04.17%
CN2 Accuracy 77.72% 90.50% 90.16% 92.45% +12.78% +01.95% +02.29%

Recall 41.20% 68.45% 69.68% 76.74% +27.25% +08.29% +07.06%
Precision 56.49% 85.89% 85.37% 89.56% +29.40% +03.67% +04.19%

C4.5 Accuracy 78.49% 91.40% 90.29% 92.83% +12.91% +01.43% +02.54%
Recall 49.22% 79.02% 76.49% 83.47% +29.80% +04.45% +06.98%

Precision 51.24% 82.10% 81.84% 86.03% +30.86% +03.93% +04.19%

Average Accuracy +11.76% +01.73% +02.13%
Recall +25.76% +04.36% +05.43%

Precision +23.63% +02.35% +02.86%

Table 4: Accuracy, recall and precision of all learning methods combined with all data management approaches for
scenario A averaged over 4 trials with 20 batches each.

Figures 2 to 5 show the values of the three indica-
tors and the window size over time for the learning
method CN2 in combination with all data management
approaches and thereby allow a more detailed analysis
of the results than table 4. The �gures 2 to 4 with the
accuracy, recall, and precision values of CN2 show two
things. First, in this scenario all three indicators can
be used to easily detect the concept shift, because their
values decrease very signi�cantly in the batch the shift
occurs in (batch 10). Recall and Precision indicate this
shift even more clearly than Accuracy.

Second, in this scenario the data management ap-
proaches demonstrate their typical behaviour in rela-
tion to each other. Before the shift, the Full Memory
approach has the advantage of the largest training set
and hence shows the most stable performance and out-
performs the other three approaches, but it recovers
only very slowly from its break-down after the concept
shift. The Fixed Size approach shows a relatively good
performance in phases with stable target concept, but

needs several batches to recover after the concept shift.
The No Memory approach o�ers the maximum 
exi-
bility and recovers from the shift after only one batch,
but in phases with a stable concept, this approach is
signi�cantly less stable and performs worse than the
other approaches. In this scenario and in combination
with CN2, the Adaptive Size approach obviously man-
ages to show a high and stable performance in stable
concept phases and to adapt very fast to the concept
shift. Hence Adaptive Size here is able to combine the
advantages of di�erent window sizes.

Figure 5 shows the window size of the four data
management approaches in combination with CN2 over
time. The window of the Full Memory approach grows
linearly in the number of examples seen, while the
NoMemory approach always keeps a window of the size
of one batch. The window of the Fixed Size approach
grows up to a size of three batches, which it keeps af-
terwards. The Adaptive Size window grows up to its
initial size of three batches (user-de�ned constant jW0j)
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Figure 3: Recall of CN2 in combination with the di�er-
ent data management approaches for scenario A.
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Figure 4: Precision of CN2 in combination with the
di�erent data management approaches for scenario A.

and keeps this size until the last of the initial batches
for establishing the average values and standard errors
(user-de�ned constant M0 = 5). From the sixth batch
on, the window adjustment becomes active and the win-
dow grows until the concept shift occurs in batch 10.
Then the window is set to its minimal size of one batch,
but starts growing again immediately afterwards, be-
cause no further shift or drift is detected.

Figure 6 with the indicator values for PrTFIDF in
combination with the adaptive window management
shows, that the three indicators work for PrTFIDF as
well, i. e. they indicate the concept shift by a signi�-
cant decrease in their values. Figure 5 with the win-
dow size for PrTFIDF in combination with the four
data management approaches shows that the window
adjustment for PrTFIDF works almost as the one for
CN2. But, unlike for CN2, this is not re
ected by an
increase in the performance of PrTFIDF. A window of
the size of one batch already seems to be su�ciently
large for PrTFIDF in this scenario, so that the window
adjustments cannot provide any improvement.
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Figure 6: Performance measures accuracy, recall, and
precision for the Adaptive Size approach in combination
with PrTFIDF for scenario A.

Experimental Results for Scenario B
(Concept Drift)

Table 5 compares accuracy, recall, and precision of the
same pairs of data management approaches as table 4
in combination with all learning methods averaged over
4 trials according to scenario B (table 3). Like in
scenario A, using the simple No Memory approach in-
stead of the Full Memory approach yields signi�cant
performance improvements (column \(2) vs. (1)"). On
average, the accuracy is improved by 10:2%, recall by
22:5%, and precision by 21:2%.
The average increase in performance gained by using

the Adaptive Size approach instead of the best approach
with �xed window size is 0:3% in accuracy, 1:3% in re-
call, and 0:9% in precision. (columns \(4) vs. (2)" and
\(4) vs. (3)" in table 5). The average positive e�ect
of the window adjustments is obviously smaller than
in scenario A. While three methods show no signi�-
cant positive or even a negative e�ect through the ad-
justments, namely PrTFIDF, k-NN, Bayes, most of the
methods, i. e. CN2, C4.5, Rocchio, Winnow, and the
SVM, pro�t by the window adjustments.
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(2) vs. (1) (4) vs. (2) (4) vs. (3)

Rocchio Accuracy +08.16% +04.79% +01.53%
Recall +41.63% {03.15% +02.77%

Precision +11.12% +11.91% +03.31%
Naive Accuracy +09.85% +00.28% +00.44%
Bayes Recall +16.15% +01.94% +01.93%

Precision +17.71% {00.39% +00.83%
PrTFIDF Accuracy +06.17% {00.58% {00.39%

Recall +09.86% +00.70% {01.80%
Precision +08.75% {00.94% {00.70%

k-NN Accuracy +11.41% {00.59% {00.41%
Recall +24.09% +00.14% {00.10%

Precision +23.88% {01.30% +00.23%
Winnow Accuracy +12.66% +00.15% {00.14%

Recall +23.14% +04.48% +01.10%
Precision +29.42% +00.52% +00.50%

SVM Accuracy +12.15% +00.83% +00.54%
Recall +17.27% +07.52% +01.58%

Precision +23.74% {00.73% +01.49%
CN2 Accuracy +10.78% +01.65% +00.47%

Recall +22.97% +03.51% +02.36%
Precision +25.86% +03.60% +00.25%

C4.5 Accuracy +10.21% +01.12% +00.68%
Recall +24.49% +02.99% +02.89%

Precision +28.89% +02.80% +01.03%

Average Accuracy +10.17% +00.96% +00.34%
Recall +22.51% +02.26% +01.34%

Precision +21.17% +01.93% +00.87%

Table 5: Accuracy, recall and precision of all learning
methods for scenario B compared for the data manage-
ment approaches No Memory versus Full Memory and
Adaptive Size versus No Memory and Fixed Size.

As �gure 7 shows for the example CN2, the three
indicators work reliably in scenario B as well. Recall
and precision again indicate the concept change much
better than accuracy. The window size of the Adaptive
Size approach with CN2 over time (�gure 8) shows, that
the window adjustment works in this scenario as well.
The concept drift is already detected in batch 9 and
the window size is reduced accordingly. The reduction
of the window size continues until the end of the concept
drift in batch 12. The fact, that the window was not
radically set to its minimal size of one batch, shows,
that the concept drift was not mistakenly suspected to
be a concept shift. Although PrTFIDF does not pro�t
by the window adjustments as CN2 does, its window
adjustment works almost as well as for CN2 (�gure 8).

Setting the Parameters of the Window
Adjustment Heuristic

The parameters �, �, and 
 of the window adjust-
ment heuristic were more or less arbitrarily set to 5.0,
0.5, and 0.5, respectively in the experiments for the
scenarios A and B described in the two previous sec-
tions. In order to evaluate how much the performance
of the classi�ers depends on the choice of the values
for these parameters, an additional experiment is per-
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Figure 7: Performance measures accuracy, recall, and
precision for the Adaptive Size approach in combination
with the learning method CN2 for scenario B.
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Figure 8: Window size for CN2 and PrTFIDF in combi-
nation with the di�erent data management approaches
for scenario B.

formed on scenario B, whose concept drift is a little
bit more di�cult to recognize than the concept shift
of scenario A. Table 6 shows the results of applying
the learning methods PrTFIDF and C4.5 with all com-
binations of � 2 f2:5; 5:0;7:5g, � 2 f0:25; 0:50; 0:75g,
and 
 2 f0:25; 0:50; 0:75g. For both, PrTFIDF and
C4.5, the choice of a good value for � seems to be more
crucial than the choices of � and 
. If �, which de-
scribes the width of the con�dence interval for admissi-
ble drops in performance, is too large, the concept drift
of scenario B is no longer properly recognized and the
performance of the classi�ers drops signi�cantly. Other-
wise the window adjustment heuristic seems to be fairly
robust to the choice of the parameters �, �, and 
.

Conclusions

This paper describes indicators for recognizing concept
changes and uses some of them as a basis for a window
adjustment heuristic that adapts the window size to the
current extend of concept change. The experimental re-
sults show, that accuracy, recall, and precision are well
suited as indicators for concept changes in text classi�-
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 = 0:25 
 = 0:50 
 = 0:75
� = 2:5 � = 5:0 � = 7:5 � = 2:5 � = 5:0 � = 7:5 � = 2:5 � = 5:0 � = 7:5

PrTFIDF Accuracy 86.76% 85.87% 81.53% 87.11% 86.82% 80.93% 86.87% 86.60% 82.34%
� = 0:25 Recall 94.69% 94.47% 87.81% 93.41% 93.60% 85.80% 94.74% 94.80% 88.88%

Precisiom 65.02% 63.47% 57.43% 66.13% 65.56% 56.87% 65.44% 64.97% 58.62%
Accuracy 87.01% 86.12% 81.52% 87.11% 86.82% 80.93% 86.89% 86.72% 82.34%

� = 0:50 Recall 94.90% 94.68% 87.81% 93.41% 93.60% 85.80% 94.70% 94.39% 88.88%
Precisiom 65.41% 63.86% 57.43% 66.13% 65.56% 56.87% 65.46% 65.06% 58.62%
Accuracy 86.99% 86.72% 82.47% 87.10% 87.01% 80.93% 86.98% 86.71% 82.47%

� = 0:75 Recall 94.33% 94.39% 88.62% 93.41% 93.36% 85.80% 94.33% 94.39% 88.62%
Precisiom 65.53% 65.06% 58.89% 66.11% 65.93% 56.87% 65.51% 65.04% 58.89%

C4.5 Accuracy 89.95% 90.05% 81.89% 89.85% 90.00% 82.22% 89.63% 89.63% 83.10%
� = 0:25 Recall 70.81% 70.57% 51.99% 71.67% 71.42% 52.15% 71.09% 71.49% 54.10%

Precisiom 82.56% 81.47% 61.02% 81.85% 82.07% 62.31% 81.41% 80.36% 64.13%
Accuracy 89.87% 89.85% 83.08% 89.74% 89.76% 83.08% 89.63% 89.71% 83.08%

� = 0:50 Recall 72.17% 71.25% 53.58% 71.52% 71.45% 53.58% 71.09% 71.49% 53.58%
Precisiom 81.31% 81.68% 65.33% 81.54% 81.53% 65.33% 81.41% 81.30% 65.33%
Accuracy 89.82% 89.66% 83.08% 89.72% 89.66% 83.08% 89.60% 89.66% 83.08%

� = 0:75 Recall 71.97% 71.62% 53.58% 71.34% 71.62% 53.58% 70.96% 71.62% 53.58%
Precisiom 81.10% 81.17% 65.33% 81.40% 81.17% 65.33% 81.24% 81.17% 65.33%

Table 6: Varying the parameters �, �, and 
 of the window adjustment heuristic and its e�ect on the performance
of PrTFIDF and C4.5 in scenario B averaged over 4 trials with 20 batches each. The con�guration for the previous
experiments on the scenarios A and B is printed in bold font. The italic font indicates minimum and maximum
values of the particular performance measure for the learning method under consideration.

cation problems, and that recall and precision indicate
concept changes more clearly than accuracy. Further-
more it could be observed that even using a very simple
window of �xed size on the training data leads to signi-
�cant performance improvements for all tested learning
methods compared to learning on all previously seen ex-
amples. Using the proposed adaptive window manage-
ment approach instead of the best approach with a win-
dow of �xed size yields further performance improve-
ments for most of the learning methods. Hence both,
the indicators for concept changes and the window ad-
justment heuristic based on them, provide promising
starting points for future research and applications in
adaptive information �ltering.
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