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ABSTRACT

We develop efficient numerical optimization algorithms for regularized convex formulations

that appear in a variety of areas such as machine learning, statistics, and signal processing. Their

objective functions consist of a loss term and a regularization term, where the latter controls the

complexity of prediction models or induces a certain structure to the solution encoding our prior

knowledge. The formulations become difficult to solve when we consider a large amount of data,

or when we employ nonsmooth functions in the objective.

In this research we study algorithms in two different learning environments, large-scale/online

and moderate-scale/batch learning. In online learning, we use only approximated or partial in-

formation about the objective at a time, but in batch learning we typically have full access to the

objective. We focus on subgradient algorithms that are closely related to stochastic approximation

methods for the former, and decomposition and cutting-plane techniques for the latter.

The low computational requirement of stochastic approximation methods makes them very

appealing for large-scale and online learning, despite their slow asymptotic convergence. We study

theoretical properties of a stochastic subgradient algorithm for regularized problems, revealing that

the solution structure, called the optimal manifold, can be identified in finite iterations with high

probability. This allows us developing a new algorithmic strategy that starts with a stochastic

subgradient method but switches to another type of optimization on the near-optimal manifold.

We also present a subgradient algorithm customized for the nonlinear support vector machines

(SVMs), where kernels are approximated with low-dimensional surrogate mappings.

For moderate-sized learning tasks, batch approaches often find solutions much faster than on-

line approaches. We discuss algorithms based on decomposition and cutting-plane techniques, ex-

ploiting the structure of SVMs for efficiency. Specifically, we address a decomposition approach
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for semiparametric SVM regression problems that have extended dual formulations of the standard

SVMs, and an improved cutting-plane algorithm for SVM classification that makes use of multiple

cuts in every iteration.
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Chapter 1

Introduction

This dissertation focuses on developing efficient numerical optimization algorithms for solving

regularized convex problems, which can be described as follows:

min
w∈E

f(w) + Ψ(w), (1.1)

where f and Ψ are convex functions and E is a finite-dimensional real vector space. The problems

of this form appear in various areas such as machine learning, statistics, and signal processing.

Typically, the first term f represents the deviation between the observed and the predicted values,

where the predictions are made by certain models. The second term Ψ often controls the complex-

ity of the models to avoid overfitting, or induces a certain structure (for instance, sparsity) to the

solution reflecting one’s prior knowledge. The minimization problem (1.1) becomes difficult when

the function f involves abundant data, or when nonsmooth functions are employed in f or Ψ . We

focus on these cases.

This manuscript is organized as follows. In Chapter 2 and Chapter 3, we study online opti-

mization methods based on stochastic approximation. Each step of these methods evaluates an

approximate subgradient of the objective at the current iterate, based on a small subset (perhaps a

single item) of the data, thereby exhibiting low computational complexity per iteration and slow

convergence to the optimal solution. In Chapter 4 and Chapter 5, we develop batch optimization

techniques that evaluate information based on entire data at each iteration. For efficiency, these

methods exploit decomposition or cutting-plane approaches to construct a sequence of small sub-

problems that will lead us to a minimizer.



2

In Chapter 2, we present theoretical properties of a subgradient descent algorithm, illustrating

that we can design improved algorithms based on an understanding of the theoretical properties. In

later chapters, we describe our optimization techniques specifically for the support vector machines

(SVMs), one of the most popular methodologies for machine learning. We choose the SVMs since

they are expressed with simple but fundamental mathematical formulations that appear in the heart

of many other optimization problems. Although there have been many developments in the past

twelve years, solving SVM problems efficiently for large amount data still remains challenging.

In this chapter, we briefly review the concepts and optimization techniques relevant to our

discussion.

1.1 Stochastic Approximation Methods

In stochastic approximation (SA), we consider the following minimization problem:

min
w∈W

f(w) := Eξ[F (w; ξ)] =

∫

Ξ

F (w; ξ)dP (ξ), (1.2)

where ξ is a random vector whose probability distribution P is supported on the set Ξ , F (·; ξ) is a

convex function for each ξ ∈ Ξ , the expectation is well-defined and finite-valued for all w ∈ W ,

and W is a nonempty closed and bounded convex set in E . This problem can be regarded as a

regularized convex problem (1.1), with f defined as above and Ψ(w) := δW(w), where δW(w) is

the indicator function which is zero on W and +∞ elsewhere.

The classical approaches to solve such problems first appeared in 1950’s (Kushner and Yin,

2003), in forms of a recursive procedure for finding the root of a real-valued function (Robbins

and Monro, 1951), or for finding the minimizer of a function using noisy estimates of the deriva-

tives (Kiefer and Wolfowitz, 1952). SA methods have been widely adopted in stochastic optimiza-

tion (Ermoliev, 1983; Pflug, 1996; Ruszczyński and Syski, 1986), and in signal processing because

of its low memory footprint. Especially, SA methods have been popular recently in machine learn-

ing, because they scale very well with large data sets and provide solutions of low accuracy but of

good generalization performance in practice (Bottou, 2004; Zhang, 2004; Shalev-Shwartz et al.,



3

2007). The elements of SA methods can be found in closely aligned literature such as incremental

subgradient methods (Nedic and Bertsekas, 2001) and convex online learning (Zinkevich, 2003).

The most popular approach to solve SA problems is the stochastic gradient descent (SGD)

method, which generates its iterates by the simple rule:

wt+1 = ΠW (wt − ηtgt) , t = 1, 2, . . . (1.3)

where gt ∈ ∂F (wt; ξt), and ΠW(·) is the Euclidean projection onto the set W . The analysis of

convergence goes back to some old literature (Chung, 1954; Sacks, 1958), where f is assumed to

be strongly convex and twice continuously differentiable, and w∗ ∈ int W . In this case the SGD

algorithm exhibits O(1/t) convergence (in terms of the objective value) with the stepsizes (also

referred to as learning rates) ηt = θ/t for some positive constant θ > 0. For reference, we present

a convergence result from a recent literature in Theorem 1.1. This algorithm is known to be very

sensitive to the choice of θ, and often performs poorly in practice (Spall, 2003, Section 4.5.3).

Theorem 1.1 (Nemirovski et al. (2009)) Suppose that f is twice continuously differentiable and

strongly convex with the modulus c > 0, ∇f is Lipschitz continuous with the constant L > 0, and

that the stepsizes are chosen by ηt = θ/t for some constant θ > 1/(2c). Also assume that there

exists M > 0 such that E[‖g‖2] ≤ M2 for all w ∈ W , where g ∈ ∂F (w; ξ). Then the iterates wt

generated by the SGD algorithm satisfy

E[f(wt)− f(w∗)] ≤ LQ(θ)

2t
, t = 1, 2, . . .

where Q(θ) := max{θ2M2(2cθ − 1)−1, ||w1 − w∗||2}.

A more robust scheme was developed later (Nemirovski and Yudin, 1978; Polyak, 1990; Polyak

and Juditsky, 1992), where longer stepsizes ηt = O(1/
√
t) and averaging of the obtained iterates

were suggested. This method works for general convex functions (without the assumption of

smoothness and strong convexity of the objective), exhibiting O(1/
√
t) convergence rate as shown

in Theorem 1.2. These rates are known to be optimal for subgradient schemes under the assumption

of black-box models (Nemirovski and Yudin, 1983).
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Theorem 1.2 (Nemirovski et al. (2009)) Suppose that f is a convex function and there exist M >

0 such that E[‖g‖2] ≤ M2 for all w ∈ W , where g ∈ ∂F (w; ξ), and D > 0 such that D =

maxw∈W ‖w − w1‖. If we choose ηt = θD
M

√
t

for some constant θ > 0, and run the SGD algorithm

for t = 1, . . . , N , then

E[f(w̄N
K)− f(w∗)] ≤ C(r)max{θ, θ−1}DM√

N
, N = 1, 2, . . .

where w̄N
K =

∑N
j=K ηjwj
∑N

j=K ηj
, and C(r) is a factor depending solely on the fraction r ∈ (0, 1) such that

K = )rN*.

The regularized convex problem (1.1) can be regarded as a stochastic approximation (1.2) when

we consider the function Ψ(w) := δW(w) + ψ(w), where δW(w) is the indicator function which is

zero on W and +∞ elsewhere, and ψ is a convex function. Then we can apply the SGD algorithm

with slight modification,

wt+1 = ΠW (wt − αt(gt + ht)) , t = 1, 2, . . . (1.4)

where gt ∈ ∂F (wt; ξt) and ht ∈ ∂ψ(wt). However, the SGD method does not exploit the problem

structure explicitly which is induced by the regularizer ψ; as we can see in (1.4), the information

associated with ψ only comes in terms of its subgradient in a way that we can combine ψ(·) into

F (·; ξt) and treat them as a single function. Although in theory the sequence of iterates converges

in expectation to an optimal solution as t goes to infinity, we expect high variations in the solution

obtained with finite iterations. Also, for general convex cases the convergence is described with

averaged iterates (referred to as primal averages). However, primal averages obtained with finite

iterations are typically very dense, hardly revealing the desired structure encoded in the regulariza-

tion term.

In Chapter 2, we focus on a subgradient-based method called the regularized dual averaging

(RDA) algorithm (Xiao, 2010). Even though the RDA algorithm has similar convergence rate to

the SGD algorithm, the finite-iteration behavior of RDA is much better in practice than SGD for

regularization problems. In Chapter 2, we analyze the theoretical properties of the RDA algorithm,

revealing that RDA actually identifies the structure (optimal manifold) induced by the regularizer
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in finite iterations with high probability. We also present an algorithmic strategy that starts with

RDA and switches to a different optimization method once a near-optimal manifold is identified.

1.2 Support Vector Machines

The support vector machines (SVMs) are among the most widely adopted techniques in ma-

chine learning. The first SVM was introduced by Vapnik et al. (Vapnik and Lerner, 1963; Vapnik

and Chervonenkis, 1964), as a device for binary classification using hyperplanes. The idea was

extended by Boser et al. (1992) to nonlinear SVMs, applying the kernel trick to the dual reformu-

lation of SVMs, that is, substituting inner products of inputs with kernels. Unlike its predecessors,

the SVM has a solid foundation on the statistical learning theory developed by Vapnik and Cher-

vonenkis (Vapnik and Chervonenkis, 1991; Vapnik, 1998, 1999). Also, many practical algorithms

have been developed for training SVMs, making them appealing for many applications.

In this section we overview the formulations of the SVMs for classification and regression

tasks, and review a few representative algorithms for training SVMs.

1.2.1 Formulations

We review the primal and the dual formulations of SVMs for two primary learning tasks, clas-

sification and regression.

1.2.1.1 Formulations for Classification

In classification, we assume that a binary label yi ∈ {−1,+1} is associated with a training

example xi ∈ H, representing the membership of xi to one of the two different categories, for

i = 1, 2, . . . ,m. We assume that the feature space H has well-defined inner products, and the

examples xi’s are sampled from H independently according to an (unknown) identical distribution.

The fundamental idea of the SVM is to find the hyperplane of the form 〈w, x〉 + b = 0 that

bisects the shortest connection between the convex hulls of two input vector subsets correspond to

the two categories (Scholkopf and Smola, 2001, Chapter 7). After proper scaling of w and b, we

can consider the two hyperplanes 〈w, x〉+b = 1 and 〈w, x〉+b = −1 as ‘support’ hyperplanes, that
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Figure 1.1 The support vector machine for binary classification (separable case) (Scholkopf and
Smola, 2001). The crosses represent the data points with labels ‘+1’, while circles represent those

with ‘−1’. The SVM finds the hyperplane 〈w, x〉+ b = 0 that bisects the shortest connection
between the two convex hulls corresponds to the two categories.

separate the convex hull of each category to the other, with the margin of 1/||w||2 to the classifying

hyperplane 〈w, x〉+ b = 0. This is illustrated in Figure 1.1.

We try to find the classifier that maximizes the margin, since the classifiers with larger margin

typically give better generalization over unseen test data points. (We assume that test examples are

generated from the same probability distribution where we obtained the training data.) Theoretical

justifications for finding maximal margin classifiers can be found in Scholkopf and Smola (2001,

Theorem 7.3) and in statistical learning theory literature (Vapnik, 1999; Vapnik and Kotz, 2006).

This idea can be formulated into the convex regularization problem (1.1), defining

f(w, b) :=
c

m

m
∑

i=1

!h(w, b; xi, yi), and

Ψ(w, b) :=
1

2
‖w‖2,

where c > 0 is a given parameter, and !h is the hinge loss function defined by

!h(w, b; xi, yi) := max{1− yi(〈w, xi〉+ b), 0}. (1.5)
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As the objective is nonsmooth due to the definition of !h, we consider the following reformulation

called the soft-margin SVMs,

min
w,b,s

c

m

m
∑

i=1

si +
1

2
‖w‖2

s.t. yi(〈w, xi〉+ b) ≥ 1− si i = 1, 2, . . . ,m, (1.6)

si ≥ 0 i = 1, 2, . . . ,m.

The parameter c is to be tuned by some external procedures, for example, using separate validation

sets or via cross validation.

We derive the dual formulation of (1.6) using the first-order optimality conditions. First we

construct the Lagrangian L of (1.6) introducing nonnegative dual variables α ∈ Rm
+ and β ∈ Rm

+ :

L(w, b, s;α, β) := c

m

m
∑

i=1

si +
1

2
‖w‖2 −

m
∑

i=1

αi{yi(〈w, xi〉+ b)− 1 + si} −
m
∑

i=1

βisi . (1.7)

From the Karush-Kuhn-Tucker (KKT) first-order optimality conditions, we have

∇wL(w, b, s;α, β) = w −
m
∑

i=1

αiyixi = 0

∇bL(w, b, s;α, β) = −
m
∑

i=1

αiyi = 0

∇siL(w, b, s;α, β) =
c

m
− αi − βi = 0 (1.8)

0 ≤ yi(〈w, xi〉+ b) + 1− si ⊥ αi ≥ 0, i = 1, 2, . . . ,m

0 ≤ si ⊥ βi ≥ 0, i = 1, 2, . . . ,m.

Proper substitutions of the primal variables in (1.7) using (1.8) result in the dual formulation,

min
α∈Rm

1

2
αTDyKDyα− 1

Tα

s.t. yTα = 0

0 ≤ α ≤ (c/m)1,

(1.9)

where Dy := diag(y) and K ∈ Rm×m is defined by Kij := 〈xi, xj〉.



8

1.2.1.2 Formulations for Regression

In regression, we have a real-valued response yi for each training input xi, which is assumed to

be the evaluation of an unknown function with the input xi. In support vector regression, we try to

fit linear functions of the form h(x) = 〈w, x〉+ b to the training data. The SVM for regression can

be formulated into the convex regularization problem (1.1) as follows,

min
w,b

1

2
‖w‖2 + c

m

m
∑

i=1

!ε(h; xi, yi), (1.10)

where !ε is the ε-insensitive loss function (Vapnik, 1999) defined by

!ε(h; xi, yi) := max{|yi − h(xi)| − ε, 0}

for a given constant ε > 0. We can reformulate (1.10) as follows to have a differentiable objective,

min
w,b,s,s∗

1

2
‖w‖2 + c

m

m
∑

i=1

(si + s∗i )

s.t. yi − 〈w, xi〉 − b ≤ ε+ si for i = 1, 2, . . . ,m

〈w, xi〉+ b− yi ≤ ε+ s∗i for i = 1, 2, . . . ,m

si ≥ 0, s∗i ≥ 0 for i = 1, 2, . . . ,m .

(1.11)

The corresponding dual formulation is,

min
α,α∗∈Rm

1

2
(α− α∗)TK(α− α∗) + (ε1− y)Tα + (ε1+ y)Tα∗

s.t. 1
T (α− α∗) = 0

0 ≤ α ≤ (c/m)1, 0 ≤ α∗ ≤ (c/m)1 ,

(1.12)

where K ∈ Rm×m is defined by Kij = 〈xi, xj〉. In Chapter 4, we discuss an extended formulation

of (1.12) that has multiple equality constraints rather than a single equality constraint as in (1.12).

1.2.2 The Kernel Trick

The SVM formulations discussed above use linear decision functions in the space of input

points. However, we often need to consider nonlinear functions for better prediction results. The
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kernel trick is a convenient way to extend linear SVMs for nonlinear decision functions, using a

feature mapping φ : X → H from a input space X to a Hilbert spaceH (a feature space equipped

with inner products).

When we replace all occurrences of xi with φ(xi) in the dual formulations (1.9) and (1.12),

the images φ(xi)’s appear only in forms of inner products 〈φ(xi), φ(xj)〉. Therefore, instead of

defining φ explicitly, we can substitute those inner products with a kernel function κ(xi, xj) that

satisfies the conditions of Mercer’s theorem (Mercer, 1909). In other words, applying the kernel

trick corresponds to simply redefining the positive semidefinite matrix K in (1.9) and (1.12) by

Kij = κ(xi, xj). The popular choices of the kernels include

• Linear kernel: κ(xi, xj) = 〈xi, xj〉.

• Polynomial kernel: κ(xi, xj) = (〈xi, xj〉+ 1)d , d ∈ N.

• Gaussian kernel: κ(xi, xj) = exp (−γ||xi − xj||2) , γ > 0.

In particular, the kernel matrix defined by the Gaussian kernel has full rank, provided that all

inputs xi’s are distinct (Scholkopf and Smola, 2001, Theorem 2.18). That is, the images φ(xi),

i = 1, . . . ,m are linearly independent and thus span an m-dimensional subspace of H. This

implies the Gaussian kernel always defines a subspace which is big enough to embed all training

data. For this reason the Gaussian kernel is widely adopted in many applications.

1.2.3 The Canonical Dual Form

We define the canonical form of the dual formulations (1.9) and (1.12) as follows,

min
z∈Rm′

1

2
zTQz + pT z

s.t. qT z = r

! ≤ z ≤ u ,

(1.13)

where the vectors z, p, q, ! and u are has m′ elements, r is a scalar, and Q is a positive semi-definite

m′×m′ matrix. We define these components for the classification and regression tasks in Table 1.1.
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Table 1.1 Definitions of the components for the canonical SVM dual formulation. We define
Dy = diag(y), and the kernel matrix K by Kij = κ(xi, xj).

z Q p q r ! u

Classification α DyKDy −1 y 0 0 (c/m)1

Regression





α

α∗









K −K

−K K









ε1− y

ε1+ y









1

−1



 0





0

0



 (c/m)





1

1





1.3 Optimization Algorithms for SVMs

In this section we survey prior works for solving the SVM formulations. Since we focus on the

classical SVM formulations discussed above, we exclude the approaches that make use of different

formulations for faster optimization, for example, using ‖w‖1 instead of 1
2‖w‖

2
2 (Mangasarian and

Musicant, 2002), or using smooth loss functions (Mangasarian and Musicant, 2001; Ferris and

Munson, 2004).

1.3.1 Solving the Dual Formulation

Due to the convenience of applying the kernel trick, the dual formulation (1.13) has been more

popular than its primal counterpart. Many techniques have been developed to handle the dual

Hessian Q efficiently, which is dense and ill-conditioned for typical choices of kernels.

Interior Point Methods: Fine and Scheinberg (2001) suggested a primal-dual interior-point

method of predictor-corrector type to find the solution of (1.13). In theory this method takes

O(m′ ln(1/ε)) iterations to converge where ε is the relative accuracy, but in practice it converges

mostly within 50 iterations regardless of the problem size. The most costly operation in each

iteration is to solve the linear system

(Q+D)u = w ,

for u, twice per predictor step, where Q is the Hessian of the objective of (1.13) and D is a diagonal

matrix. As Q + D is a dense m′ × m′ symmetric positive definite matrix, it takes O((m′)3) in
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general to obtain the solution u = (Q + D)−1w. However, if we have a rank-k approximation

V to Q such that Q = V V T and V ∈ Rm′×k with k 4 m′, then the vector u can be found in

O(k2m′) operations. For many SVM problems Q is not necessarily of low-rank, so V V T can

only approximate Q with certain error. An incomplete Cholesky factorization is used in Fine and

Scheinberg (2001) to acquire such V , which has the computation complexity of O(k2m′).

Decomposition Algorithms: Decomposition algorithms solve a sequence of subproblems, up-

dating a small subvector of z of (1.13) leaving the remaining components untouched in each it-

eration. The sequential minimal optimization (SMO) algorithm (Platt, 1999), LIBSVM (Chang

and Lin, 2009), and an online variant LASVM (Bordes et al., 2005) create subproblems with two

components at a time, which can be solved analytically. On the other hand, SVM-Light (Joachims,

1999), SVMTorch (Collobert and Bengio, 2001), and GPDT (Serafini et al., 2004) choose larger

subvectors, solving the subproblems with quadratic programming solvers.

Efficient implementations are often equipped with kernel caching, storing only recently used

kernel matrix entries to save memory. Some solvers such as SVM-Light use shrinking heuristics,

which freeze the values of the components of z that have stayed at bounds for a period of time.

In Chapter 4, we develop a decomposition framework for semiparametric SVM regression. The

dual formulation of the semiparametric SVM has multiple equality constraints, rather than a single

equality constraint as in the canonical SVM dual form (1.13).

1.3.2 Solving the Primal Formulation

There have been recent developments regarding the primal SVM formulations (1.1), (1.6) and

(1.11). Since we cannot apply the kernel trick, methods in this category are only effective when

the linear kernel suffices for our purpose, or when the chosen kernel function can be approximated

well with low-rank surrogate mappings.

Stochastic Subgradient Methods: These methods generate iterates by solving simple subprob-

lems similarly to SGD (1.3). In each iteration, they use the information (xt, yt) of a single
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(random) data point and create an estimated subgradient gt ∈ ∂!h(wt, bt; xt, yt) for classifica-

tion, or gt ∈ ∂!ε(h; xt, yt) for regression. The PEGASOS algorithm (Shalev-Shwartz et al.,

2007) solves a slightly modified SVM formulation (1.1) with Ψ(w, b) = 1
2(‖w‖

2 + b2) rather

than Ψ(w, b) = 1
2‖w‖

2, in order to have a strongly convex objective function and to choose the

steplength ηt ≤ O(1/t). PEGASOS also requires linear kernels, as the explicit feature mapping

φ is not available in general. In Chapter 3, we suggest an extended framework that operates with

general convex SVMs, working with nonlinear kernels obtained via Nyström sampling or random

projections.

Cutting-plane Methods: For classification, cutting-plane methods make use of the following

formulation which is equivalent to (1.6):

min
w,b,η

c

m
η +

1

2
‖w‖2

s.t. η ≥
m
∑

i=1

ui{1− yi(〈w, xi〉+ b)}, ∀u ∈ {0, 1}m.

(Regression problems can be reformulated similarly.) In Chapter 5, we derive this formulation

using the idea of the Benders’ reformulation. This formulation was also discovered independently

by Joachims (2006) from a different perspective. Joachims’ algorithm, called SVM-Perf, has been

improved later by Franc and Sonnenburg (2007, 2008), exploiting efficient line-search steps. For

nonlinear SVMs, Joachims et al. suggested a new version of SVM-Perf (Joachims et al., 2009)

(which we refer to as CPNY) and CPSP (Joachims and Yu, 2009). These methods use inexact

kernel information approximated with small dimensions.

Cutting-plane algorithms solve a sequence of relaxed subproblems, adding a single violated

constraint (called a cut) to the subproblem in each iteration. These methods fit well for medium

to large problems, since they usually require solving only a few subproblems to find solutions.

However, the size of subproblems increases as we add cuts, so it may not be appropriate for

very large problems. In Chapter 5, we discuss improvements for the existing cutting-plane al-

gorithms, suggesting a generalized method that can generate multiple cuts per iteration to obtain

more strengthened subproblems, reducing the number of iterations until convergence.
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Chapter 2

Manifold Identification Approaches for Regularized Stochastic
Online Learning

Iterative methods that take steps in approximate subgradient directions have proved to be useful

for stochastic learning problems over large or streaming data sets. When the objective consists of

a loss function plus a nonsmooth regularization term, whose purpose is to induce structure in

the solution, the solution often lies on a low-dimensional manifold along which the regularizer is

smooth.

In this chapter, we show that a regularized dual averaging algorithm can identify this manifold

with high probability. This observation motivates an algorithmic strategy in which, once a near-

optimal manifold is identified, we switch to an algorithm that searches only in this manifold, which

typically has much lower intrinsic dimension than the full space, thus converging quickly to a near-

optimal point with the desired structure. Computational results are presented to illustrate these

claims.

2.1 Introduction

The online learning algorithms inspired by stochastic approximation have been proved to be

effective dealing with large machine learning problems. Regarding the trade-offs with other errors

in statistical learning theory, solutions with high optimization error may be accepted, but typically

they do not suffice to identify the structures (such as sparsity) induced by the regularization term

in the objective, which encodes our prior knowledge for the structure.



14

We focus on the regularized dual averaging (RDA) method developed by Xiao (2010), which

is an extension to Nesterov (2009) and known to exploit the structure more effectively in online

settings.

2.1.1 Regularized Stochastic Online Learning

In regularized stochastic learning, we consider the following problem:

min
w∈Rn

φ(w) := f(w) + Ψ(w), (2.1)

where

f(w) := EξF (w; ξ) =

∫

Ξ

F (w; ξ)dP (ξ), (2.2)

ξ is a random vector whose probability distribution P is supported on the set Ξ ⊂ Rd. We assume

that Ψ : Rn → R ∪ {+∞} is a proper convex function with domΨ closed. We also assume

that there is an open neighborhood O of domΨ that is contained in the domain of F (·, ξ), for all

ξ ∈ Ξ . We suppose that F (w; ξ) is a smooth convex function for w ∈ O and every ξ ∈ Ξ , and

the expectation in (2.2) is well defined and finite-valued for all w ∈ O. We use w∗ to denote a

minimizer of (2.1).

The purpose of the regularization function Ψ is to promote certain desirable types of structure in

the solution of (2.1). A common desirable property is sparsity (where w has few nonzero elements),

which under certain conditions is promoted by setting Ψ(·) = λ‖ · ‖1 for some parameter λ > 0.

We focus on objectives that consist of a smooth loss function in conjunction with a nonsmooth

regularizer. A classic problem of this form is !1-regularized logistic regression.

In regularized stochastic online learning, we encounter a previously unknown cost function

F (·; ξt) : Rn → R for ξt ∈ Ξ in each time t ≥ 1, where {ξt}t≥1 forms an i.i.d. sequence of

random samples generated from the distribution P . At each time t, we make a decision wt using

the information gathered up to the time t, and attempt to generate a sequence {wt}t≥1 such that

lim
t→∞

E [F (wt; ξ) + Ψ(wt)] = f(w∗) + Ψ(w∗).

We denote the history of random variables up to time t by

ξ[t] := {ξ1, ξ2, . . . , ξt}.
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In the algorithmic framework we use in this chapter, the iterate wt depends on ξ1, ξ2, . . . , ξt−1 but

not on ξt, ξt+1, · · · ; we can emphasize this fact by writing wt = wt(ξ[t−1]).

We will base our analyses on the regret Rt(w) of the algorithms, defined in (2.3), which is a

standard performance measure for online learning algorithms. The regret represents the difference

between accumulated objective function values up to time t with respect to a single decision w ∈

domΨ and an instantiation of the random sequence of decisions w1, w2, . . . , wt.

Rt(w) :=
t
∑

j=1

[F (wj; ξj) + Ψ(wj)]−
t
∑

j=1

[F (w; ξj) + Ψ(w)]. (2.3)

2.1.2 Related Works

Xiao (2010) recently developed the regularized dual averaging (RDA) method, in which the

smooth term is approximated by an averaged gradient, while the regularization term appears ex-

plicitly in each subproblem. The RDA method is known to exploit the structure of (2.1) more

effectively than other methods for this setting. In each iteration of the RDA algorithm, we com-

pute the next iterate by

wt+1 = argmin
w∈Rn

{

〈ḡt, w〉+ Ψ(w) +
βt
t
h(w)

}

, t = 1, 2, . . . (2.4)

where ḡt =
1
t

∑t
j=1 gj and gj ∈ ∂F (wj; ξj). The function h(w) is a strongly convex function such

as ‖w − w1‖2, and we will introduce the formal definition of h in Section 2.3.

The main difference of the RDA method to other subgradient-based algorithms is that RDA

makes use of the averaged gradient information collected at each iteration, referred as the dual

averages, which tends to converge to the optimal gradient as the iterates converge to a solution.

Taken in conjunction with the nondegeneracy condition 0 ∈ ri [∇f(w∗) + ∂Ψ(w∗)], this property

provides the key to identification.

When we consider !1-regularization, we can consider an alternative problem to (2.1) using

sample average approximation (SAA) as follows:

min
w∈Rn

φ̃N (w) := f̃N (w) + Ψ(w) (2.5)
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where f̃N (w) := 1
|N |

∑

j∈N F (w; ξj) with random samples ξj in j ∈ N . When the sample set

N is relatively small, this problem can be solved very efficiently with batch optimization, where

the small magnitude components of the high-accuracy solution can be rounded toward zero to

produce sparse solutions. On the contrary, simple rounding with the low-accuracy solutions from

the SGD method (1.4) with !1-regularization would be very unreliable. The forward-backward

splitting (FOBOS) (Duchi and Singer, 2009) and the truncated gradient (TG) (Langford et al.,

2009) approaches provide principled ways to address this problems. For general regularizer Ψ , the

iterations of FOBOS can be stated as below, following Xiao (2010):

wt+1 = argmin
w∈Rn

{

〈gt, w〉+ Ψ(w) +
1

2αt
‖w − wt‖2

}

. (2.6)

For Ψ(w) := λ‖w‖1, TG truncates the iterates obtained by the standard SGD method in every K

steps. That is,

[wt+1]i =











trnc
(

[wt]i − αt[gt]i, λTG
t , θ

)

if mod(t,K) = 0,

[wt]i − αt[gt]i otherwise,
(2.7)

where λTG
t := αtλK, mod(t,K) is the remainder on division of t by K, and

trnc(ω, λTG
t , θ) =



























0 if |ω| ≤ λTG
t

ω − λTG
t sgn(ω) if λTG

t < |ω| ≤ θ,

ω otherwise.

TG becomes identical to FOBOS (2.6) for !1-regularization when K = 1 and θ = +∞.

As we discuss later, the RDA algorithm has O(
√
t) regret bounds with βt = O(

√
t) for general

convex cases, and O(ln t) bounds with βt = O(ln t) for strongly convex cases. These regret

bounds are comparable to these of the SGD method. For general convex cases, when we use

αt = O(1/
√
t), the SGD method achieves O(1/

√
t) regret bound (Zinkevich, 2003; Nemirovski

et al., 2009), which cannot be improved in general. For the strongly convex case the SGD method

has O(ln t) bound (Hazan et al., 2006; Bartlett et al., 2008) with αt = O(1/t).

A characteristic of problems with nonsmooth regularizers is that the solution often lies on

a manifold of low dimension. In !1-regularized problems, for instance, the number of nonzero
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components at the solution is often a small fraction of the dimension of the full space. Where

a reliable method for identifying an optimal (or near-optimal) manifold is available, we have the

possibility of invoking an algorithm that searches just in the low-dimensional space defined by

this manifold — possibly a very different algorithm to one that would be used on the full space.

One example of this type of approach is seen in LPS (Shi et al., 2008; Wright, 2010), a batch

optimization method for !1-regularized logistic regression, which takes inexact Newton steps on

the space of apparently nonzero variables, to supplement the partial gradient steps that are used in

the full space. In logistic regression, and probably in other cases, it can be much less expensive to

compute first- and second-order information on a restricted subspace than on the full space.

Identification of optimal manifolds has been studied in the context of convex constrained op-

timization (Burke and Moré, 1994; Wright, 1993) and nonsmooth nonconvex optimization (Hare

and Lewis, 2004). In the latter setting, the optimal manifold is defined to be a smooth surface pass-

ing through the optimum, parameterizable by relatively few variables, such that the restriction of

the objective to the manifold is smooth. When a certain nondegeneracy condition is satisfied, this

manifold may be identified without knowing the solution, usually as a by-product of an algorithm

for solving the problem.

In this chapter, we investigate the ability of the RDA algorithm to identify the optimal manifold.

We also investigate this behavior computationally for the case of !1-regularized logistic regression,

and suggest a technique for switching to a different method once a near-optimal manifold is identi-

fied, thus avoiding the sublinear asymptotic convergence rate that characterizes stochastic gradient

methods.

2.1.3 Terminology

We call a function ϕ : Rn → R is strongly convex if there exists a constant σ > 0 (known as

the modulus of strong convexity) such that ∀w,w′ ∈ domϕ and ∀α ∈ [0, 1],

ϕ(αw + (1− α)w′) ≤ αϕ(w) + (1− α)ϕ(w′)− σ
2
α(1− α)‖w − w′‖2.
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Strong convexity implies that for any w ∈ domϕ and w′ ∈ ri domϕ, we have

ϕ(w) ≥ ϕ(w′) + 〈s, w − w′〉+ σ
2
‖w − w′‖2, ∀s ∈ ∂ϕ(w′).

2.2 Assumptions and Basic Results

We summarize here the fundamental assumptions that we make on the problem and its solution,

together with some basic observations and results that will be used in the analysis of later sections.

2.2.1 Unbiasedness

As in Nemirovski et al. (2009), we assume the following unbiasedness property:

∇f(w) = ∇wEξF (w; ξ) = Eξ∇wF (w; ξ) (2.8)

for any w independent of ξ. (As the differentiation of F is taken only for its first argument, we

omit the subscript in the following discussion.) Given that wt = wt(ξ[t−1]), this implies

E[∇F (wt; ξt)] = E
[

E[∇F (wt; ξt)|ξ[t−1]]
]

= E [∇f(wt)] .

2.2.2 Uniform Lipschitz Continuity

First we assume that each F (w; ξ) is a smooth convex function of w ∈ O for every ξ ∈ Ξ , and

is uniformly Lipschitz continuous in w over all ξ. That is, there exists a constant L > 0 such that

‖∇F (w; ξ)−∇F (w′; ξ)‖ ≤ L‖w − w′‖, ∀w,w′ ∈ O, ∀ξ ∈ Ξ. (2.9)

This assumption immediately leads to a Lipschitz property on ∇f . Before showing the property,

we present a result that is used often in the analysis of later sections.

Lemma 2.1 For a vector-valued function h : Ξ → Rn which is integrable with respect to P , we

have

‖Eh‖2 ≤ E‖h‖2
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Proof Using the dual of the Euclidean norm, we deduce that

‖Eh‖2 = sup
v∈Rn,‖v‖2=1

〈v,Eh〉

= sup
v∈Rn,‖v‖2=1

∫

Ξ

〈v, h(ξ)〉dP (ξ)

≤ sup
v∈Rn,‖v‖2=1

∫

Ξ

[

sup
w∈Rn,‖w‖2=1

〈w, h(ξ)〉
]

dP (ξ)

=

∫

Ξ

‖h(ξ)‖2dP (ξ) = E‖h‖2.

Lemma 2.2 If ∇F (w; ξ) satisfies the uniform Lipschitz continuity assumption (2.9) on O, then

∇f(w) is also uniformly Lipschitz continuous on O with the same constant L.

Proof From unbiasedness, we have for w,w′ ∈ O independent of ξ that

∇f(w) = ∇E[F (w; ξ)] = E[∇F (w; ξ)] from (2.8)

= E[∇F (w′; ξ) + uξ] for uξ := ∇F (w; ξ)−∇F (w′; ξ)

= ∇f(w′) + E[uξ] from (2.8) again.

Since ‖uξ‖ ≤ L‖w − w′‖, we have

‖∇f(w)−∇f(w′)‖ = ‖Euξ‖ ≤ E‖uξ‖ ≤ L‖w − w′‖,

where the first inequality is due to Lemma 2.1.

2.2.3 Optimality and nondegeneracy

We specify several optimality conditions that are assumed to hold throughout the chapter. The

optimality of w∗ for the problem (2.1) can be characterized as follows:

0 ∈ ∇f(w∗) + ∂Ψ(w∗). (2.10)
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We assume that w∗ is a nondegenerate solution, which satisfies the following stronger condition:

0 ∈ ri [∇f(w∗) + ∂Ψ(w∗)] . (2.11)

2.2.4 Manifolds and Partial Smoothness

In this section we discuss properties of differential manifolds and partial smoothness by repeat-

ing some definitions from Hare and Lewis (2004).

Definition 2.3 (Manifold) A set M ⊂ Rn is amanifold about z̄ ∈ M if it can be described locally

by a collection of Cp functions (p ≥ 2) with linearly independent gradients. That is, there exists a

map H : Rn → Rk that is Cp around z̄ with ∇H(z̄)T ∈ Rk×n, surjective, such that points z near z̄

lie in M if and only if H(z) = 0.

The normal space to M at z̄, denoted by NM(z̄), is the range space of ∇H(z̄), while the tangent

space to M at z̄ is the null space of ∇H(z̄)T . We assume without loss of generality that ∇H(z̄)

has orthonormal columns.

We define partial smoothness as follows (Lewis, 2003, Section 2).

Definition 2.4 (Partial Smoothness) A function ϕ : Rn → R is (C2-) partly smooth at a point

z̄ ∈ Rn relative to a set M ⊂ Rn containing z̄ if M is a manifold about z̄ and the following

properties hold:

(i) (Smoothness) The function ϕ restricted to M, denoted by ϕ|M, is C2 near z̄;

(ii) (Regularity) ϕ is subdifferentially regular at all points z ∈ M near z̄, with ∂ϕ(z) 6= ∅.

(iii) (Sharpness) The affine span of ∂ϕ(z̄) is a translate of NM(z̄);

(iv) (Sub-continuity) The set-valued mapping ∂ϕ : M ⇒ Rn is continuous at z̄.

We refer to M as the active manifold, and if it is associated with the minimizer w∗, we call it as

the optimal manifold.

We assume that Ψ is partly smooth at w∗ relative to the optimal manifold, which implies partly

smoothness of ψ since f is smooth. (The smoothness of f follows from the smoothness of F (·; ξ)

for each ξ ∈ Ξ .)
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2.2.5 Strong Minimizer

We assume that w∗ is a strong local minimizer of φ relative to the optimal manifold M with

modulus cM > 0, that is, there exists cM > 0 and rM > 0 such that {w ∈ Rn | ‖w−w∗‖ ≤ rM} ⊂

O and

φ|M(w) ≥ φ|M(w∗) + cM‖w − w∗‖2, for all w ∈ O with ‖w − w∗‖ ≤ rM. (2.12)

Under the given conditions, this implies that w∗ is a strong local minimizer of φ(w).

Theorem 2.5 (Strong Minimizer for General Convex Case) Suppose that φ is partly smooth at

w∗ relative to the optimal manifold M, that w∗ is a strong local minimizer of φ|M with the modulus

cM > 0 and radius rM > 0 as defined in (2.12), and that the nondegeneracy condition (2.11) holds

at w∗. Then there exist 0 < c ≤ cM and 0 < r̄ ≤ rM such that

φ(w)− φ(w∗) ≥ c‖w − w∗‖2, for all w ∈ O with ‖w − w∗‖ ≤ r̄ (2.13)

Proof See Appendix A.1.

This condition is similar to the quadratic growth condition proposed by Anitescu (2000) in the

context of nonlinear programming. It was shown by Anitescu that this fundamental condition is

weaker than many other second-order conditions that are widely use in nonlinear programming.

We have the following immediate consequences.

Corollary 2.6 Suppose that w∗ is a strong local minimizer of (2.1) that satisfies (2.13). For all

w ∈ O with ‖w − w∗‖ > r̄, we have

φ(w)− φ(w∗) > cr̄‖w − w∗‖.

Proof Given w ∈ O with ‖w − w∗‖ > r̄, we have from the convexity of φ that

φ

(

w∗ + r̄
w − w∗

‖w − w∗‖

)

≤ φ(w∗) +
r̄

‖w − w∗‖(φ(w)− φ(w
∗)).
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From the strong local minimizer property of w∗, we also have

φ

(

w∗ + r̄
w − w∗

‖w − w∗‖

)

− φ(w∗) ≥ c

∥

∥

∥

∥

(

w∗ + r̄
w − w∗

‖w − w∗‖

)

− w∗
∥

∥

∥

∥

2

= cr̄2.

Collecting the above two inequalities leads to the claim.

Corollary 2.7 (Strong Minimizer for Strongly Convex Case) Suppose that w∗ is a strong local

minimizer of (2.1) satisfying (2.13). If φ is strongly convex on domΨ with the modulus σ > 0,

then w∗ is a (globally) strong minimizer of (2.1) with the modulus min(c, σ/2), that is,

φ(w) ≥ φ(w∗) + min(c, σ/2)‖w − w∗‖2, for all w ∈ O. (2.14)

Proof Given w ∈ O, if ‖w−w∗‖ ≤ r̄, then the claim follows from (2.13). If ‖w−w∗‖ > r̄, then

we have from the strong convexity of φ that

φ

(

w∗ + r̄
w − w∗

‖w − w∗‖

)

≤ φ(w∗) +
r̄

‖w − w∗‖(φ(w)− φ(w
∗))

−σ
2

r̄

‖w − w∗‖

(

1− r̄

‖w − w∗‖

)

‖w − w∗‖2.

From the strong local minimizer property of w∗, we also have

φ

(

w∗ + r̄
w − w∗

‖w − w∗‖

)

− φ(w∗) ≥ cr̄2.

Combining the above two inequalities results in

φ(w)− φ(w∗) ≥
[

σ/2 +
r̄

‖w − w∗‖(c− σ/2)
]

‖w − w∗‖2

≥ min(c, σ/2)‖w − w∗‖2.

In the remainder of the chapter, we assume that all of the conditions discussed in this section

are satisfied unless otherwise stated.
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2.3 Regularized Dual Averaging Algorithm

We start this section by describing regret bounds for the regularized dual averaging (RDA) al-

gorithm of Xiao (2010) following Nesterov (2009), focusing on its stochastic variant. We also de-

scribe the consequences for the analysis of the condition that the minimum is strong locally (2.13)

or globally (2.14). We then analyze the properties of the averaged gradient; this analysis forms the

basis of the manifold identification result in Section 2.4.

2.3.1 Regret Bounds

To derive the regret bounds from the results of Xiao (2010), we first recall our assumptions on

the functions F , f , and Ψ from Section 2.1, and note that they are stronger than the corresponding

conditions in Xiao (2010) (which require only subdifferentiability of F (w; ξt) on domΨ ). We

assume without loss of generality that minw Ψ(w) = 0.

We introduce a prox-function h : Rn → R ∪ {∞} which is proper, strongly convex on domΨ ,

and subdifferentiable on ri domΨ . Without loss of generality, h(w) is assumed to have modulus of

convexity 1, with minw h(w) = 0. In addition, we require h to satisfy

argmin
w

h(w) ∈ argmin
w

Ψ(w).

We define the prox-center w1 of domΨ with respect to h, (which will be the starting point of the

RDA method) as follows:

w1 := argmin
w∈domΨ

h(w).

Note that h(w1) = 0 and Ψ(w1) = 0 by the assumptions. (The terms “prox-function” and “prox-

center” are borrowed from Nesterov (2009).) The most obvious prox-function is h(·) = ‖ ·−w1‖2,

where w1 ∈ argminx Ψ(w).

We now make some further assumptions, and define two constants that reappear throughout

the analysis. First, choosing any D > 0, we consider a level set of the prox-function h defined as

follows:

FD := {w ∈ domΨ | h(w) ≤ D2}. (2.15)



24

Algorithm 1 The RDA Algorithm.
1: Input:

• a prox-function h(w) that is strongly convex on domΨ and also satisfies

argmin
w

h(w) ∈ argmin
w

Ψ(w).

• a positive and nondecreasing sequence {βt}, t ≥ 1.

2: Initialize: set w1 = argminw h(w) and ḡ0 = 0.

3: for t = 1, 2, . . . do

4: Sample ξt from Ξ and compute a gradient gt = ∇F (wt; ξt).

5: Update the average gradient:

ḡt =
t− 1

t
ḡt−1 +

1

t
gt.

6: Compute the next iterate:

wt+1 = argmin
w∈Rn

{

〈ḡt, w〉+ Ψ(w) +
βt
t
h(w)

}

. (2.19)

7: end for

Second, we assume that there exists a uniform bound G for which

‖∇F (w; ξ)‖ ≤ G, ∀w ∈ O, ∀ξ ∈ Ξ. (2.16)

At iteration t, the stochastic RDA algorithm samples a vector ξt ∈ Ξ , according to the distri-

bution P , and evaluates an approximate gradient as follows:

gt := ∇wF (wt; ξt). (2.17)

We assume that the random variables ξt are i.i.d. We form an averaged approximation to the

gradient of f as follows:

ḡt :=
1

t

t
∑

j=1

gj =
1

t

t
∑

j=1

∇wF (wj; ξj) (2.18)

which is called the dual average.
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The RDA algorithm is specified precisely in Algorithm 1. As the objective function in the

subproblem (2.19) is strongly convex for βt > 0, wt+1 is uniquely defined. Note that wt+1 depends

on the history of random variables ξ[t]. In particular, we have that wt+1 is independent of later

samples ξt+1, ξt+2, . . . .

We are most interested in the case of βt = γ
√
t with some constant γ > 0 for general convex

cases, and βt ≤ O(ln t) for strongly convex cases. The first key result is as follows.

Theorem 2.8 Suppose that the sequences {wt} and {gt} generated by the RDA algorithm using

βt = γ
√
t, and assume that (2.16) holds. We have for any w ∈ FD and any t ≥ 1 that

Rt(w) ≤
(

γD2 +
G2

γ

)√
t. (2.20)

Moreover, when Ψ(w) is strongly convex with the modulus σ > 0, then using βt = σ(1 + ln t)

results in a bound for w ∈ FD and any t ≥ 1,

Rt(w) ≤
(

σD2 +
G2

2σ

)

(1 + ln t). (2.21)

Proof See Xiao (2010, Corollary 2) for the general convex case, and Xiao (2010, Theorem 1 and

Section 3.2) for the strongly convex cases. (For the latter we note that there are other choices of

βt, but all leads to similar bounds. The specific βt is chosen to have a nondecreasing sequence as

we do in the general convex case.)

The next result obtains bounds on the expected errors in the iterates generated by Algorithm

RDA. For the purpose of this and future results, we define the indicator function I(A) for the event

A to be such that I(A) = 1 when the event A is true and I(A) = 0 otherwise. For a random event A,

I(A) becomes a random variable.

Theorem 2.9 (Expected Error Bounds of Iterates) Suppose that w∗ ∈ FD is a strong local min-

imizer of (2.1) according to the definition (2.13). Then for the iterates w1, w2, . . . , wt generated by
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the stochastic RDA algorithm with βt = γ
√
t, we have

1

t

t
∑

j=1

E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

≤ 1

c

(

γD2 +
G2

γ

)

t−1/2, (2.22a)

1

t

t
∑

j=1

E
[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

≤ 1

cr̄

(

γD2 +
G2

γ

)

t−1/2. (2.22b)

Moreover, when Ψ(w) is strongly convex with the modulus σ > 0, then with βt = σ(1 + ln t) we

have

1

t

t
∑

j=1

E
[

‖wj − w∗‖2
]

≤ 1

min(σ/2, c)

(

σD2 +
G2

2σ

)

1 + ln t

t
. (2.23)

Proof See Appendix A.2.1.

2.3.2 Stochastic Behavior of the Dual Average

We now study the properties of the dual average, ḡt. We first state a blanket assumption that is

useful in the remainder of the chapter.

Assumption 2.10 All of the conditions in Section 2.2, and the gradient bound (2.16) are satisfied.

The iterates w1, w2, . . . are generated by Algorithm 1, with

• βt = γ
√
t when φ is a general convex function, or

• βt = σ(1 + ln t) when φ is strongly convex due to its regularization component Ψ which is

strongly convex with the modulus σ > 0.

Theorem 2.11 Suppose that Assumption 2.10 is satisfied. Defining

Σt := E[(ḡt − Eḡt)(ḡt − Eḡt)
T ],

we have for the general convex case:

(i) ‖Eḡt −∇f(w∗)‖ ≤ Lµt−1/4
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(ii) trΣt ≤ 4G(G+ 4Lµ)t−1/4

and for strongly convex case:

(i’) ‖Eḡt −∇f(w∗)‖ ≤ Lµ′ (1+ln t
t

)1/2

(ii’) trΣt ≤ 4G(G+ 4Lµ′)
(

1+ln t
t

)1/2

where the constants µ and µ′ are defined as follows,

µ =
1√
c

(

γD2 +
G2

γ

)1/2
[

1 +
1

r̄
√
c

(

γD2 +
G2

γ

)1/2
]

, (2.24a)

µ′ =
1

√

min(c, σ/2)

(

σD2 +
G2

2σ

)1/2

. (2.24b)

Proof See Appendix A.2.2

Using Theorem 2.11, we show the important property of the dual average that the probability ḡt

lies outside any given ball around ∇f(w∗) goes to zero as t increases.

Theorem 2.12 Suppose that Assumption 2.10 is satisfied. For the general convex cases, for every

ε > 0 and t ≥ 1 we have

P(‖ḡt −∇f(w∗)‖ > ε) < ε−2νt−1/4.

And for the strongly convex cases we have

P(‖ḡt −∇f(w∗)‖ > ε) < ε−2ν ′
(

1 + ln t

t

)1/2

.

The constants ν and ν ′ are defined as follows,

ν :=
[

Lµ+ 2
√
G (G+ 4Lµ)1/2

]2
, (2.25a)

ν ′ :=
[

Lµ′ + 2
√
G (G+ 4Lµ′)1/2

]2
. (2.25b)
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Proof For the general convex case, from Markov inequality, we obtain for every ε > 0 that

P(‖ḡt −∇f(w∗)‖ > ε) = P(‖ḡt −∇f(w∗)‖2 > ε2) < ε−2
E[‖ḡt −∇f(w∗)‖2].

Since ḡt −∇f(w∗) = {Eḡt −∇f(w∗)}+ {ḡt − Eḡt}, we have

E[‖ḡt −∇f(w∗)‖2]

≤ E
[

‖Eḡt −∇f(w∗)‖2 + 2‖Eḡt −∇f(w∗)‖‖ḡt − Eḡt‖+ ‖ḡt − Eḡt‖2
]

≤ ‖Eḡt −∇f(w∗)‖2 + 2‖Eḡt −∇f(w∗)‖E‖ḡt − Eḡt‖+ E‖ḡt − Eḡt‖2

≤ ‖Eḡt −∇f(w∗)‖2 + 2‖Eḡt −∇f(w∗)‖
(

E‖ḡt − Eḡt‖2
)1/2

+ E‖ḡt − Eḡt‖2

=
[

‖Eḡt −∇f(w∗)‖+
(

E‖ḡt − Eḡt‖2
)1/2

]2

,

where the third inequality is due to Jensen’s inequality. Each term in the last line can be bounded

using Theorem 2.11 as follows,

‖Eḡt −∇f(w∗)‖ ≤ Lµt−1/4,

and,

E‖ḡt − Eḡt‖2 = E

(

n
∑

i=1

[ḡt − Eḡt]
2
i

)

=
n
∑

i=1

E
(

[ḡt − Eḡt]
2
i

)

= trΣt

≤ 4G [G+ 4Lµ] t−1/4.

Collecting all results, we conclude that

P(‖ḡt −∇f(w∗)‖ > ε)

< ε−2
[

Lµt−1/4 +
{

4G(G+ 4Lµ)t−1/4
}1/2

]2

≤ ε−2
[

Lµ+ 2
√
G (G+ 4Lµ)1/2

]2
t−1/4

as claimed.

For the strongly convex case, we use different bounds from Theorem 2.11 instead,

‖Eḡt −∇f(w∗)‖ ≤ Lµ′
(

1 + ln t

t

)1/2
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and,

E‖ḡt − Eḡt‖2 ≤ 4G (G+ 4Lµ′)

(

1 + ln t

t

)1/2

.

Then similar arguments as above lead to the claim.

2.4 Manifold Identification

In this section we present that the RDA algorithm identifies the optimal manifold in finite

iterations. Our analysis is based upon the important properties of the dual average discussed in the

previous section, and the results for manifold identification.

2.4.1 Fundamental Results

We state a result from Hare and Lewis (2004) in a modified form that is more convenient for

our analysis below.

Theorem 2.13 Suppose that φ is partly smooth at the minimizer w∗ relative to the manifold M

and that the nondegeneracy condition (2.11) holds. Then there exists a threshold ε̄ > 0 such that

for all w ∈ O with ‖w − w∗‖ < ε̄ and dist (0, ∂φ(w)) < ε̄, we have w ∈ M.

Proof Suppose for contradiction that no such ε̄ exists. Let {εj}j≥1 be any sequence of posi-

tive numbers such that εj ↓ 0. Then for each j ≥ 1 we have wj such that ‖wj − w∗‖ < εj ,

dist (0, ∂φ(wj)) < εj but wj /∈ M. Considering the sequence {wj}j≥1, we have that wj → w∗,

and dist (0, ∂φ(wj)) → 0. With convexity, these imply φ(wj) → φ(w∗), since for all aj ∈ ∂φ(wj)

we have φ(wj)− φ(w∗) ≤ aTj (wj −w∗) ≤ ‖aj‖‖wj −w∗‖. Convexity implies prox-regularity, so

by applying Theorem 5.3 of Hare and Lewis (2004), we have that wj ∈ M for all j sufficiently

large. This contradicts our choice of wj , so we conclude that ε̄ > 0 with the claimed properties

exists.
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The next result is essentially from Wright (2010), which motivates the acceleration based on

the Newton-type methods after identifying the optimal manifold. It relates the strong minimizer

property for φ|M at w∗ to the second-order sufficient conditions for an explicit representation of

this function along the manifold.

Theorem 2.14 Suppose that φ is partly smooth at w∗ ∈ Rn relative to the optimal manifold M ⊂

Rn. Suppose that M is characterized by C2 mappings F : Rn → Rk and G : Rn−k → Rn and a

point y∗ ∈ Rn−k, such that F (w) = 0 for all w ∈ M near w∗, ∇F (w∗) is orthonormal, G(y) ∈ M

for all y near y∗, and G(y) = w∗ + Y (y − y∗) + O(‖y − y∗‖2) for some matrix Y such that

[∇F (w∗) Y ] is orthogonal. Then φ|M has a strong minimizer at w∗ with modulus cM > 0 if and

only if the function defined by

ψ(y) := φ(G(y)) (2.26)

is C2 with ∇ψ(y∗) = 0 and ∇2ψ(y∗) positive definite, with minimum eigenvalue at least 2cM.

2.4.2 Convergent Sequences

We start with two result that estimates the likelihood of wj lying within a given radius of w∗,

each for general convex and strongly convex objectives.

Lemma 2.15 (Convergent Sequences for General Convex Case) Suppose that the conditions in

Assumption 2.10 hold for general convex objectives. Define the subsequence S by

S :=
{

j ∈ {1, 2, . . . } | E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

≤ j−1/4, and

E
[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

≤ r̄−1j−1/4
}

. (2.27)

For any ε > 0, we then have

P (‖wj − w∗‖ > ε) <
1

ε

(

1

ε
+

1

r̄

)

j−1/4, ∀j ∈ S. (2.28)

Defining

St := S ∩ {1, 2, . . . , t}, (2.29)
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we have
1

t
|St| > 1− 2

c

(

γD2 +
G2

γ

)

t−1/4, (2.30)

that is, the density of St in {1, 2, . . . , t} is 1−O(t−1/4).

Proof To measure the cardinality of the complement of St, that is, Sc
t := {1, 2, . . . , t} \ St, we

first define indicator variables χj
− and χj

+ for j ≥ 1 as follows,

χj
− :=











1 if E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

> j−1/4,

0 otherwise.

χj
+ :=











1 if E
[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

> (1/r̄)j−1/4,

0 otherwise.

As the set Sc
t contains all indices j ∈ {1, 2, . . . , t} that satisfy χj

− = 1 or χj
+ = 1, the cardinality

of Sc
t is bounded above by

∑t
j=1(χ

j
− + χj

+). For
∑t

j=1 χ
j
−, we note that

t
∑

j=1

E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

≥
t
∑

j=1

χj
−E

[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

>
t
∑

j=1

χj
−j

−1/4 (due to the definition of χj
−)

≥ t−1/4
t
∑

j=1

χj
−.

Using (2.22a), we deduce that

1

t

t
∑

j=1

χj
− ≤ 1

c

(

γD2 +
G2

γ

)

t−1/4.

Similar arguments for
∑t

j=1 χ
j
+ with E

[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

, j = 1, 2, . . . , t and (2.22b) lead

to
1

t

t
∑

j=1

χj
+ ≤ 1

c

(

γD2 +
G2

γ

)

t−1/4.



32

Therefore, the fraction of the cardinality of St to {1, 2, . . . , t} is

1

t
|St| = 1− 1

t
|Sc

t |

≥ 1− 1

t

t
∑

j=1

(χj
− + χj

+)

> 1− 2

c

(

γD2 +
G2

γ

)

t−1/4,

thus proving (2.30).

To show (2.28), we first observe that for any ε > 0,

P(‖wj − w∗‖ > ε) = P(‖wj − w∗‖ > ε, ‖wj − w∗‖ ≤ r̄)

+ P(‖wj − w∗‖ > ε, ‖wj − w∗‖ > r̄) (2.31)

Focusing on the first term, we have for all j ∈ S

P(‖wj − w∗‖ > ε, ‖wj − w∗‖ ≤ r̄) = P(I(‖wj−w∗‖≤r̄)‖wj − w∗‖ > ε)

< ε−2
E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

≤ ε−2j−1/4 (2.32)

where the first inequality is due to Markov inequality and the second inequality is from the defini-

tion of S in (2.27). Similarly for the second term in (2.31), we have for all j ∈ S

P(‖wj − w∗‖ > ε, ‖wj − w∗‖ > r̄) = P(I(‖wj−w∗‖>r̄)‖wj − w∗‖ > ε)

< ε−1
E
[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

≤ ε−1r̄−1j−1/4 (2.33)

Applying (2.32) and (2.33) to (2.31) leads to the claim,

P(‖wj − w∗‖ > ε) < ε−1(ε−1 + r̄−1)j−1/4, ∀j ∈ S.

The next is a corresponding result for the strongly convex case.
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Lemma 2.16 (Convergent Sequences for Strongly Convex Cases) Suppose that the conditions

in Assumption 2.10 hold for strongly convex objectives. Define the subsequence S ′ by

S ′ :=
{

j ∈ {1, 2, . . . } | E
[

‖wj − w∗‖2
]

≤
(

1 + ln j

j

)1/2
}

. (2.34)

For any ε > 0, we then have

P (‖wj − w∗‖ > ε) < ε−2

(

1 + ln j

j

)1/2

, ∀j ∈ S ′. (2.35)

Defining

S ′
t := S ′ ∩ {1, 2, . . . , t}, (2.36)

we have
1

t
|S ′

t| > 1− 1

min(c, σ/2)

(

σD2 +
G2

2σ

)(

1 + ln t

t

)1/2

, (2.37)

that is, the density of S ′
t in {1, 2, . . . , t} is 1−O

(

(

1+ln t
t

)1/2
)

.

Proof We first define indicator variables χj for j ≥ 1 as follows,

χj :=











1 if E [‖wj − w∗‖2] >
(

1+ln j
j

)1/2

,

0 otherwise.

Then
t
∑

j=1

E
[

‖wj − w∗‖2
]

≥
t
∑

j=1

χj
E
[

‖wj − w∗‖2
]

>
t
∑

j=1

χj

(

1 + ln j

j

)1/2

(due to the definition of χj)

≥
(

1 + ln t

t

)1/2 t
∑

j=1

χj.

With (2.23), this leads to

1

t

t
∑

j=1

χj ≤ 1

min(c, σ/2)

(

σD2 +
G2

2σ

)(

1 + ln t

t

)1/2

.
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Therefore,

1

t
|S ′

t| = 1− 1

t
|S ′c

t |

≥ 1− 1

t

t
∑

j=1

χj

> 1− 1

min(c, σ/2)

(

σD2 +
G2

2σ

)(

1 + ln t

t

)1/2

,

thus proving (2.37). The claim (2.35) follows from applying Markov inequality for any ε > 0 and

using the definition of S ′.

2.4.3 Identification

The next theorem is our main result, showing that the stochastic RDA algorithm identifies the

optimal manifold with increasing probability as iterations proceed. This result requires a condition

(2.38) on h that is trivially satisfied by the usual prox function h(x) = (1/2)‖x− w1‖2.

Theorem 2.17 (Identification for General Convex Cases) Suppose that Assumption 2.10 holds,

w∗ ∈ FD, M is the optimal manifold including w∗, and the RDA algorithm uses h(w) such that

sup
bj∈∂h(wj)

‖bj‖ ≤ η‖wj − w1‖, j = 1, 2, . . . (2.38)

for some η > 0. Given S defined in (2.27), we have

P(wj ∈ M) ≥ 1− (ζ1 + ζ2)j
−1/4

for all j ∈ S sufficiently large, where

ζ1 :=
3max(1, L)

ε̄

(

3max(1, L)

ε̄
+

1

r̄

)

, and ζ2 := 1.2

(

3

ε̄

)2

ν.

Proof Let ε̄ > 0 be the threshold defined in Theorem 2.13. We focus on the iterate wj and the

random events associated with it. First we denote the following event as E1:

E1 : ‖wj − w∗‖ ≤ ε̄

3max(L, 1)
, (2.39)
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where ε̄ is defined in Theorem 2.13 and L is the Lipschitz constant of (2.9) and Lemma 2.2.

Note that E1 depends on the random history ξ[j−1]. If E1 is true, it trivially implies the condition

‖wj − w∗‖ ≤ ε̄ of Theorem 2.13. From Lemma 2.15, we have that

P(‖wj − w∗‖ ≤ ε̄) ≥ P(E1) ≥ 1− ζ1j−1/4. for all j ∈ S , (2.40)

We now examine the other condition in Theorem 2.13, namely

dist
(

0,∇f(wj) + ∂Ψ(wj)
)

≤ ε̄.

By adding and subtracting terms, we obtain

∇f(xj) + aj = (∇f(wj)−∇f(w∗)) + (∇f(w∗)− ḡj−1)−
βj−1

j − 1
bj

+

(

ḡj−1 + aj +
βj−1

j − 1
bj

)

. (2.41)

for any aj ∈ ∂Ψ(wj) and bj ∈ ∂h(wj). We choose the specific aj and bj that satisfy the optimality

of the subproblem (2.19), that is,

0 = ḡj−1 + aj +
βj−1

j − 1
bj. (2.42)

This choice eliminates the last term in (2.41). For the other three terms, we have the following

observations.

(i) For those wj satisfying E1, the Lipschitz property of ∇f (Lemma 2.2) implies that

‖∇f(wj)−∇f(w∗)‖ ≤ L‖wj − w∗‖ ≤ L

3max(L, 1)
ε̄ ≤ ε̄

3
.

Hence, E1 implies the following event:

E2 : ‖∇f(wj)−∇f(w∗)‖ ≤ ε̄/3

(ii) From Theorem 2.12, we have by setting ε = ε̄/3 and t = j − 1 that

P(‖∇f(w∗)− ḡj−1‖ > ε̄/3) < ζ2j
−1/4, ∀j ≥ 2.
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Hence, denoting by E3 the event

E3 : ‖∇f(w∗)− ḡj−1‖ ≤ ε̄/3,

we have that

P(¬E3(j)) < ζ2j
−1/4, for all j ≥ 2. (2.43)

(iii) Since βj−1 = γ(j − 1)1/2, we have for wj satisfying E1 that

βj−1

j − 1
‖bj‖ = γ(j − 1)−1/2‖bj‖

≤ γη(j − 1)−1/2‖wj − w1‖ (from (2.38))

≤ γη(j − 1)−1/2(‖wj − w∗‖+ ‖w1 − w∗‖)

≤ γη(j − 1)−1/2

(

ε̄

3max(L, 1)
+D

)

.

Therefore, E1 implies the event

E4 :
βj−1

j − 1
‖bj‖ ≤ ε̄

3
,

whenever j ≥ j0, where we define j0 by

j0 := 1 +

⌈

9γ2η2

ε̄2

(

ε̄

3max(L, 1)
+D

)2
⌉

.

Therefore for j ∈ S with j ≥ j0, by definition of the events E1, E2, E3, and E4 above, the

probability that Theorem 2.13 will hold is

P

(

‖wj − w∗‖ ≤ ε̄ ∧ dist (0, ∂φ(wj)) < ε̄
)

≥ P

(

E1 ∧ E2 ∧ E3 ∧ E4

)

= P(E1 ∧ E3)

≥ 1− P(¬E1)− P(¬E3) ≥ 1− (ζ1 + ζ2)j
−1/4

where the last inequality is due to (2.40) and (2.43). Our claim follows.
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Theorem 2.18 (Identification for Strongly Convex Cases) Suppose that Assumption 2.10 holds,

φ is strongly convex with the modulus σ > 0, w∗ ∈ FD, M is the optimal manifold including w∗,

and the RDA algorithm uses h(w) satisfying (2.38). Given S ′ defined in (2.34), we have

P(wj ∈ M) ≥ 1− (ζ ′1 + ζ
′
2)

(

1 + ln j

j

)1/2

.

for all j ∈ S ′ sufficiently large, where

ζ ′1 :=

(

3max(1, L)

ε̄

)2

, and ζ ′2 := 1.25

(

3

ε̄

)2

ν ′.

Proof This proof is almost identical to that of Theorem 2.17; here we briefly mention the required

changes for the strongly convex case. Consider ε̄ > 0 and the event E1 defined in the proof of

Theorem 2.17. From Lemma 2.16 we have

P(‖wj − w∗‖ ≤ ε̄) ≥ P(E1) ≥ 1− ζ ′1[(1 + ln j)/j]1/2, for all j ∈ S ′.

Instead of (ii) and (iii) in the proof of Theorem 2.17, we use the following:

(ii’) From Theorem 2.12, we have by setting ε = ε̄/3 and t = j − 1 that

P(‖∇f(w∗)− ḡj−1‖ > ε̄/3) < ζ ′2[(1 + ln j)/j]1/2, ∀j ≥ 2.

Hence, denoting by E3 the event ‖∇f(w∗)− ḡj−1‖ ≤ ε̄/3, we have that

P(¬E3) < ζ
′
2[(1 + ln j)/j]1/2, for all j ≥ 2.

(iii’) With βj−1 = σ(1+ ln(j− 1)), we can choose j′0 sufficiently large so that the event E4 in the

proof of Theorem 2.17 holds for all j ≥ j′0.

Using the modified probability bounds for E1 and E3, we have

P
(

‖wj − w∗‖ ≤ ε̄ ∧ dist (0, ∂φ(wj)) < ε̄
)

≥ P
(

E1 ∧ E3

)

≥ 1− (ζ ′1 + ζ
′
2)[(1 + ln j)/j]1/2,

for all j ∈ S ′ with j ≥ j′0. Our claim follows.
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Lemma 2.15 (respectively, Lemma 2.16) tells us that the sequence S (resp., S ′) is “dense” in

{1, 2, . . . }, while Theorem 2.17 (resp., Theorem 2.18) states that for all sufficiently large j ∈ S

(resp., j ∈ S ′), wj lies on the optimal manifold with probability approaching one as j increases.

2.5 Dual Averaging with Manifold Identification

We present a simple strategy motivated by our analysis above, in which the RDA method gives

way to a local optimization phase after a near-optimal manifold is identified.

2.5.1 RDA+ Algorithm

Algorithm 2 summarizes our algorithm called RDA+. This algorithm starts with RDA steps

until it identifies a near-optimal manifold, then switching to the LPS algorithm (Wright, 2010) to

search a reduced space until an optimality criterion is satisfied.

For choosing a manifold as a candidate, we use a simple heuristic inspired by Theorem 2.17

that if the past τ consecutive iterates have been on the same manifold M, we take M to be ap-

proximately optimal. Before commencing the local phase, however, we “safeguard” by expanding

M to incorporate additional dimensions that may yet contain the minimizer. Our simple approach

will work provided that M is a superset of the optimal manifold, since LPS is able to move to

more restricted submanifolds of M.

2.5.2 Specification for !1-regularization

We describe the details of Algorithm 2 for !1-regularization, where Ψ(w) = λ‖w‖1 for some

λ > 0. (Thus w1 = 0.) This is a simple and widely used regularizer that encourages sparsity in

the solution w∗. The manifold embracing w∗ ∈ Rn corresponds to the set of points in Rn that

have the same sign and nonzero patterns as w∗. Also, we use the simple quadratic prox-function

h(w) = ‖w − w1‖2.
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Computation of wj+1: For these choices, we have a closed-form solution for the subproblem

(2.19):

[wj+1]i =

√
j

2γ
soft(−[ḡj]i, λ), i = 1, 2, . . . , n,

where soft(u, a) := sgn(u)max{|u| − a, 0} is the well-known soft-threshold function.

Acceleration: To generate the approximate solution in the local optimization phase of Algo-

rithm 2, we use an empirical estimate φ̃N in (2.5) as a surrogate objective function and then solve

min
w∈M

φ̃N |M(w),

where N is drawn from available samples. LPS calculates first- and second-order information for

φ̃N on the subset of components defined by M. Since the intrinsic dimension of M is usually

much smaller than the dimension n of the full space, these restricted gradients and Hessians are

much cheaper to compute than their full-space counterparts.

Checking Optimality: From the optimality condition for (2.5), we define the optimality measure

δ(wj):

δ(wj) :=
1√
n

inf
aj∈∂Ψ(wj)

‖∇f̃N (wj) + aj‖. (2.45)

Since δ(w∗) ≈ 0 for sufficiently large sample set N because of the law of large numbers, we can

stop the algorithm when δ(wj) drops below a certain threshold.

Safeguarding: For a more robust implementation, we augment M before starting the local phase,

adding components i for which [wj+1]i = 0 but [ḡj]i is close to one of the endpoints of its allowable

range; that is,

[wj+1]i = 0 and |[ḡj]i| > ρλ (2.46)

for some fixed ρ ∈ (0, 1]. This is motivated from Theorem 2.12, which indicates that ḡj approaches

∇f(w∗) in probability as j increases.
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Algorithm 2 RDA+ Algorithm.
1: Input:

• a prox-function h(w) that is strongly convex on domΨ and also satisfies

argmin
w

h(w) ∈ argmin
w

Ψ(w),

sup
bj∈∂h(wj)

‖bj‖ ≤ η‖w − w1‖, ∀w ∈ domΨ.

• a nonnegative and nondecreasing sequence {βt}, t ≥ 1.

• a positive integer τ .

2: Initialize: set w1 ∈ argminw Ψ(w) and ḡ0 = 0.

3: Dual Averaging:

4: for j = 1, 2, . . . do

5: Choose a random vector ξj ∈ Ξ .

6: Compute a gradient gj ← ∇F (wj; ξj).

7: Update the average gradient:

ḡj =
j − 1

j
ḡj−1 +

1

j
gj.

8: Compute the next iterate by solving the subproblem (2.19), which is

wj+1 = argmin
w∈Rn

{

〈ḡj, w〉+ Ψ(w) +
βt
t
h(w)

}

. (2.44)

9: if there is M such that wj+2−i ∈ M for i = 1, 2, . . . , τ then

10: Local Phase:

11: Expand M and use LPS to search for solution on manifold M, starting at wj+1;

12: end if

13: end for
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2.6 Computational Experiment

We consider binary classification tasks via logistic regression with !1-regularization. We con-

struct the empirical estimate φ̃N from the full training set of size m, that is, N = {1, 2, . . . ,m}.

For the training example selected by ξt at time t ≥ 1, we use its feature vector xt ∈ Rn−1 and label

yt ∈ {−1, 1} to define the corresponding loss function for w̃ ∈ Rn−1, b ∈ R and w = (w̃, b):

F (w; ξt) = log
(

1 + exp
(

−yt(w̃
Txt + b)

))

.

We choose Ψ(w) = λ‖w‖1 as the regularizer for some λ > 0, and set w1 = 0.

2.6.1 Manifold Identification

To investigate the identification behavior of the RDA algorithm in practical circumstances, we

use five data sets from the UCI Machine Learning Repository with various sizes and dimensions

shown in Table 2.1. We first apply the original LPS to acquire the solution w∗
N of (2.5), with the

tight optimality threshold of 10−6. We then tabulate how many iterations of RDA are required

before it generates a point in the optimal manifold M containing w∗
N .

We also check when the iterate of the RDA algorithm lies on a modest superset of the optimal

manifold. Here we aim for a “2×” superset composed of the points in Rn having the same sign

pattern for the active components in M, and up to twice as many nonzeros as the points in M.

For each data set we use three values of λ equally spaced in the log-scale range of [0.3, 0.9]λmax,

where the λmax is computed accordingly to Koh et al. (2007) beyond which the solution contains

no nonzero components except for the intercept term.

Table 2.1 shows the number of iterations taken by the RDA algorithm, for 100 different random

permutations of each data, until the algorithm identifies the optimal manifold and its 2× superset.

As the empirical distributions of the iterations are skewed, we show the median (rather than the

mean) and the standard deviation. The table also shows the values of the optimality measure δ

defined in (2.45) for the iterate at the moment we identify the optimal manifold. These results

tell us that identifying the optimal manifold could require a huge number of iterations, whereas

identifying the superset is often much easier. We note too that even when optimal identification is
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Table 2.1 Manifold identification of the RDA algorithm for 100 different permutations. The
median (and the standard deviation in parentheses) number of iterations until the identification of

the optimal manifold M containing w∗
N and its 2× superset are presented. δ represents the

optimality measure at the moment of identifying M.

Data set λ
No. iterations

Optimality δ
NNZs

w∗
N2× Superset Optimal M

Glass

(m = 214, n = 10)

0.29 14 (25) 20 (27) 0.068 1

0.17 13 (10) 116 (428) 0.063 2

0.10 13 (11) 28392 (6907) 0.016 3

Iono

(m = 351, n = 35)

0.22 38 (84) 122 (95) 0.015 2

0.13 44 (28) 30812 (15575) 0.008 3

0.07 86 (41) 404 (150) 0.019 5

Arrhythmia

(m = 452, n = 280)

0.15 192 (110) 304 (141) 0.001 2

0.09 272 (88) 2036 (1076) 0.002 8

0.05 447 (195) 27750 (4590) 0.001 13

Spambase

(m = 4601, n = 58)

0.17 137 (219) 357 (325) 0.006 1

0.10 722 (2495) 4340 (3097) 0.004 8

0.06 812 (1247) 4680 (2209) 0.004 17

Pageblock

(m = 5473, n = 11)

0.11 26 (326) 58 (395) 0.063 1

0.07 182 (941) 524 (1233) 0.038 3

0.04 103 (913) 461 (1232) 0.040 4

achieved, the iterate is still far from being optimal, suggesting the need for alternatives to achieve

tighter optimality.

2.6.2 Performance on the MNIST Data Set

We now focus on the effects of the local phase in the RDA+ algorithm in Algorithm 2. For this

we use the MNIST data set which consists of gray-scale images of digits represented by 28 × 28
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Figure 2.1 Examples of the input digits of MNIST data set.

pixels, choosing the digits 6 and 7 to have 12183 training and 1986 test examples. We show some

digits from the data set in Figure 2.1. Although the MNIST data set has relatively small dimension,

we choose this set because we can compare our results to those reported in Xiao (2010) for the

original RDA algorithm.

We compare RDA+ to several other algorithms: SGD, TG, RDA, and LPS. The stochastic gra-

dient descent (SGD) method (for instance, Nemirovski et al., 2009) for !1-regularization consists

of the iterations

[wt+1]i = [wt]i − αt

(

[gt]i + λsgn ([wt]i)
)

, i = 1, 2, . . . , n.

The iteration of the truncated gradient (TG) algorithm (Langford et al., 2009) is described in (2.7),

where use θ = ∞ and K = 10 for enhanced regularization effect (Xiao, 2010). For the stepsize αt

in SGD and TG, we adopt a variable stepsize scheme (Zinkevich, 2003; Nemirovski et al., 2009),

choosing

αt =
D

G

√

2

t
.

This gives SGD a bound 2
√
2GD

√
t for the regret Rt(w∗) when λ 4 G (see Appendix A.3 for

details). This bound is comparable to the simplified regret bound of RDA, Rt(w∗) ≤ 2GD
√
t,

which is obtained with the best γ∗ = G/D that minimizes the expression (γD2 +G2/γ) in (2.20)

for the general convex cases. (Then we can set the stepsizes of SGD and TG as αt = (γ∗)−1
√

2/t.)

In this setting we can run RDA+ and RDA estimating only γ∗ without knowing D and G; we use

γ∗ = 5000 for both, which is determined by cross validation with RDA and with a single scan
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through the data set. For LPS and the local phase of RDA+, we set the Newton threshold to 200

so that the Newton approach will be applied only when the number of active elements fall below

this number, and use no sampling in the gradient and Hessian computation. We set w1 = 0 for all

algorithms.

For SGD, TG, and RDA, we keep track of the primal average w̄T := 1
T

∑T
t=1wt additionally,

where T for each algorithm denotes the iteration number where the algorithm is stopped. We

include these into comparison because the convergence of the stochastic subgradient algorithms

are often described in term of the primal averages but we do not expect they will identify the

optimal manifold as fast as the raw iterates in general. Note that RDA+ and LPS does not operate

with primal averages.

We first run the RDA+ algorithm with random permutations of the training samples, stopping

when τ = 100 consecutive iterates have the same sparsity pattern, after seeing all samples at least

once. (All repeated runs required at most 19327 iterations to stop, which was within two permu-

tations.) In the safeguarding test (2.46), we use ρ = 0.85. Then we run the local phase of the

RDA+ algorithm until we obtain a solution with the optimality measure value in (2.45) less than

10−4. We record the total runtime of the RDA+ algorithm, and then run other algorithms SGD, TG,

and RDA, up to the runtime of RDA+ (they may stop earlier if they achieve the desired optimality).

Progress in Time: We compare the convergence speed of the algorithms, in terms of the optimality

measure and the number of nonzero components. For this experiment, we run LPS up to the

runtime of RDA+ and include it into comparison. Figure 2.2 presents the plots for the iterates

without averaging, for three different values of λ ∈ {10, 1.0, 0.1}. The optimality plots (on the

left) show that RDA+ achieves the target optimality much faster than other algorithms, including

LPS. The RDA algorithm behaves better than SGD and TG, but it still hardly achieves the target

value. Also, it is hard to notice the decreasing tendency of optimality values for SGD, TG and

RDA, although it might be more distinct in a larger timeframe.

The plots on the right of Figure 2.2 show the number of nonzeros in the iterates. RDA tends

to produce much sparser iterates with less fluctuation than SGD and TG, but it fails to reduce the
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number of nonzeros to the smallest number identified by RDA+ in the given time, apparently for

λ = 1.0 and λ = 0.1.

We mark the events of switching to the local phase for RDA+ with black dot-dashed lines. In

the local phase, RDA+ behaves very similarly to LPS, sharing the typical behavior of nonmono-

tonic decrease in optimality. However, the local phase often converges faster than LPS, because

it can operate on the reduced space chosen by the initial phase of RDA+. The number of nonze-

ros often increases in the event of switching, since the safeguarding can add more elements. This

behavior can be diminished by using more conservative (larger) ρ values.

Figure 2.3 shows similar plots but for the averaged iterates (primal averages). We duplicate the

plots of RDA+ and LPS from Figure 2.2 for easy comparison. Regarding the number of nonzeros

components, it is easy to tell the primal averages behave much worse than the iterates without

averaging in finite time.

Quality of Solutions: Next we compare the quality of the solutions in terms of optimality, the

number of nonzeros, and test error rate, in Figure 2.4. We present the results for the iterates

without averaging on the left, and those for the primal averages on the right, averaged up to each

observation point from the beginning. (The plots of RDA+ and LPS on the left are duplicated to

the right for easy comparison.) We run the algorithms with the same setting used in the previous

experiments, except for LPS; now we run LPS without any time limit to use it as the baseline of

comparison. (The runtime of LPS was about four times longer than that of RDA+ on average.)

The experiments are repeated for 100 different random seeds, for each of the seven λ values in the

range of [0.01, 10]. (λmax was 45.8.)

In Figure 2.4, only the solutions from RDA+ achieve the desired optimality and the smallest

number of nonzeros, with almost identical quality to the solutions from LPS. The solutions (both

with and without averaging) from SGD, TG, and RDA are suboptimal, leaving much scope for

zeroing out many more components of the iterates. RDA achieves a similar number of nonzeros

to RDA+ for large λ values, but more nonzeros on smaller values of λ. In terms of the test error
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Figure 2.2 Convergence of iterates without averaging, for the task classifying the digits 6 and 7 in
the MNIST data set. Convergence is measured in terms of the optimality measure (left) and the

number of nonzero components in the iterates (right). SGD, TG, RDA and LPS are run up to the
time taken for RDA+ to achieve 10−4 optimality value. The black dot-dashed lines indicate the
event of phase switching in RDA+. Only the vertical axes on the left are in logarithmic scale.
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Figure 2.3 Convergence of averaged iterates, for the task classifying the digits 6 and 7 in the
MNIST data set. Convergence is measured in terms of the optimality measure (left) and the

number of nonzero components in the iterates (right). SGD, TG, RDA and LPS are run up to the
time taken for RDA+ to achieve 10−4 optimality value. The plots of RDA+ and LPS are

duplicated from Figure 2.2 for comparison. Only the vertical axes on the left are in logarithmic
scale.
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rate, RDA+ produces slightly better solutions than SGD, TG, and RDA overall. Although the im-

provement is marginal, we note that high accuracy is difficult to achieve solely with the stochastic

online learning algorithms in limited time. The averaged iterates of SGD and TG show smaller

test error for λ ≥ 1 than others, but they need a large number of nonzero components, despite the

strong regularization imposed.

In Figure 2.5 we show the typical solutions from the algorithm runs, for the different λ val-

ues. The first three rows present the solutions acquired without averaging, and the last three rows

present the ones obtained with primal averaging. The solutions from RDA+ reveals almost identi-

cal sparsity pattern to those from the baseline algorithm LPS, achieving smallest nonzero patterns.

For large λ values, RDA produces similar sparse solutions to RDA+, but much denser solutions

for smaller values. The solutions from primal averaging are typically denser than those without

averaging.

2.6.3 Scaling Performance

In this section we benchmark RDA+ and LPS in terms of the speed to achieve the solutions

with 10−4 thresholds of convergence, varying problem sizes. Recall that the LPS algorithm is a

batch optimization solving (2.5), operating with the full gradient in each iteration, possibly with

the Hessian information, in the basic setting. However, it also features options for large-scale

problems, to work with partial gradients and with the Hessian estimates evaluated with subsets

of the given training set. Also, the behavior of the local phase of RDA+ is affected by these

parameters. We are interested in the efficiency of the two algorithms with the changes of these

parameters.

For the benchmark, we use the entire MNIST data set with 60k examples, creating binary

classification tasks differentiating even versus odd digits. The training sets of five different sizes

in the range of [10k, 50k] are created by random sampling from the entire set, maintaining the

even versus odd ratio of the entire set. We measure the runtime of RDA+ and LPS to achieve the

solutions with 10−4 optimality, for 50 random training sets for each size. We use γ∗ = 5000 as

before, and change two parameters of LPS: the gradient fraction (gf) which controls the fraction of
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Figure 2.4 Quality of the solutions for classifying the digits 6 and 7 in the MNIST data set, in
terms of the optimality, the number of nonzero components, and the test error rate (measured for
100 different random permutations). The plots on the left show the results for the iterates without
averaging, and those on the right for the primal averages. SGD, TG, and RDA algorithms are run
up to the time taken for RDA+ to achieve 10−4 optimality value, whereas LPS is run without such
limit. The plots for RDA+ and LPS on the left are duplicated to the right for comparison. All axes

are in logarithmic scale, except for the vertical axes in the second row.
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Figure 2.5 Sparsity patterns of the solutions, for classifying the digits 6 and 7 in the MNIST data
set. The regularization parameter λ is varied in the range of [0.01, 10]. The spots represent the

positive (bright) and negative (dark) values, where the gray background represents the zero value.
The top three rows show the solutions acquired without averaging, and the bottom three rows
show the ones from primal averaging. The two rows in the middle presents the solutions from
RDA+ and LPS. The algorithms SGD, TG, and RDA are run up to the time taken for RDA+ to

achieve a solution with 10−4 optimality value; the batch algorithm LPS is run without time limit.
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Figure 2.6 Scaling benchmark of RDA+ and LPS. For even versus odd classification tasks, the
training sets with different sizes in the range of [10k, 50k] are created by random sampling from
the entire MNIST data set, maintaining the original even versus odd ratio. The runtime of both
algorithms are measured for 50 repetitions for each training set size, to achieve solutions with
10−4 optimality. Two large-scale parameters affecting LPS and the local phase of RDA+ are

varied: the gradient fraction (gf) and the Hessian sampling (hs). The vertical axes show runtime
values in seconds, in logarithmic scale.
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partial gradient to the full gradient; and the Hessian sampling (hs) which specifies the number of

random training examples to be used for estimating the true Hessian.

We present the benchmark results in Figure 2.6, trying three gf values in {0.2, 0.6, 1.0} and four

hs values in the range of [500, 10000]. The best performance of LPS is acquired with small partial

gradients (gf = 0.2) and rough Hessian estimates (hs = 500 or hs = 1000), but it is still about

twice as slow as RDA+ with the same settings. The parameter setting of Section 2.6.2 is similar

to the configuration with gf = 1.0 and hs = 10000 (in the bottom left corner of Figure 2.6). This

seems to be the slowest setting on average, and the experiment could have been performed about

ten times faster by choosing different parameters, for instance gf = 0.2 and hs = 500. For the

parameter values significantly smaller than those tried here, we experienced unstable convergence

of LPS and the local phase of RDA+.

2.7 Conclusion

We have shown that the RDA algorithm is effective for producing solutions with a smaller set

of active elements than other subgradient methods, and also identifies the optimal manifold with

probability approaching one as iterations proceed. This observation enables us to apply alternative

optimization techniques with faster convergence rate on the near-optimal manifold, enabling more

rapid convergence to near-optimal points than plain stochastic gradient approaches.
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Chapter 3

Stochastic Subgradient Algorithms for Training Nonlinear Sup-
port Vector Machines

The support vector machine solvers using the subgradients of the primal form of SVMs are very

successful in finding solutions for large-scale problems with linear kernels. However, the genuine

SVM primal formulation does not satisfy the strong convexity property which is required for the

existing algorithms. Moreover, the strong convexity breaks down when some tuning parameters

approach zero in value.

In this chapter, we suggest an algorithmic framework equipped with a subgradient method

which does not require strong convexity yet exhibits similar or even better performance to the

existing methods in practice for the typical choices of the tuning parameters. Our framework

utilizes the ideas of low dimensional approximation of kernels as well, which extends our method

to nonlinear kernels both in batch and online settings.

3.1 Introduction

When data sets are extremely large, the computation required by some of the existing algo-

rithms for training SVMs becomes excessive. We focus on subgradient methods that take simple

steps, each typically based on a single training point, so can be implemented in a data-streaming

context efficiently. While requiring a great many iterates to find accurate solutions, subgradient

methods can calculate solutions that are “accurate enough” for the purposes at hand using much

less computation than frameworks that more explicitly target an exact solution.
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This chapter outlines an improved algorithm based on subgradient methods for solving primal

SVM formulations. It extends current subgradient methods by allowing nonlinear kernels to be

used, and not requiring strict convexity of the function to be minimized. This allows the classic

SVM formulation with a non-penalized intercept term to be used, thus reclaiming the formulation

on which many theoretic results have been built.

Our approach uses low-dimensional approximations to nonlinear kernels, obtained either by

approximating the Gram matrix, or by constructing the subspace with random bases. The approx-

imation yields a linear formulation with transformed feature vectors, which can be solved with

the use of well known subgradient approaches. The approach has the added benefits that the ap-

proximate solution to the SVM yields an approximate classification function that can be evaluated

cheaply, typically in time proportional to the dimension of approximation.

3.2 Nonlinear SVM in the Primal

In this section we develop a general theory for nonlinear SVM in the primal form focusing

on classification, then show how it reformulates to a linear SVM problem by means of the low-

dimensional approximation of a kernel. We discuss techniques for approximating the kernel and

classifying data points efficiently.

3.2.1 Basic Derivation

Here we justify the primal SVM formulation with kernels, which was first introduced by

Chapelle (2007). This analysis addresses a special case of the representer theorem (Kimeldorf

and Wahba, 1970; Wahba, 1990), using the tools of convex analysis. Consider the training point

and label pairs {(xi, yi)}mi=1, xi ∈ Rd, yi ∈ {−1,+1} and feature mapping φ : Rd → Rn. Given a

convex loss function ! : R → R ∪ {∞}, the primal SVM problem can be formulated as follows:

min
w∈Rn,b∈R

λ

2
wTw +

1

m

m
∑

i=1

!(yi(w
Tφ(xi) + b)) (3.1)
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with λ > 0 and a convex loss function !. The necessary and sufficient optimality conditions are

λw +
1

m

m
∑

i=1

χiyiφ(xi) = 0, (3.2a)

1

m

m
∑

i=1

χiyi = 0, (3.2b)

for some χi ∈ ∂!(yi(wTφ(xi) + b)), i = 1, 2, . . . ,m. (3.2c)

where ∂! is the subdifferential of !.

We now consider the following substitution:

w =
m
∑

i=1

αiyiφ(xi) (3.3)

(which mimics the form of (3.2a)) and, motivated by this expression, we formulate the following

problem

min
α∈Rm,b∈R

λ

2
αTQα +

1

m

m
∑

i=1

!(Qi·α + yib), (3.4)

where Q ∈ Rm×m is defined by

Qij := yiyjφ(xi)
Tφ(xj), i, j = 1, 2, . . . ,m, (3.5)

and Qi· denotes the i-th row of Q. Optimality conditions for (3.4) are as follows:

λQα +
1

m

m
∑

i=1

βiQ
T
i· = 0, (3.6a)

1

m

m
∑

i=1

βiyi = 0, (3.6b)

for some βi ∈ ∂!(Qi·α + yib), i = 1, 2, . . . ,m. (3.6c)

The following result shows that the solution of (3.4) can be used to derive a solution of (3.1).

This observation is potentially interesting because (3.4) is formulated in terms of the kernel Q and

does not require explicit knowledge of the feature mapping φ.

Proposition 3.1 Let (α, b) ∈ Rm×R be a solution of (3.4). Then if we define w by (3.3), (w, b) ∈

Rn × R is a solution of (3.1).
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Proof Since (α, b) solves (3.4), the conditions (3.6) hold, for some βi, i = 1, 2, . . . ,m. To prove

the claim, it suffices to show that (w, b) and χ satisfy (3.2), where w is defined by (3.3) and χi = βi

for all i = 1, 2, . . . ,m.

By substituting (3.5) into (3.6), we have

λ
m
∑

i=1

yiyjφ(xj)
Tφ(xi)αi +

1

m

m
∑

i=1

βiyiyjφ(xj)
Tφ(xi) = 0, j = 1, 2, . . . ,m,

1

m

m
∑

i=1

βiyi = 0,

βi ∈ ∂!
(

m
∑

j=1

yiyjφ(xj)
Tφ(xi)αj + yib

)

, i = 1, 2, . . . ,m.

From the first equality above, we have that

−
m
∑

i=1

(

αi +
1

λm
βi

)

yiφ(xi) + ξ = 0,

for some ξ ∈ Null
(

[

yjφ(xj)T
]m

j=1

)

. Since the two components in this sum are orthogonal, we

have

0 =

∥

∥

∥

∥

∥

m
∑

i=1

(

αi +
1

λm
βi

)

yiφ(xi)

∥

∥

∥

∥

∥

2

+ ξT ξ,

which implies that ξ = 0. We can therefore rewrite the optimality conditions for (3.4) as follows:
m
∑

i=1

(

λαi +
1

m
βi

)

yiφ(xi) = 0, (3.7a)

1

m

m
∑

i=1

βiyi = 0, (3.7b)

βi ∈ ∂!
(

yiφ(xi)
T

m
∑

j=1

αjφ(xj) + yib

)

, i = 1, 2, . . . ,m. (3.7c)

By defining w as in (3.3) and setting χi = βi for all i, we see that (3.7) is identical to (3.2), as

claimed.

While Q is clearly symmetric positive semidefinite, the proof makes no assumption about non-

singularity of this matrix, or uniqueness of the solution α of (3.4). However, (3.6a) suggests that
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without loss of generality, we can constrain α to have the form αi = −βi/(λm) where βi is re-

stricted to ∂!. In particular, if we use hinge loss function, that is,

!(δ) := max{0, 1− δ}, (3.8)

the subdifferential is

∂!(δ) =



























{−1} if δ < 1,

[−1, 0] if δ = 1,

{0} if δ > 1.

Thus βi ∈ [−1, 0] for all i = 1, 2, . . . ,m.

3.2.2 Reformulation to a Linear SVM Problem

We consider the feature mapping φ◦ : Rd → H to a Hilbert space H induced by a kernel

function κ◦ : Rd × Rd → R, where κ◦ satisfies the conditions of Mercer’s theorem (Mercer, 1909)

to guarantee the existence of φ◦ satisfying κ◦(s, x) := 〈φ◦(s), φ◦(x)〉. Suppose that we have a

low-dimensional approximation φ : Rd → Rn of φ◦ for which

κ◦(s, x) ≈ φ(s)Tφ(x), (3.9)

for all inputs s and x of interest. We construct a matrix V ∈ Rm×n for training examples

x1, x2, . . . , xm by defining the i-th row as Vi· = yiφ(xi)T , i = 1, 2, . . . ,m. Then V satisfies

Q := V V T ≈ Q◦ := [yiyjκ
◦(xi, xj)]i,j=1,2,...,m. (3.10)

Note that Q is a rank-n, positive semidefinite approximation to Q◦. By substituting this Q in (3.4),

we obtain

min
α∈Rm,b∈R

λ

2
αTV V Tα +

1

m

m
∑

i=1

!(vTi V
Tα + yib), (3.11)

where vi := V T
i· is the transpose of the i-th row of V . By introducing the change of variables

γ = V Tα, (3.12)
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we obtain the equivalent formulation

min
γ∈Rn,b∈R

λ

2
γTγ +

1

m

m
∑

i=1

!(vTi γ + yib). (3.13)

This problem is a linear SVM for the new input vectors yivi ∈ Rn, i = 1, 2, . . . ,m.

We can solve (3.13) by applying linear SVM techniques to find (γ, b). Any α that solves the

overdetermined system (3.12) will yield a solution of (3.11). (Note that α satisfying (3.12) need

have at most n nonzeros.) In Section 3.2.4, we provide an efficient way to classify data points

without recovering α.

3.2.3 Approximating the Kernel

We discuss two techniques for finding V that satisfies (3.10). The first uses randomized linear

algebra to calculate a low-rank approximation to the scaled Gram matrix Q◦, as in (3.10). The sec-

ond approach approximates the feature mapping φ◦(·) explicitly by approximate feature mapping

φ(·) constructed using random projections.

3.2.3.1 Kernel Matrix Approximation

Our first approach is to use the Nyström method (Drineas and Mahoney, 2005), to find a good

approximation of specified rank n to the m×m matrix Q◦ in (3.10). In this approach, we specify

some integer s with n ≤ s < m, and choose s elements at random from the index set {1, 2, . . . ,m}

to form a subset S . We then find the best rank-n approximation to (Q◦)SS and denote it by Ws,n,

with pseudo-inverse W+
s,n. We then choose V so that

V V T = (Q◦)·SW
+
s,n(Q

◦)T·S , (3.14)

where (Q◦)·S denotes the column submatrix of Q◦ defined by the indices in S . The results in

Drineas and Mahoney (2005) indicate that in expectation and with high probability, the rank-n

approximation obtained by this process has an error that can be made as close as we wish to the

best rank-n approximation by choosing s sufficiently large.

We calculate Ws,n by forming the eigen-decomposition (Q◦)SS = PDP T , where P is s × s

orthogonal and n is a diagonal matrix with decreasing nonnegative diagonal entries. Taking n̄ to
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be the smaller of n and the number of positive diagonals in n, we then have that

Ws,n = P·,1..n̄D1..n̄,1..n̄P
T
·,1..n̄,

(where P·,1..n̄ denotes the first n̄ columns of P , and so on). The pseudo-inverse is thus

W+
s,n = P·,1..n̄D

−1
1..n̄,1..n̄P

T
·,1..n̄. (3.15)

The matrix V satisfying (3.14) is therefore

V = (Q◦)·SP·,1..n̄D
−1/2
1..n̄,1..n̄. (3.16)

For practical implementation, rather than defining n a priori, we can choose a positive threshold

εn with 0 < εn 4 1, then choose n to be the largest integer in 1, 2, . . . , s such that Dnn ≥ εn. (In

this case, we have n̄ = n.)

Counting the time complexity of a single kernel evaluation κ◦(s, x) for some s, x ∈ Rd as

O(k), the time complexity of the kernel approximation discussed above is O(s3+sm(k+n)). This

consists of (i) a cost of O(s3) for the PDP T factorization of (Q◦)SS , (ii) O(smk) for computation

of (Q◦)·,S , and (iii) O(smn) for the matrix multiplication of (3.16). Note that the cost of (ii) and

(iii) dominates the cost of (i) since n ≤ s 4 m.

3.2.3.2 Feature Mapping Approximation

The second approach, following Rahimi and Recht (2008), finds a mapping φ : Rd → Rn that

satisfies

〈φ◦(s), φ◦(x)〉 = E [〈φ(s), φ(x)〉] ,

where the expectation on the right hand side is over the random variables that determine φ. The

mapping φ can be constructed explicitly by random projections. We write

φ(x) =
√

1/n
[

cos(νT1 x+ β1), · · · , cos(νTn x+ βn)
]T (3.17)

where ν1, . . . , νn ∈ Rd are i.i.d. samples from a distribution with density p(ν) and β1, . . . , βn ∈ R

are from the uniform distribution on [0, 2π]. The density function p(ν) is determined by the types
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of the kernels we want to use. For the Gaussian kernel

κ◦(s, x) = exp(−‖s− x‖2/(2σ2)), (3.18)

it can be shown that

p(ν) =
1

(2π)n/2σ2
exp

(

−‖ν‖2

2σ2

)

,

from the Fourier transformation of κ◦. We can define the matrix V satisfying (3.10) by setting

vi := V T
i· = yiφ(xi), i = 1, 2, . . . ,m, (3.19)

thus setting up the formulation (3.13).

This method is suitable for online settings, since it takes only O(dn) to prepare ν1, . . . , νd
(assuming that sampling each component of these vectors takes constant time) and O(n) to pro-

cess each data point. As we observe in Section 3.4, however, this approach tends to give lower

classification accuracy than the first approach.

3.2.4 Efficient Classification

Given the solution (γ, b) of (3.4), we now describe how a new data point x ∈ Rd can be

classified efficiently. The imposed low dimensionality of the approximate kernel in our approach

can lead to significantly lower cost of classification, as low as a fraction of d/m of the cost of a

full-space approach.

For the feature mapping approximation of Section 3.2.3.2, where φ is defined explicitly by

(3.17), we use the classifier f suggested immediately by (3.1), that is, f(x) = wTφ(x) + b. By

substituting from (3.3) and using the definition (3.19), we obtain

f(x) = φ(x)T
m
∑

i=1

αiyiφ(xi) + b = φ(x)TV Tα + b = φ(x)Tγ + b,

where we used (3.12) for the final equality. Note in particular that the classifier can be evaluated

directly from γ; there is no need to recover α explicitly.

For the kernel approximation approach of Section 3.2.3.1, the classifier wTφ(x) + b cannot be

used directly, as we have no way to evaluate φ(x) for an arbitrary point x. We can however use the
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approximation (3.9) to note that

φ(x)Tw + b =
m
∑

i=1

αiyiφ(x)
Tφ(xi) + b

≈
m
∑

i=1

αiyiκ
◦(xi, x) + b, (3.20)

so we can define the function (3.20) to be the classifier. To evaluate this function, we need only

evaluate those kernels κ◦(xi, x) for which αi 6= 0. As noted in Section 3.2.2, we can satisfy (3.12)

by using just n nonzero components of α, so (3.20) requires only n kernel evaluations.

If we set αi = 0 for all components i /∈ S , where S is the sample set from Section 3.2.3, we

can compute α that approximately satisfies (3.12) without performing further matrix factorizations.

Denoting the nonzero subvector of α by αS , we have V Tα = V T
S·αS = γ, so from (3.16) and the

fact that (Q◦)SS = PDP T , we have

γ = D−1/2
1..n̄,1..n̄P

T
·,1..n̄(Q

◦)SSαS = D1/2
1..n̄,1..n̄P

T
·,1..n̄αS .

An approximate solution of this equation (which is exact when n̄ = n = s) is

αS = P·,1..n̄D
−1/2
1..n̄,1..n̄γ.

3.3 Stochastic Approximation Algorithm

We describe here a stochastic approximation algorithm for solving the linear SVM reformula-

tion (3.13). Consider the general convex optimization problem

min
z∈Z

f(z), (3.21)

where f is a convex function and Z is a bounded closed convex set with the radius DZ defined by

DZ := max
z∈Z

||z||2. (3.22)

The subdifferential of f at z is denoted by ∂f(z), and we use g(z) to denote a particular subgradi-

ent. By convexity of f , we have

f(z′)− f(z) ≥ g(z)T (z′ − z), ∀z, z′ ∈ Z, ∀g(z) ∈ ∂f(z).
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f is strongly convex when there exists µ > 0 such that

(z′ − z)T [g(z′)− g(z)] ≥ µ||z′ − z||2, (3.23)

for all z, z′ ∈ Z, all g(z) ∈ ∂f(z), and all g(z′) ∈ ∂f(z′). Note that the objective in (3.13)

is strongly convex in γ, but only weakly convex in b. PEGASOS (Shalev-Shwartz et al., 2007)

requires f to be strongly convex in all variables and modifies the SVM formulation to have this

property. The approach we describe below is suitable for the original SVM formulation.

3.3.1 The Algorithm

The algorithm assumes that at any z ∈ Z, we have available G(z; ξ), a stochastic subgradient

estimate depending on random variable ξ that satisfies E[G(z; ξ)] = g(z) for some g(z) ∈ ∂f(z).

The norm deviation of the stochastic subgradients is measured by DG defined as follows:

E[‖G(z; ξ)‖2] ≤ D2
G ∀z ∈ Z. (3.24)

At iteration j, the general algorithm takes the following step:

zj+1 = ΠZ(z
j − ηjG(zj; ξj)), j = 1, 2, . . . , (3.25)

where ξj is a random variable (i.i.d. with the random variables used at previous iterations), ΠZ

is the projection onto Z, and ηj > 0 is a step length. For our function (3.13), we set zj =

(γj, bj), selecting ξj to be one of the indices {1, 2, . . . ,m} with equal probability, and construct

the subgradient estimate from the subgradient for the ξj-th term in the summation. Specifically,

when the hinge loss ! from (3.8) is used, we have

G









γj

bj



 ; ξj



 =





λγj + djvTξj

djyξj



 , (3.26)

where dj = −1 if the kernelized training point ξj is currently misclassified and dj = 0 otherwise.

We define the set Z to be the Cartesian product of a ball in the γ component (due to strong duality,

similarly to Shalev-Shwartz et al. (2007)) with an interval [−B,B] for the b component:

Z =











γ

b



 ∈ R
n × R : ‖γ‖ ≤ 1/

√
λ, |b| ≤ B






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for sufficiently large B > 0, resulting in DZ =
√

1/λ+ B2.

The solution of (3.21) is estimated not by the iterates zj but rather by a weighted sum of the

final few iterates. Specifically, if we define N to be the total number of iterates to be used and

K < N to be the point at which we start averaging, the final reported solution estimate would be

z̄NK :=

∑N
t=K ηtz

t

∑N
t=K ηt

. (3.27)

These is no need to store all the iterates zt, t = K,K + 1, . . . , N in order to evaluate (3.27).

Instead, a running average can be maintained over the last N −K iterations, requiring the storage

of only a single x.

The steplengths ηj require knowledge of the subgradient estimate variance DG (3.24). We use

a small sample of random variables ξ(l), l = 1, 2, . . . ,M , at the first iterate (γ0, b0), and estimate

D2
G as

E

∥

∥

∥

∥

∥

∥

G









γ0

b0



 ; ξ





∥

∥

∥

∥

∥

∥

2

≈ 1

M2

M
∑

l=1

d2l (‖vξ(l)‖2 + y2ξ(l)).

We summarize this framework in Algorithm 3 and refer it to as ASSET. The integer K > 0

specifies the iterate at which the algorithm starts averaging the iterates, which can be set to 1 to

average all iterates, to a predetermined maximum iteration number to output the last iterate without

averaging, or to a number in between.

3.3.2 Convergence

The analysis of robust stochastic approximation (Nemirovski et al., 2009; Nemirovski and

Yudin, 1983) provides theoretical support for the algorithm above. Considering Algorithm 3 ap-

plied to the general formulation (3.21), and denoting the algorithm’s output z̄NK := (γ̄NK , b̄NK), we

have the following result.

Theorem 3.2 Given the output z̄NK and optimal function value f(z∗), we have

E[f(z̄NK )− f(z∗)] ≤ C(ρ)
DZDG√

N
(3.28)

where C(ρ) solely depends on the fraction ρ ∈ (0, 1) for which K = )ρN*.
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Algorithm 3 ASSET Algorithm
1: Input: T = {(x1, y1), . . . , (xm, ym)}, Q◦, λ, positive integers K and N with 0 < K < N , and

DZ and DG satisfying (3.22) and (3.24);

2: Set (γ0, b0) ← (0, 0), j ← 1;

3: Set (γ̄, b̄) ← (0, 0), η̄ = 0;

4: for j = 1, 2, . . . , N do

5: ηj ← DZ

DG
√
j

6: Choose ξj ∈ {1, . . . ,m} independently at random.

7: vξj =











V T
ξj · for V as in (3.16), if we use the kernel matrix approximation.

yξjφ(xξj) for φ(·) as in (3.17), if we use the feature mapping approximation.

8: dj ←







−1 if vξjγ
j + yξjb < 1

0 otherwise

9:





γj

bj



← ΠZ









(1− ηjλ)γj−1 − ηjdjvξj

bj−1 − ηjdjyξj









10: if j ≥ K then

11: {update averaged iterate}




γ̄

b̄



← η̄

η̄ + ηj





γ̄

b̄



+
ηj

η̄ + ηj





γj

bj



 .

η̄ ← η̄ + ηj.

12: end if

13: end for

14: Define γ̄NK := γ̄ and b̄NK := b̄.

3.3.3 Strongly Convex Case

Suppose that we omit the intercept b from the linear formulation (3.13). Then its objective

function f(x) becomes strongly convex for all of its variables. In this special case we can apply
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different steplength ηj = 1/(λj) to achieve faster convergence in theory. The algorithm remains

the same as Algorithm 3 except that averaging is no longer needed and a faster convergence rate

can be proved: essentially a rate of 1/j rather than 1/
√
j (see Nemirovski et al. (2009) for a general

proof). And the set Z is simplified as follows

Z = {γ ∈ R
n : ‖γ‖ ≤ 1/

√
λ},

and the update steps are changed accordingly to omit the component b. The resulting algorithm,

we refer it as ASSET∗, is the same as PEGASOS (Shalev-Shwartz et al., 2007), except for our

extension to nonlinear kernels.

Note that averaging like (3.27) may still be useful, as it can be shown to improve the conver-

gence rate by some constant (Polyak and Juditsky, 1992).

3.4 Computational Results

We based our implemented our algorithms on the open-source PEGASOS code1. We refer

our algorithms with kernel matrix approximation as ASSET and ASSET∗ (for the versions that do

and do not allow an intercept term, resp.) and with feature mapping approximation as ASSETon

and ASSET∗
on. In the interests of making direct comparisons with other codes, we do not include

intercept terms in our experiments, since some of the other codes do not allow such terms to be

used without penalization.

We run all experiments on load-free 64-bit Linux systems with 2.66 GHz processors and 8 GB

memory. Kernel cache size is set to 1 GB when applicable. All experiments with randomness are

repeated 50 times unless otherwise specified.

Table 3.1 summarizes the six binary classification tasks we use for the experiments2. The

ADULT data set is randomly split into training/validation/test sets. In the MNIST data set, we obtain

a binary problem by classifying the digits 0-4 versus 5-9. In the CCAT data set from the RCV1 col-

lection (Lewis et al., 2004), we use the original test set as the training set, and divide the original
1Our code is available at http://pages.cs.wisc.edu/~sklee/asset/.

PEGASOS is from http://mloss.org/software/view/35/.
2ADULT, MNIST, CCAT and COVTYPE data sets are downloaded from the UCI Repository (Frank and Asuncion,

2010).
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training set into validation and test sets. IJCNN is constructed by a random splitting of the IJCNN

2001 Challenge data set3. In COVTYPE, the binary problem is to classify type 1 against the other

forest cover types. Finally, MNIST-E is an extended set of MNIST, generated with elastic deforma-

tion of the original digits4. Table 3.1 also indicates the values of the regularization parameter λ and

Gaussian kernel parameter σ (3.18) selected by the SVM-Light solver (Joachims, 1999) to maxi-

mize the classification accuracy on each validation set. (For MNIST-E we use the same parameters

as in MNIST.)

For the first five batch-mode tasks, we compare our algorithms against four publicly available

codes. Two of these are the cutting-plane methods referred to by us as CPNY (Joachims et al.,

2009) and CPSP (Joachims and Yu, 2009) that are implemented in the version 3.0 of of SVM-Perf.

Both search for a solution as a linear combination of approximate basis functions, where the ap-

proximation is based on Nyström sampling (CPNY) or on constructing optimal bases (CPSP). The

other two comparison codes are SVM-Light (Joachims, 1999), which solves the dual SVM formu-

lation via a succession of small subproblems, and LASVM (Bordes et al., 2005), which makes a

single pass over the data, selecting pairs of examples to optimize with the SMO algorithm. The

original SVM-Perf (Joachims, 2006) and OCAS (Franc and Sonnenburg, 2008) are not included in

the comparison because they cannot handle nonlinear kernels. For the final test — an online test

with the large data set MNIST-E — we compare our online algorithms ASSETon and ASSET∗
on to

LASVM.

For our codes, the averaging parameter is set to K = m−100 for all experiments, and the error

values are computed using the efficient approximate classification schemes of Section 3.2.4.

3.4.1 Accuracy vs. approximation dimension

The first experiment investigates the effect of the dimension of the approximate kernel on

classification accuracy on the test set. We set the dimension parameter s in Section 3.2.3 to values
3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
4http://leon.bottou.org/papers/loosli-canu-bottou-2006/
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Table 3.1 Data sets and Training Parameters.

Name m (train) valid/test d (density) 1
λm , 1

2σ2

ADULT 32561 8140/8141 123 (11.2%) 1000, 0.001

MNIST 58100 5950/5950 784 (19.1%) 100, 0.01

CCAT 78127 11575/11574 47237 (1.6%) 10, 1.0

IJCNN 113352 14170/14169 22 (56.5%) 100, 1.0

COVTYPE 464809 58102/58101 54 (21.7%) 3.0, 1.0

MNIST-E 1000000 20000/20000 784 (25.6%) 100, 0.01

in the range [2, 1024], with the eigenvalue threshold εn = 10−16. Note that s is an upper bound on

the actual dimension n of approximation for ASSET(∗), but is equal to n in the case of ASSET(∗)
on .

For the batch tasks, we ran our algorithms for 1000 epochs (1000m iterations) so that they

converged to a near-optimal value with small variation among different randomization.

The CPSP and CPNY have a parameter similar to s (as an upper bound of n); we compared

by setting that parameter to the same values as for s. We obtained the baselines of batch tasks by

running SVM-Light. SVM-Light do not have dimension parameters but can be expected to give

the best achievable performance by the kernel-approximate algorithms as s approaches m.

Figure 3.1 shows the results. Since ASSET and ASSET∗ yield very similar results in all exper-

iments, we do not plot ASSET∗. (For the same reason we show only ASSETon for online settings.)

We would expect the codes to perform well when the underlying kernel is well approximated by a

low-dimensional surrogate. When σ in (3.18) is very large, as in Figure 3.2(a) of ADULT data set, all

codes achieve good classification performance for small values of s. In other data sets, the chosen

values of σ are smaller and the intrinsic dimension of the kernel is higher, so classification perfor-

mance continues to improve as s increases. In particular, it is known that linear kernels work as

well as nonlinear kernels on the CCAT. If linear kernels are optimal for CCAT, the optimal Gaussian

kernel may choose a very small value of σ producing near-identity thus high-rank Gram matrix.

ASSETon seems to suffer from approximating the kernel function rather than the kernel matrix;
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the former is generally a more difficult problem. For a given dimension, the overall performance

of ASSETon is worse than other methods, especially in the CCAT experiment.

CPSP generally requires lower dimension than the other methods to achieve the same clas-

sification performance. The power seems to come from the fact that CPSP spends extra time to

construct good basis functions whereas the other methods depend on random sampling. How-

ever, all approximate-kernel methods including CPSP suffer considerably from the restriction in

dimension for the COVTYPE task.

3.4.2 Speed of achieving similar test error

In performing timing comparisons, we ran all codes other than ours with their default stopping

criteria. For ASSET and ASSET∗, we checked the classification error on the test sets ten times

per epoch, terminating when the error matched the performance of CPNY. (Since this code uses a

similar Nyström approximation of the kernel, it is the one most directly comparable with ours in

terms of classification accuracy.) The test error was measured using the iterate averaged over the

100 iterations immediately preceding each reporting point.

Results for the first five data sets are shown in Table 3.2 for the values s = 512 and s = 1024.

(Note that LASVM and SVM-Light do not depend on s and so their results are the same in both

tables.) The shortest time values to achieve similar test accuracy are marked as bold, showing

that our methods are among the fastest in most cases. The best classification errors among the

approximate codes are obtained by CPSP but the runtimes are considerably longer than for our

methods. In fact, if we compare the performance of ASSET with s = 1024 and CPSP with

s = 512, ASSET achieves similar test accuracy to CPSP (except for CCAT) but is faster by a

factor between two and forty. CPNY requires an abnormally long run time on the ADULT data set;

we surmise that the code may be affected by numerical difficulties associated with the highly ill

conditioned kernel for this problem.

Interestingly, ASSET shows similar performance to ASSET∗ despite the less impressive theo-

retical error bound of the former. When the value of regularization parameter λ is near zero, the

objective function loses strong convexity and thereby breaks the condition required for ASSET∗ to
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work. We observe similar slowdown of PEGASOS and SGD when λ approaches zero for linear

kernel SVMs.

3.4.3 Online performance on very large data sets

We take the final data set MNIST-E to be an online learning problem and compare the per-

formance of ASSETon and ASSET∗
on to the online SVM code LASVM. (Other algorithms such

as CPSP, CPNY, and SVM-Light are less suitable for comparison because they operate in batch

mode.) For a fair comparison, we fed the training samples to the algorithms in the same order.

Figure 3.2 shows the progress on a single run of our algorithms, with various approximation

dimensions n in the range [1024, 16384]. Vertical bars in the graphs indicate the completion of

training. ASSETon tends to converge faster and shows smaller test error values than ASSET∗
on,

despite the theoretical slower convergence rate of the former. With n = 16384, ASSETon and

ASSET∗
on required 7.2 hours to finish with a solution of 2.7% and 3.5% test error, respectively.

LASVM produced a better solution with only 0.2% test error, but it required 4.3 days of computa-

tion.

In Table 3.3, we represent the variability of solutions in the single runs of ASSETon and

ASSET∗
on. We sampled ten test errors during the last 10000 iterations, evaluating the error values

after each batch of 1000 iterations using the averaged solution over the 100 iterations immediately

preceding each evaluation point. We also show the average time for the evaluations, and the to-

tal training time averaged over the single runs of ASSETon and ASSET∗
on (these have negligible

variations). The average error and the deviation of ASSETon up to n = 8192 tend to decrease

as the dimension increases; one contributing factor would be that the approximate feature map-

ping approaches to the true function in exponentially increasing probability with the dimension

growth (Rahimi and Recht, 2008). (This phenomenon was not as evident for ASSET∗
on.) We be-

lieve that the variability of stochastic subgradients eventually increases with dimension, leading

to an increased variability in performance, as happens with n = 16384 for ASSETon. Finally

ASSETon seems to produce more accurate classifier than ASSET∗
on with the same level of approx-

imation.
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The testing time depends on the controllable parameter n for our codes but it depends on the

number of support vectors in the computed solution for LASVM (LASVM required 1504 seconds).

3.5 Conclusion

We have proposed a general framework for training support vector machines based on stochas-

tic subgradients. Our algorithms can operate in batch and in online mode, and allows for the use of

nonlinear kernels via kernel approximation and reformulation of the primal form. They do not re-

quire strong convexity. Our methods find solutions of reasonable quality for large problems, often

in much shorter time than existing algorithms. Since the approaches require only (weak) convexity

of the objective function, they can be extended easily to regression, ranking, and other learning

problems.
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Figure 3.1 The effect of the approximation dimension n to the test error. The x-axis shows the
values of the parameter s in logarithmic scale (base 2). For ASSETon, n = s and for the others
n ≤ s. The results from ASSET∗ and ASSET∗

on are omitted since they are very similar to those
from ASSET and ASSETon, respectively.
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Table 3.2 Training CPU time (s:seconds, h:hours) and test error in parentheses. Kernel approximation dimension is varied by
setting s = 512 and s = 1024 for ASSET, ASSET∗, CPSP and CPNY.

Subgradient Methods Cutting-plane Decomposition

s = 512 ASSET ASSET∗ CPSP CPNY LASVM SVM-Light

ADULT 22.5s (15.06%) 23.9s (15.07±0.06%) 3020.0s (15.17%) 8.2h (15.13%) 1011.4s (18.02%) 856.8s (15.13%)

MNIST 96.8s (4.03%) 100.9s (4.03±0.04%) 549.6s (2.72%) 348.0s (4.07%) 587.5s (1.40%) 1322.6s (1.24%)

CCAT 95.0s (8.23%) 99.2s (8.26±0.06%) 799.9s (5.24%) 62.0s (8.31%) 2616.0s (4.71%) 3422.6s (4.72%)

IJCNN 86.7s (1.08%) 89.1s (1.08±0.02%) 726.8s (0.84%) 319.5s (1.1%) 288.1s (0.76%) 1331.3s (0.73%)

COVTYPE 697.2s (18.19%) 585.7s (18.18±0.07%) 1.8h (17.73%) 1841.5s (18.24%) 38.3h (13.46%) 52.7h (13.82%)

s = 1024 ASSET ASSET∗ CPSP CPNY LASVM SVM-Light

ADULT 77.6s (15.10%) 83.2s (15.12±0.04%) 3398.5s (15.16%) 7.5h (15.17%) 1011.4s (18.02%) 856.8s (15.13%)

MNIST 274.9s (2.66%) 275.4s (2.67±0.02%) 1273.2s (2.03%) 515.4s (2.69%) 587.5s (1.40%) 1322.6s (1.24%)

CCAT 264.6s (7.09%) 278.4s (7.11±0.04%) 2949.9s (5.19%) 122.9s (7.15%) 2616.0s (4.71%) 3422.6s (4.72%)

IJCNN 307.1s (0.79%) 297.0s (0.79±0.01%) 1649.4s (0.78%) 598.0s (0.80%) 288.1s (0.76%) 1331.3s (0.73%)

COVTYPE 2259.4s (16.47%) 2063.9s (16.47±0.06%) 4.1h (16.61%) 3597.7s (16.52%) 38.3h (13.46%) 52.7h (13.82%)
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Figure 3.2 Online progress of ASSETon and ASSET∗
on to their completion (MNIST-E).
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Table 3.3 Test error statistics (mean and standard deviation) for the last 10k iterations of online
training (MNIST-E).

Dimension n ASSETon ASSET∗
on

Avg. Time (sec)

Train Test

1024 11.5±0.56% 11.8±0.57% 1705 34

2048 7.2±0.47% 8.1±0.45% 3418 69

4096 4.8±0.33% 5.8±0.54% 6824 139

8192 3.6±0.30% 4.3±1.06% 13375 270

16384 3.0±0.63% 3.5±0.29% 26053 546
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Chapter 4

Decomposition Algorithms for Training Semiparametric SVMs

We describe an approach for solving large-scale semiparametric support vector machines for

regression problems. Most of the approaches proposed to date for large-scale SVMs cannot be

applied to semiparametric problems because of the multiple equality constraints that appear in the

formulation, alongside bound constraints. Our approach uses a decomposition framework, with a

primal-dual algorithm to find an approximate saddle point for the min-max formulation of each

subproblem. We demonstrate that our approach scales well as the number of training examples

grows, and compare with algorithms previously proposed for semiparametric SVMs.

4.1 Introduction

The power of SVM lies in the fact that it does not require the user to define the class of functions

from which the observations might have been generated. In a sense, this is also a weakness, in that

prior knowledge of the function class is often available for use. Semiparametric SVM formulations

introduce parametric components into the model of the classifying / regression function, alongside

the nonparametric contribution. The basis functions in the parametric part of the model can be

chosen to embed prior knowledge and can be used for analyzing the effects of certain covariates,

thus giving semiparametric SVM the potential advantages of both parametric and nonparametric

methods.
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Despite the benefits, semiparametric models have not drawn much attention from the machine

learning community, possibly in part because the optimization problems arising from semipara-

metric SVMs are harder to solve than those generated by standard SVMs. This paper describes

an efficient approach for finding solutions to large-scale semiparametric SVM problems. We fo-

cus on the formulation of semiparametric SVM regression first introduced in Smola et al. (1999),

which gives rise to a dual problem which is a convex quadratic program (QP) with several equality

constraints as well as bound constraints.

4.1.1 Motivation

To motivate our description of solvers for semiparametric SVMs, we discuss first the state of

the art for solvers that tackle the standard SVM dual formulation, which is

min
z

1

2
zTQz + pT z s.t. qT z = 0, 0 ≤ z ≤ c1 , (4.1)

where z, p, q, and 1 := (1, 1, . . . , 1) are column vectors of length n, and c > 0 is a given con-

stant. Many effective algorithms for this problem solve a sequence of subproblems, each of which

updates some subvector of z while leaving the remaining elements unchanged. These algorithms

can be categorized into two distinct groups. In the first group, the subvector is very short, typically

containing just two components. Since the subproblem can be solved analytically for such a small

number of variables, no numerical solver is needed. The subproblems are inexpensive, but many

iterations are usually needed to reach a solution with acceptable quality. Sequential Minimal Op-

timization (SMO) (Platt, 1999) and its variants such as LIBSVM (Chang and Lin, 2009) fall into

this category. In the second group of solvers, the subvectors are longer, requiring the subproblems

to be solved with a QP solver that exploits the structure of the application. Although we face the

burden of designing an efficient, robust QP solver, methods in the second group often show faster

convergence than those in the first group. Successful instances of methods in the second group

include SVM-Light (Joachims, 1999) and GPDT (Serafini et al., 2004; Serafini and Zanni, 2005).

The QP solvers used in the second group can be applied to the full problem, thus solving it in one

“outer” iteration, though this approach is not usually effective for large data sets.
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In general, the methods in both groups discussed above are specialized to handle the single

equality constraint in (4.1) along with the bound constraints. The analytic subproblem solution in

SMO can be acquired only when the subproblem has up to one (or two in case of the modified

SMO (Keerthi and Gilbert, 2002)) equality constraint. The subproblem selection algorithm of

SVM-Light strongly depends upon the existence of a single equality constraint; the same is true of

GPDT, which uses a projection algorithm from Dai and Fletcher (2006). Semiparametric SVMs,

however, require solution of the following generalization of (4.1):

min
z

F (z) :=
1

2
zTQz + pT z s.t. Az = r, 0 ≤ z ≤ c1, (4.2)

where A ∈ RK×n and r ∈ RK , where K ≥ 1 is the number of parametric basis functions that we

wish to include in the model. For semiparametric SVM regression, Smola et al. (1999) proposed

to apply a primal-dual interior point method based on the code LOQO. The size of problems that

can be handled is thus limited by the need to perform a full evaluation of the matrix Q and the

need for repeated factorizations of matrices of about this size. (The approach could however be

used as the inner loop of a decomposition method in the second group discussed above.) Kienzle

and Schölkopf (2005) suggested a Minimal Primal Dual (MPD) algorithm. This algorithm use

a variant of the method of multipliers to formulate a sequence of convex quadratic programs of

dimension n with bound constraints only (no equalities), which are solved by a method that selects

a single component for updating at each iteration. (In this sense, it is akin to the methods in the

first group described above.) We give further details on MPD as we introduce our methods below.

This approach does not scale well as the size n of the problem grows, but its performance can be

improved by embedding it in a decomposition framework, as described below. We include both

MPD and its decomposition variants in our computational tests of Sect. 4.5. In this chapter, we

propose an approach that is related to MPD but that differs in several ways. First, it is a primal-dual

approach; we alternate between steps in a subvector of z and steps in the Lagrange multipliers for

the constraints Az = r. Second, subvectors of z with more than 1 element are allowed. Third, two-

metric gradient projection techniques are used in taking steps in the z components. Throughout, we

take account of the fact that n may be very large, that Q cannot practically be computed and stored

in its entirety, and that operations involving even modest-sized submatrices of Q are expensive.
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We compare our approach computationally with MPD as stand-alone solvers, and also in a

decomposition framework.

The remainder of the chapter is structured as follows. In the next section, we define the semi-

parametric SVM regression problem and show that its dual has the form (4.2). Section 4.3 outlines

the decomposition framework, while Section 4.4 describes the primal-dual method that we propose

for solving the subproblems that arise from decomposition. Section 4.5 presents some computa-

tional results.

4.2 Semiparametric SVM Regression

We consider a regression problem for data {(xi, yi)}mi=1 where xi ∈ RN are feature vectors

and yi ∈ R are outcomes. We wish to find a function h that minimizes ε-insensitive loss function

!ε(h; x, y) := max{0, |y − h(x)| − ε}, while maximizing the margin as in Boser et al. (1992).

Following (Smola et al., 1999; Kienzle and Schölkopf, 2005), we formulate the semiparametric

SVM regression problem as follows:

min
w,β,ξ,ξ∗

1

2
wTw + c

m
∑

i=1

(ξi + ξ
∗
i ) (4.3a)

s.t. yi − 〈w, φ(xi)〉 −
K
∑

j=1

βjψj(xi) ≤ ε+ ξi for i = 1, . . . ,m (4.3b)

〈w, φ(xi)〉+
K
∑

j=1

βjψj(xi)− yi ≤ ε+ ξ∗i for i = 1, . . . ,m (4.3c)

ξ ≥ 0, ξ∗ ≥ 0 . (4.3d)

where φ is a feature mapping function which defines a positive semidefinite kernel κ(xi, xj) :=

〈φ(xi), φ(xj)〉, for all i, j ∈ {1, . . . ,m}, while {ψj}Kj=1 are the basis functions for the parametric

part of the model function. The model function is defined as an extended linear model of parametric

and nonparametric parts, that is, h(x) = 〈w, φ(x)〉 +
∑K

j=1 βjψj(x). We typically have K 4 m.

If K = 1 and ψ1 is a constant function, we recover the standard SVM regression problem.
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The Wolfe-dual of (4.3) has the form (4.2), where

z =





α

α∗



 ∈ R
2m for the dual vectors α and α∗ of (4.3b) and (4.3c), resp.,

p = [ε− y1, . . . , ε− ym, ε+ y1, . . . , ε+ ym]
T ∈ R

2m ,

Qij =











yiyjκ(xi, xj) if 1 ≤ i, j ≤ m, or m+ 1 ≤ i, j ≤ 2m

−yiyjκ(xi, xj) otherwise
,

r = 0 ,

and

A =

















ψ1(x1) · · · ψ1(xm) −ψ1(x1) · · · −ψ1(xm)

ψ2(x1) · · · ψ2(xm) −ψ2(x1) · · · −ψ2(xm)
... . . . ... ... . . . ...

ψK(x1) · · · ψK(xm) −ψK(x1) · · · −ψK(xm)

















∈ R
K×2m .

Introducing η as the Lagrange multipliers for the constraints Az = r in (4.2), the Karush-

Kuhn-Tucker (KKT) optimality conditions for (4.2), stated here for later reference, are as follows:

(

Qz + p+ ATη
)

i
≥ 0 if zi = 0 (4.4a)

(

Qz + p+ ATη
)

i
≤ 0 if zi = c (4.4b)

(

Qz + p+ ATη
)

i
= 0 if zi ∈ (0, c) (4.4c)

Az = r (4.4d)

0 ≤ z ≤ c1 . (4.4e)

If the kernel function κ is positive semidefinite, the Hessian matrix Q of (4.2) is also positive

semidefinite, by definition. Therefore the objective function F (·) of (4.2) is convex, and as we only

have linear constraints, the dual objective of (4.2) is a concave function in terms of the dual variable

η. Therefore the primal-dual pair (z, η) satisfying the conditions in (4.4) is the saddle point of (4.2).
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Moreover, η agrees with β in (4.3) Since η is the double dual variable of β (refer Scholkopf and

Smola (2001) for details.) As our primal-dual solver discussed in Section 4.4 provides the optimal

value of η, there is no need to compute β separately.

4.3 Decomposition Framework

In this section we outline the decomposition strategy, giving details of two key aspects.

4.3.1 Subproblem Definition

The convex quadratic program (4.2) becomes harder to solve as the number of variables n :=

2m grows (where m is the number of data points), as the Hessian Q in (4.2) is dense and poorly

conditioned for typical choices of the kernel function κ. The decomposition framework can alle-

viate these difficulties by working with a subset zB, B ⊂ {1, 2, . . . , n} of the variables at a time,

fixing the other variables zN , N = {1, 2, . . . , n} \B at their current values. We usually choose the

number of elements nB in B to be much smaller than n. By partitioning the data objects p, A, and

Q in the obvious way, we obtain the following subproblem at outer iteration k:

min
zB

f(zB) :=
1

2
zTBQBBzB + (QBN zkN + pB)

T zB (4.5)

s.t. ABzB = −AN zkN + r, 0 ≤ zB ≤ c1,

where zkN contains the current values of the N components. This problem has the same form as

(4.2); we discuss solution methods in Section 4.4.

Since our emphasis in this chapter is computational, we leave a convergence theory for this

decomposition framework for future work. Suffice for the present to make a few remarks. If

B is chosen so that the columns of AB corresponding to components of zB that are away from

their bounds in (4.5) form a full-row-rank matrix, and if appropriate two-sided projections of QBB

are positive definite, then (4.5) has a primal-dual solution (z∗B, η
∗) that corresponds to a solution

(z∗, η∗) = (z∗B, z
∗
N , η∗) of (4.2), when zkN = z∗N . Perturbation results can be used to derive a local

convergence theory, and it may be possible to derive a global theory from appropriate generaliza-

tions of the results in Tseng and Yun (2010).
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4.3.2 Working Set Selection

The selection of working set B at each outer iteration is inspired by the approach of Joachims

(1999), later improved by Serafini and Zanni (2005). The size of the working set is fixed at some

value nB, of which up to nc are allowed to be “fresh” indices while the remainder are carried over

from the current working set. Given the current primal-dual iterate (zk+1, ηk+1), we find the indices

corresponding to the nonzero components di obtained from the following problem:

min
d

(

∇F (zk+1) + (ηk+1)TA
)T

d

s.t.

0 ≤ di ≤ 1 if zk+1
i = 0,

−1 ≤ di ≤ 0 if zk+1
i = c,

−1 ≤ di ≤ 1 if zk+1
i ∈ (0, c),

#{di|di 6= 0} ≤ nc.

(4.6)

Note that the objective function of (4.6) is a linearization of the Lagrangian function of F at the

current primal-dual pair (zk+1, ηk+1). Our approach is motivated by the KKT conditions (4.4), and

indeed can be solved by simply sorting the violations of these conditions. It contrasts with previous

methods (Joachims, 1999; Serafini and Zanni, 2005; Tseng and Yun, 2010), in which the equality

constraints are enforced explicitly in the working set selection subproblem. Our approach has no

requirements on the size of nc, yet it is still effective when ηk+1 is close to the optimal value η∗.

Earlier analysis of decomposition algorithms based on working set selection schemes has been

performed by Lin (2001), who shows linear convergence for the case of a single constraint, under

positive definiteness assumptions on Q. Tseng and Yun (2010) proposed a decomposition frame-

work for a formulation similar to (4.2) that includes multiple equality constraints. They present

a convergence analysis which assumes that the subproblems at each step of decomposition are

solved exactly, although they do not discuss techniques for solving the subproblem. Their working

set selection algorithm requires relatively high complexity (O(K3n2)) in general, compared with

the O(n log n) complexity of our approach.

The (up to) nc new components from (4.6) are augmented to a total of nB entries by adding

indices from the previous working set B according to a certain priority. We choose the indices of the
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Algorithm 4 Decomposition Framework
1: Initialization. Choose an initial point z1 of (4.2) (possibly infeasible), initial guess of the

Lagrange multiplier η1, positive integers nB ≥ K and 0 < nc < nB, and convergence tolerance

tolD. Choose an initial working set B.

2: for k = 1, 2, . . . do

3: Subproblem. Solve the subproblem (4.5) for the current working set B, to obtain solu-

tion zk+1
B together with Lagrange multiplier ηk+1 of the equality constraints. Set zk+1 =

(zk+1
B , zkN ).

4: Gradient Update. Evaluate the gradient of the Lagrangian of (4.2), by incrementally up-

dating ∇F , as indicated here:

∇F (xk+1) + (ηk+1)TA = ∇F (zk) +





QBB

QNB



 (zk+1
B − zkB) + (ηk+1)TA .

5: Convergence Check. If the maximal violation of the KKT conditions (4.4) falls below

tolD, terminate with the primal-dual solution (zk+1, ηk+1).

6: Working Set Update. Find a new working set B as described in Section 4.3.2.

7: end for

off-bounds components (0 < zk+1
i < c) first, and then those of lower and upper bounds. We reduce

nc as the change between two consecutive working sets decreases, as in Serafini and Zanni (2005).

We observe that adaptive reduction of nc provides better convergence of the Lagrange multiplier ηk,

and helps avoid zigzagging between two working sets without making further progress. Adaptive

reduction also helps not to degrade the benefit of optimizing many new components in a single

decomposition step.

Our decomposition framework is summarized in Algorithm 4.
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4.4 Subproblem Solver

Recalling that the decomposition framework requires both a primal solution zB and Lagrange

multipliers η to be obtained for the subproblem (4.5), we consider the following min-max formu-

lation of (4.5):

max
η

min
zB∈Ω

L(zB, η) , (4.7)

where Ω = {z ∈ RnB | 0 ≤ z ≤ c1} and

L(zB, η) := f(zB) + η
T (ABzB + AN zkN − r) .

In this section we describe a primal-dual approach for solving (4.7), in which steps are taken

in zB and η in an alternating fashion. Scalings that include second-order information are applied to

both primal and dual steps. We call the approach PDSG (for “Primal-Dual Scaled Gradient”).

Our approach can be viewed as an extreme variant of the method of multipliers (Bertsekas,

1999), in which we do not attempt to minimize the augmented Lagrangian between updates of the

Lagrange multiplier estimates, but rather take a single step along a partial, scaled, and projected

gradient direction in the primal space. In describing the general form of each iteration, we use

superscripts ! to denote iteration counts, bearing in mind that they refer to the inner iterations

of the decomposition framework (and hence are distinct from the superscripts k of the previous

section, which denote outer iterations).

z,+1
B ← z,B + s(z,B, η

,) (4.8a)

η,+1 ← η, + t(z,+1
B , η,) , (4.8b)

where s(·, ·) and t(·, ·) are steps, defined below. In computational testing, we found PDSG to

be superior to methods more like traditional method-of-multiplier approaches, which would take

multiple steps in zB in between successive steps in η.

Primal Step. In the !-th iteration of the subproblem solver, we choose a small sub-working set

W, ⊂ B containing at most nW elements (where nW is a user-defined parameter), containing those

indices in B that are among the nW most-violated KKT conditions (4.4a)-(4.4c) for the subproblem
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(4.5). We define the further subset W̄, by selecting those indices i ∈ W, that are not at one of their

bounds 0 and c. We then construct the block-diagonal nB × nB matrix H,, as follows:

H,
ij =







































Qij + τδij if i ∈ W̄, and j ∈ W̄,

Qii if i = j and i ∈ W, \ W̄,

∞ if i = j and i /∈ W,

0 otherwise,

(4.9)

where δij = 1 if i = j and 0 otherwise, while τ is a small positive parameter (we use τ = 10−8)

chosen to ensure that the “block” part of H, is numerically nonsingular. Since we apply the inverse

of this matrix to the gradient in computing the step, the components of the matrix-vector product

that correspond to the ∞ entries will evaluate to zero. Specifically, we obtain the search direction

as follows:

d, := z,B − ΠΩ
(

z,B −
(

H,
)−1 ∇zBL(z,B, η,)

)

(4.10)

where ΠΩ(·) is a projection operator to the set Ω, which is trivial to compute since this set is defined

by simple bounds. This is essentially the two-metric gradient projection search direction (Gafni

and Bertsekas, 1984) applied to the subvector defined by W,. Given this direction, the primal step

s from (4.8a) is defined to be

s(z,B, η
,) = α,d

, , (4.11)

where α, ∈ R is the unconstrained minimizer of L(·, η,) along the line segment connecting z,B to

z,B + d,.

Dual Update. The step in the dual variable η is a Newton-like step in the dual objective function

for (4.5), which is

g(η) := min
zB∈Ω

L(zB, η).

This is a piecewise quadratic concave function. Since its second derivative does not exist, we can-

not take a true Newton step. However, we use a slight modification of the procedure in Kienzle
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Algorithm 5 Subproblem solver: PDSG
1: Initialization. Given a index set B, choose initial points z1B and η1. Choose nW such that

1 ≤ nW ≤ nB. Choose small positive convergence tolerance tolS.

2: for ! = 1, 2, . . . do

3: Sub-Working Set Selection. Construct W, (with at most nW elements) and W̄, as de-

scribed above.

4: Primal-Dual Update. Take the primal step according to (4.8a) and (4.11), then the dual

step according to (4.8b) and (4.12).

5: Convergence Check. If the maximal KKT violation of the current primal-dual pair

(z,+1
B , η,+1) is less than tolS, exit.

6: end for

and Schölkopf (2005) to form a diagonal approximation G to this matrix. Their procedure progres-

sively updates G by applying one step of Gauss-Jacobi-like procedure at each iteration of the MPD

optimization scheme. Unlike MPD, our modification estimates G both internally and externally to

the optimization loop. The external estimation ensures us to have an approximation with a certain

quality before performing any dual updates. We refer the reader to Kienzle and Schölkopf (2005)

for additional details. The dual step t in (4.8b) is thus simply

t(z,+1
B , η,) = −G−1∇ηL(z,+1

B , η,). (4.12)

Our subproblem algorithm is summarized in Algorithm 5.

4.5 Experiments

We report on computational experiments that show the intrinsic benefits of the PDSG approach,

as well as the benefits of the decomposition strategy, when applied to a simple semiparametric

SVM regression problem. We compare PDSG with the MPD algorithm of Kienzle and Schölkopf

(2005), which has slightly better performance and lower memory requirement than the interior-

point-based approach used in Smola et al. (1999). We also show the advantage of semiparametric

modeling on a real world problem.
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Implementations. We implemented both the decomposition framework (Algorithm 4) and the

PDSG subproblem solver (Algorithm 5) in C++. The code was developed by modifying the GPDT

code of Serafini et al. (2004)1, and retains many features of this code. Our code caches once-

computed kernel entries for reuse, with the least-recently-used (LRU) replacement strategy. For

efficiency, our subproblem solver exploits warm starting; the most recent values of the primal

and dual variables are used as the starting points in the next invocation of the subproblem solver.

We also implemented the MPD solver (Kienzle and Schölkopf, 2005) in C++, again basing the

implementation on GPDT. Our codes can be invoked either with the decomposition framework, or

in “stand-alone” mode, in which the solver is applied directly to the stated problem.

4.5.1 A Toy Problem

For the semiparametric regression test problem, we choose the modified Mexican hat function

studied in (Smola et al., 1999; Kienzle and Schölkopf, 2005):

ω(x) = sin(x) + sinc (2π(x− 5)) .

To generate data, we sample the function ω at uniform random points xi ∈ R in the interval [0, 10],

making m samples in total. The observations xi’s are corrupted with additive Gaussian noise ζi
with mean 0 and standard deviation 0.2, that is, yi = ω(xi) + ζi. In the training process, we

use Gaussian kernel κ(x, y) = exp(−γ||x − y||2) with γ = 0.25, and set the insensitivity width

ε of the loss function to ε = 0.05, as in Smola et al. (1999). The optimal trade-off parameter

value of c = 0.5 is found by 10-fold cross validation (CV) in Smola et al. (1999) using very

small samples (m = 50). Since we are interested in the convergence behavior of algorithms

with larger samples, we performed computational experiments with c = 0.1, c = 1, and c = 10.

Our model is h(x) = 〈w, φ(x)〉 +
∑K

j=1 βjψj(x), with two basis functions ψ1(x) = sin(x) and

ψ2(x) = sinc (2π(x− 5)) as in Kienzle and Schölkopf (2005).

The size of the sample data set m is varied from 500 to 100000. The subproblem size nB

and the maximum number of new components in each subproblem nc are fixed to 500 and 100,
1GPDT is available at http://mloss.org/software/view/54/
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Figure 4.1 Left plot shows total runtimes using solvers PDSG and MPD in stand-alone mode and
inside of the decomposition framework (D:PDSG and D:MPD) with c = 1. Right plot shows the
total runtimes of D:PDSG (our proposed method) and MPD with different c values. For larger

number of training examples m, updating of the full gradient in Step 3 of Algorithm 4 dominates
the computation, blurring the distinction between PDSG and MPD as subproblem solvers (left
plot). D:PDSG outperforms MPD for all c values tried (right plot). Stand-alone algorithms are

run only for training-set size up to 10000 because of their high computational cost.

respectively, as these values gave good performance on the largest data set. Similarly, we fix the

sub-working set size nW to 2. (We tried various other values between 1 and 25, but 2 was slightly

better than several alternatives.) In each setting, we use a kernel cache of 400MB in size.

Growth of the total runtime of the algorithms with increasing size of the data set is shown in

Figure 4.1. When the decomposition framework is used, the stopping threshold values are set to

tolD = 0.001 and tolS = 0.0005. In stand-alone settings, we set tolS = 0.001. We impose a

slightly tighter threshold on subproblem solvers inside the decomposition framework to reduce the

number of decomposition steps. Outer iterations in the decomposition framework become more

costly as the number of variables increases, mainly because the full gradient update in Step 3 of

Algorithm 4 becomes more expensive. The benefit of using decomposition framework becomes

larger as the data set size grows. For instance, D:PDSG is about 100 times faster than MPD when

m = 10000. In decomposition settings, using PDSG as the inner solver found the solution two to
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three times faster than using MPD as the inner solver on average. Our proposed method D:PDSG

shows quite stable scaling behavior for different values of c.

Convergence and Complexity. The different convergence behavior of PDSG and MPD is illus-

trated in Figure 4.2. Here both solvers are asked to solve a semiparametric regression problem

discussed above with 1000 samples, in stand-alone mode. In the top and middle plots, the dual and

primal infeasibility, respectively, are more rapidly reduced with PDSG than with MPD. (Note that

since we project the iterates zk to the bound constraints set, the KKT condition (4.4e) is always

satisfied.) The bottom plot of Figure 4.2 shows the changes of the first Lagrange multiplier (the

coefficient of the first basis function). In that, MPD is showing the typical behavior of the method

of multipliers: sudden changes are made, but time gaps between such changes are rather large.

In contrast, PDSG keeps making changes to the multiplier, resulting in a faster approach to the

optimal value.

When the sub-working-set size nW is smaller than the working-set size nB of the subproblem

(4.5), PDSG has computational complexity O(KnB), the same as MPD, where K is the number of

equality constraints in (4.2). Dual updates in Algorithm 5 requires O(KnB) operations; all primal

updates are done in O(nB). The effect of increasing K on the total time taken by D:PDSG is shown

in Figure 4.3. We use the basis functions

ψj(x) =











cos(jπx) j = 0, 2, 4, . . .

sin(jπx) j = 1, 3, 5, . . .

and data sets of size m = 1000 randomly sampled from the Mexican hat function. Other settings

are the same as the previous experiment. As expected, we observe linear scaling of total runtime

with K.

4.5.2 Milan Respiratory Illness Data Set

We consider a data set2 from the study on the effect of air pollution on respiratory illness

in Milan, Italy, during 1980–89 (Vigotti et al., 1996). This data set consists of daily records of
2Available at http://www.uow.edu.au/~mwand/webspr/data.html
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Figure 4.2 Convergence of PDSG and MPD in stand-alone mode (Mexican hat, data set size
m=1000). PDSG requires about 2 seconds to reach convergence, whereas MPD takes about 14

seconds. (Top) maximum violation of the dual feasibility conditions (4.4a), (4.4b), (4.4c).
(Middle) maximum violation of the primal equality constraints (4.4d). (Bottom) convergence of

the first Lagrange multiplier to its optimal value of 1. The horizontal axis represents elapsed CPU
time.

environmental conditions and the number of deaths due to respiratory diseases (total 3652 records,

9 features), where the details of the features are shown in Table 4.1.

All features are scaled linearly to the range [0, 1]. We construct a test set by holding out 20%

of randomly chosen records from the data set, using the remaining records for training.

We hypothesize a simple semiparametric model to predict the number of respiratory deaths,

inspired by Vigotti et al. (1996):

hsp(x) = 〈w, φ(x)〉+ β1(xtemp) + β2(xSO2) + β3(xtemp)
2 + β4(xSO2)

2 + β5 ,



89

         


















    














Figure 4.3 Total solution time for D:PDSG with increasing number of equality constraints K.
Measurements are averaged over 10 repetitions with different random data sets (m = 1000)
sampled from the Mexican hat function, and error bars (hardly visible) show the standard
deviations. The time complexity of D:PDSG is O(uKnB) where u is the number of outer

iterations. Solver time appears to increase linearly with K.
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Table 4.1 The features of the Milan air pollution data set.

Feature name Details

day.num Number of days since 31st December, 1979.

day.of.week 1=Mon, 2=Tues, 3=Wed, 4=Thurs, 5=Fri, 6=Sat, 7=Sun.

holiday Indicator of public holiday: 1=public holiday, 0=otherwise.

mean.temp Mean daily temperature in degrees Celsius.

rel.humid Relative humidity.

tot.mort Total number of deaths.

resp.mort Total number of respiratory deaths.

SO2 Measure of sulphur dioxide level in ambient air.

TSP Total suspended particles in ambient air.

where the features xtemp and xSO2 correspond to mean temperature and SO2 level of the day,

respectively. Our purpose is to study how those two elements affect the respiratory illness.

We fit our semiparametric model to the training data, and compare its prediction performance

on the test set to that of a nonparametric model

hnp(x) = 〈w, φ(x)〉+ β1 ,

and a parametric model

hp(x) = β1(xtemp) + β2(xSO2) + β3(xtemp)
2 + β4(xSO2)

2 + β5 .

With Gaussian kernel (γ = 25.0) and ε-insensitive loss function (ε = 0.01), we perform 10-fold

CV on the training set to determine the best balancing parameter c for each of semiparametric and

nonparametric models independently.

The results are shown in Table 4.2. The semiparametric model attained smaller prediction error

on the test set than the nonparametric model, indicating that the embedding of prior knowledge in

hsp while retaining the power of nonparametric approaches is beneficial. Moreover, the parametric
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Table 4.2 Nonparametric and semiparametric regression on Milan data set. The loss penalty
parameter c is determined by cross validation. Comparing the prediction performance on the test

set by mean square error (MSE) values, the semiparametric model performed better than the
nonparametric model by 2.8%. No significant difference of the number of support vectors (SVs)

was found between the two methods.

Model c Fraction of SVs Training Time (s) Test Error (MSE)

Parametric - - 0.22 0.027911

Nonparametric (hnp) 0.025 46.7% 1.17 0.019368

Semiparametric (hsp) 0.01 46.9% 5.35 0.018828

components in the trained semiparametric model

hsp(x) = 〈w∗, φ(x)〉 − 0.30(xtemp) + 0.26(xSO2) + 0.22(xtemp)
2 − 0.07(xSO2)

2 + 0.22

= 〈w∗, φ(x)〉+ 0.22(xtemp − 0.47)2 + 0.26(xSO2)− 0.07(xSO2)
2 + 0.12 .

reveal that (i) deaths are lower in the middle of the temperature range, and (ii) there is an almost

linear increase of death rate with SO2 level. These results broadly agree with the outcomes of

Vigotti et al. (1996), which were acquired from completely different statistical analysis techniques.

It is difficult to perform model interpretation of this type with nonparametric approaches.

4.6 Conclusions

We have presented a new algorithm for semiparametric SVM regression problems, which ex-

tends a number of previous approaches in being able to handle multiple equality constraints. Our

method combines a decomposition framework with a primal-dual scaled gradient solver for the

subproblems. Computational tests indicate that the approach improves on previously proposed

methods.

Future directions include reducing the cost of the full gradient update by using a randomized

sampling procedure for the components of the gradient, as has been tried in a different context in

Shi et al. (2008). While the concept is simple, it is not straightforward to implement this technique



92

in conjunction with caching of kernel entries, which is so important to efficient implementation of

SVM solvers based on QP formulations.
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Chapter 5

Cutting-Plane Methods for SVMs

The cutting-plane methods provide other ways to handle the primal support vector machine

formulations for large amount of data. In these methods, we make use of a special formulation for

which we can create relaxed subproblems. The algorithm proceeds adding violated constraints to

subproblems, until no such constraint can be found. We call these violated constraints as cuts.

For the support vector machines, we derive a cutting-plane formulation using the idea of the

Benders’ reformulation (Benders, 1962). The same cutting-plane formulation is also suggested

by Joachims (2006) independently, but starting from a different perspective. These works have

been extended for monotonic convergence (Franc and Sonnenburg, 2007, 2008) and for nonlinear

kernels (Joachims et al., 2009; Joachims and Yu, 2009). The extensions for nonlinear kernels use

approximations to the kernel functions similar to our techniques for the subgradient methods in

Chapter 3.

In this chapter we present our derivation of the cutting-plane formulation, suggesting some

improvements to an existing method called the optimal cutting plane algorithm (Franc and Son-

nenburg, 2007, 2008). We also present a generalized cutting-plane formulation where multiple

violated cuts, instead of a single cut, can be admitted to a subproblem at a time, speeding up the

procedure by reducing the number of iterations.
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5.1 Introduction

To simplify our discussion, we focus on the primal SVM formulation (1.6) for classification

introduced in Chapter 1, which is

min
w,b,s

1

2
‖w‖2 + c

m

m
∑

i=1

si

s.t. yi(w
Txi + b) ≥ 1− si, i = 1, 2, . . . ,m, (5.1)

si ≥ 0 i = 1, 2, . . . ,m

for the training inputs xi ∈ Rn and their labels yi ∈ {−1,+1}, i = 1, 2, . . . ,m, where w ∈ Rn,

b ∈ R, and s ∈ Rm. We derive a cutting-plane formulation equivalent to (5.1), inspired by the

Benders’ reformulation.

5.1.1 The Benders’ Reformulation

We first discuss the reformulations with special structures, developed by Benders (1962) for

mixed-integer programming problems. This technique is often used to handle complicating con-

straints, considering the dual of complicating variables (Nemhauser and Wolsey, 1988; Wolsey,

1998). In the following mixed-integer program,

z = min
x,y

cTx+ hTy

s.t. Ax+Gy ≥ b (5.2)

x ∈ X ∈ Z
n
+, y ∈ R

p
+

we can regard the integer variables x as complicating variables, because this program would be

a simple linear program without x. In the first step of the reformulation, we suppose that x have

been fixed. The resulting linear program is

zLP(x) = min
y

{hTy | Gy ≥ b− Ax, y ∈ R
p
+}.
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Suppose that this linear program has a bounded optimal solution and G ∈ Rm×p. Then by the

strong duality (Ferris et al., 2007), we have

zLP(x) = max
u

{uT (b− Ax) | GTu ≤ h, u ∈ R
m
+}.

Let us denote by Q the feasible set of the above dual linear program, that is, Q := {u ∈ Rm
+ |

GTu ≤ h}. Then we consider the sets U and V such that

U :=
{

u ∈ R
m
+ | u is an extreme point of Q

}

V :=
{

v ∈ R
m
+ | v is an extreme ray of {u ∈ R

m
+ | GTu ≤ 0}

}

.

Note that if Q is nonempty, V is also the set of extreme rays of Q. Using these definitions and the

strong duality, we can rewrite (5.2) as follows,

z = min
x

{

cTx+max
u∈U

uT (b− Ax) | vT (b− Ax) ≤ 0 ∀v ∈ V , x ∈ X

}

.

This leads to the Benders’ representation of (5.2):

z = min
x,η

η

s.t. η ≥ cTx+ uT (b− Ax) ∀u ∈ U (5.3)

vT (b− Ax) ≤ 0 ∀v ∈ V

x ∈ X, η ∈ R.

The equivalence of (5.2) and (5.3), including the cases when the linear program in (5.2) is infeasible

or has an unbounded optimal value, can be found for example in Nemhauser and Wolsey (1988,

Theorem 7.2).

Solving the Benders’ reformulation (5.3), we often consider relaxed problems composed of a

subset of extreme points and extreme rays, since the formulation typically has a large number of

constraints.

5.1.2 A Reformulation of SVMs

Now we present a reformulation of the support vector machines in (5.1) inspired by Benders’

idea. In the objective of (5.1), we treat s as the ‘complicating’ variable and consider the linear
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program obtained by fixing w and b, that is,

η := min
s≥0

{

1
T s | si ≥ 1− yi(w

Txi + b), i = 1, 2, . . . ,m
}

. (5.4)

We denoted by η the optimal value of the linear program. Since this linear program is always

feasible (the vector s defined by si = max{1 − yi(wTxi + b), 0}, i = 1, . . . ,m, is a typical

feasible point) and the objective is bounded below by zero, η should match with the dual optimal

value by the strong duality. That is,

η = max
0≤u≤1

m
∑

i=1

ui{1− yi(w
Txi + b)}.

For this dual linear program, the set of extreme points is U = {0, 1}m and there is no extreme

ray since the feasible region is a bounded polyhedron. Therefore we can restate (5.1) as follows,

similarly to the Benders’ reformulation (5.3),

min
w,b,η

1

2
‖w‖2 + c

m
η

s.t. η ≥
m
∑

i=1

ui{1− yi(w
Txi + b)}, ∀u ∈ U = {0, 1}m. (5.5)

This formulation has 2m constraints. In the following section, we will consider an algorithm that

constructs relaxed subproblems with a small number of constraints from (5.5).

The same formulation was derived independently by Joachims (2006) from a different perspec-

tive, acquiring (5.5) by aggregating the inequalities of (5.1) and showing the equivalence between

(5.1) and (5.5) afterwards.

5.2 Cutting-Plane Algorithms for SVMs

We discuss the algorithms to obtain the solutions of the cutting-plane formulation (5.5).

5.2.1 A Naive Algorithm

We consider an algorithm with delayed constraints generation, which iteratively solves relaxed

problems consisting of the objective and a subset of the constraints from (5.5).
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We define the cut-defining setD as a subset of the set of extreme points U = {0, 1}m discussed

in Section 5.1.2. Given a set D, the algorithm solves the following relaxed problem characterized

by D in each iteration,

min
w,b,η

φD(w, b, η) :=
1

2
‖w‖2 + c

m
η

s.t. η ≥
m
∑

i=1

di{1− yi(w
Txi + b)}, ∀d ∈ D

η ≥ 0 .

(5.6)

Note that we have added an extra constraint η ≥ 0 for the case when D = ∅. Suppose that the

algorithm obtains wt, bt and ηt at t-th iteration by solving (5.6). If we can find a vector u ∈ U such

that

ηt <
m
∑

i=1

ui{1− yi
(

(wt)Txi + bt
)

}, (5.7)

then we say u defines a cut of (5.5). The algorithm tries to identify the most violated cut by finding

the vector u that maximizes the right hand side of (5.7). For our problem, such u can be computed

analytically by

ui =











1 if 1− yi
(

(wt)Txi + bt
)

> 0

0 otherwise
(5.8)

for i = 1, 2, . . . ,m. We stop the algorithm using a threshold ε > 0 if the maximal constraint

violation
m
∑

i=1

ui

{

1− yi
(

(wt)Txi + bt
)}

− ηt

falls below the specified threshold. Otherwise, we augment the set D with u and repeat the algo-

rithm. We summarize this procedure in Algorithm 6.

The correctness of Algorithm 6 is shown for example in Joachims (2006, Theorem 3). That

is, the algorithm returns a triplet (w, b, η) that produces a better objective value than the optimal

solution triplet (w∗, b∗, η∗) of (5.5), and (w, b, η + ε) is feasible for (5.5). It is also shown that

Algorithm 6 terminates in a finite number of iterations. The upper bounds on the number of itera-

tions until termination appeared as O( 1
ε2 ) in early literature (Tsochantaridis et al., 2005; Joachims,
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Algorithm 6 A Naive Cutting-Plane Algorithm
1: Initialize: D ← ∅.

2: for t = 1, 2, . . . do

3: Solve the relaxed problem (5.6) characterized by D, obtaining wt, bt and ηt.

4: Generate u by (5.8).

5: If
∑m

i=1 ui

{

1− yi
(

(wt)Txi + bt
)}

− ηt ≤ ε, stop the algorithm.

6: Otherwise, D ← D ∪ {u}.

7: end for

2006), and tightened to O(1ε ) later with improved analysis (Teo et al., 2007; Smola et al., 2008).

These upper bounds are independent of the number of training examples m.

5.2.2 Solving the Relaxed Problems

In each iteration of Algorithm 6, we need to obtain the solutions of the relaxed problem (5.6)

characterized by D. For efficient implementation, we prefer to using the dual formulation of (5.6),

since the dual formulation has close proximity to the standard SVM dual formulation (1.9) that has

been studied very well.

To derive the dual formulation, we construct the Lagrangian L of (5.6) introducing dual vari-

ables α ∈ R
|D|
+ and β ∈ R+. To simplify the notation we denote by αd ∈ R+ the element of the

vector α associated with a cut-defining vector d ∈ D.

L =
1

2
‖w‖2 + c

m
η −

∑

d∈D

αd

[

η −
m
∑

i=1

di
{

1− yi(w
Txi + b)

}

]

− βη . (5.9)
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From the KKT conditions we obtain

∇wL = w −
∑

d∈D

αd

m
∑

i=1

diyixi = 0

∇bL =
∑

d∈D

αd

m
∑

i=1

diyi = 0

∇ηL =
c

m
−
∑

d∈D

αd − β = 0

0 ≤ αd ⊥ η −
m
∑

i=1

di{1− yi(w
Txi + b)} ≥ 0, ∀d ∈ D

0 ≤ β ⊥ η ≥ 0 .

Substituting the primal variables w, b, and η in (5.9) using the above equalities leads to the desired

dual formulation,

min
α∈R|D|

1

2

∑

d∈D

∑

d′∈D

αdαd′

m
∑

i=1

m
∑

j=1

did
′
jyiyj〈xi, xj〉 − |D|

∑

d∈D

αd (5.10a)

s.t.
∑

d∈D

αd

m
∑

i=1

diyi = 0 (5.10b)

∑

d∈D

αd ≤
c

m
(5.10c)

αd ≥ 0 ∀d ∈ D . (5.10d)

This is a convex quadratic program similar to the standard SVM dual formulation (1.13), except

for the extra constraint (5.10c). Since we augment the cut-defining set D by a single element in

each iteration of Algorithm 6, the dimension of the dual problem (5.10) is increased by one, and

thus warm-starting would be beneficial for solving the sequence of dual subproblems.

5.2.3 An Improved Cutting-Plane Algorithm

In Algorithm 6, the computation cost of each iteration increases as we add more cuts to the

relaxed problem (5.6). Therefore, it would be a good idea to modify the algorithm so that the
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iterates result in monotonic decrease of the SVM objective, that is,

φ(w, b) :=
1

2
‖w‖2 + c

m

m
∑

i=1

!h(w, b; xi, yi),

where !h is the hinge loss function (1.5) discussed in Chapter 1,

!h(w, b; xi, yi) := max{1− yi(〈w, xi〉+ b), 0}.

Franc and Sonnenburg (2007, 2008) introduced an efficient line-search step with the time com-

plexity of
(

m logm) to generates such iterates. Their algorithm produces a sequence of best-so-far

iterates w1
b , w

2
b , . . . , ensuring that φ(w1

b ), φ(w
2
b ), . . . be a monotonic decreasing sequence. This

modified cutting plane algorithm, called the optimized cutting-plane algorithm for SVMs (OCAS),

is shown in Algorithm 7.

To solve the reduced problems (5.6), OCAS uses a quadratic program solver developed by

Franc and Hlaváč (2006). This solver is based on an active-set method similar to other dual SVM

solvers, and extended to handle the extra constraint (5.10c).

5.2.3.1 Safeguarding

In Algorithm 7, we want to avoid the situation that (wt
b, b

t
b) = (wt−1

b , bt−1
b ), because in that

case there will be no improvement in objective values. Algorithm 7 uses a ‘safeguarding’ heuristic

to avoid such situation, generating cuts using perturbed pairs (w1
c , b

1
c), (w

2
c , b

2
c), . . . , instead of the

best-so-far pairs (w1
b , b

1
b), (w

2
b , b

2
b), . . . . The perturbed pairs are computed by (5.12), controlled by a

parameter λ ∈ (0, 1]. In Franc and Sonnenburg (2008), this heuristic was applied in every iteration

with λ = 0.1 for the experiments.

However, we claim that it is not necessary to perform this heuristic in every iteration. Suppose

that we modify Algorithm 7 so that a user specifies λ0 ∈ (0, 1] instead of λ, and we use λt for

safeguarding as follows,




wt
c

btc



 = (1− λt)





wt
b

btb



+ λt





wt

bt



 . (5.14)

Then we can set λt = λ0 if we want to perform the safeguard, or λt = 0 otherwise.
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Algorithm 7 Optimized Cutting-plane Algorithm (OCAS) (Franc and Sonnenburg, 2007, 2008)

1: Input: Real numbers ε > 0 and λ ∈ (0, 1].

2: Initialize: D ← ∅; w0
b = 0; b0b = 0.

3: for t = 1, 2, . . . do

4: Solve the relaxed problem (5.6) characterized by D, obtaining wt, bt, and ηt.

5: Compute the best so far solution (wt
b, btb) by





wt
b

btb



 = (1− k∗)





wt−1
b

bt−1
b



+ k∗





wt

bt





where k∗ is acquired from a line-search procedure, that is,

k∗ = argmin
k≥0

φ
(

(1− k)wt−1
b + kwt, (1− k)bt−1

b + kbt
)

. (5.11)

6: Compute the cut generation point




wt
c

btc



 = (1− λ)





wt
b

btb



+ λ





wt

bt



 . (5.12)

7: Generate u by

ui =











1 if 1− yi
(

(wt
c)

Txi + btc
)

> 0

0 otherwise
, i = 1, 2, . . . ,m. (5.13)

8: If φ(wt
b, b

t
b)− φD(wt, bt, ηt) ≤ ε|φ(wt

b, b
t
b)|, stop the algorithm.

9: Otherwise, D ← D ∪ {u}.

10: end for

With this modified safeguarding mechanism, we now explain how to avoid the bad situation

that (wt
c, b

t
c) = (wt−1

c , bt−1
c ), in order to guarantee monotonic decrease in the SVM objective values.

In fact, the bad situation happens only when all of the following conditions are satisfied at t-th
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iteration:






















wt−1
c = wt−1

b (i.e., λt−1 = 0),

wt
b = wt−1

b (i.e., k∗ = 0),

wt
c = wt

b (i.e., λt = 0).

This implies that we need to apply the safeguarding (that is, setting λt > 0) only when λt−1 = 0

and the line search step has failed (k∗ = 0) at t-th iteration.

5.2.3.2 Caching and Shrinking

For solving the relaxed dual problem (5.10), we need to compute the Hessian of the objective

denoted by Q ∈ R|D|×|D|. For convenience we use Qdd′ to represent the entry of Q associated with

vectors d and d′ in D. That is,

Qdd′ =

〈

m
∑

i=1

diyixi,
m
∑

j=1

d′jyjxj

〉

∀d, d′ ∈ D.

In each iteration of Algorithm 7, the cardinality of the cut-defining set D increases by one. Suppose

that in the previous iteration we have stored the Hessian Q of the relaxed dual problem and created

a new cut defined by a vector u ∈ U . To solve the relaxed problem in the current iteration defined

with D ∪ {u}, we have to augment the matrix Q by one column and one row. If we have stored

the sum of vectors
∑m

i=1 diyixi for all d ∈ D, the cost of augmentation becomes O (n(m+ |D|)).

For xi ∈ Rn, the cost consists of O(mn) operations to compute
∑m

i=1 uiyixi for u, and O(n|D|)

for inner product computations.

However, the subproblem solver (Franc and Hlaváč, 2006) usually does not reference all entries

of Q. Also, the storage requirement for Q grows quadratically with |D|. Therefore we suggest

using a cache with least-recently-used (LRU) replacement strategy to store once computed and

recently referenced entries of Q for reuse, instead of storing the entire matrix Q. In our caching

scheme, we store the columns of Q corresponding to active dual variables. We augment the cached

columns whenever the size of D is increased.

We also suggest a shrinking strategy for efficient implementation, which is similar to the shrink-

ing heuristic in SVM-Light (Joachims, 1999). With shrinking, we ignore some of the cut-defining
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vectors in D that have been inactive for a certain period of time. As a result the size of subproblems

can be decreased, possibly speeding up the entire algorithm. We periodically check the status of

the ignored cuts and put them back into consideration if they become active again.

5.2.4 Multiple-cut Generation Approaches

In each iteration of Algorithm 7, we compute a vector u ∈ U using (5.13) that characterizes

the most violated constraint. This step requires to evaluate the following expression for all training

examples,

1− yi((w
t
c)

Txi + btc) i = 1, . . . ,m , (5.15)

for the current cut-generation points wt
c and btc. The time complexity of this step is O(mn), which

is rather costly to generate a single cut.

We propose an extended cutting-plane algorithm that generates multiple cuts per iteration rather

than a single cut. This algorithm uses the same output from (5.15) to generate multiple cuts. By

adding multiple cuts, we can obtain more restricted subproblems, possibly reducing the number of

subproblems we need to create until we find a solution.

5.2.4.1 Formulations

To derive a multiple-cut formulation, we consider nonoverlapping and nonempty partitions

P1,P2, . . . ,PP of the index set {1, 2, . . . ,m}. We define the cut-defining sets associated with the

partitions by

Dk := {0, 1}|Pk|, k = 1, 2, . . . , P.

Recall that in Section 5.1.2 we reformulated SVMs as follows using the Benders’ representation,

min
w,b,η

1

2
‖w‖2 + c

m
η

s.t. η = max
0≤u≤1

m
∑

i=1

ui{1− yi(w
Txi + b)}.

(5.16)
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We focus on the fact that the maximization in the second line is separable over the partitions. Let

us denote by uPk
the subvector of u ∈ {0, 1}m corresponding to the partition Pk, and define

ηk := max
0≤uPk

≤1

∑

i∈Pk

ui{1− yi(w
Txi + b)}, k = 1, 2, . . . , P,

so that η =
∑P

k=1 ηk. Then we can write an equivalent formulation of (5.16) using partitions,

min
w,b,η1,η2,...,ηP

1

2
‖w‖2 + c

m

P
∑

k=1

ηk

s.t. ηk ≥
∑

i∈Pk

ui

{

1− yi(w
Txi + b)

}

, ∀u ∈ U , k = 1, 2, . . . , P.

This leads to a relaxed formulation characterized by the cut-defining sets D1,D2, . . . ,DP ,

min
w,b,η1,...,ηP

φD1,...,DP
(w, b, η1, . . . , ηP ) :=

1

2
‖w‖2 + c

m

P
∑

k=1

ηk

s.t. ηk ≥
|Pk|
∑

i=1

dki
{

1− yi(w
Txi + b)

}

, ∀dk ∈ Dk, k = 1, 2, . . . , P, (5.17)

ηk ≥ 0, k = 1, 2, . . . , P .

Note that this formulation reverts to the single-cut formulation (5.5) when P = 1 and P1 =

{1, 2, . . . ,m}. If we choose P > 1 and partitions of equal sizes, that is, |Pk| = O(m/P ), then the

number of constraints in (5.17) is bounded by O(P2m/P ). This is much smaller than the number

of constraints O(2m) in the single-cut formulation.

To derive the dual formulation of (5.17), we consider the Lagrangian L introducing dual vari-

ables αdk ∈ R+, k = 1, 2, . . . , P , and β ∈ RP
+:

L =
1

2
‖w‖2 + c

m

P
∑

k=1

ηk −
P
∑

k=1

βkηk

−
P
∑

k=1

∑

dk∈Dk

αdk



ηk −
|Pk|
∑

i=1

dki
{

1− yi(w
Txi + b)

}



 .
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From the KKT conditions we have

∇wL = w −
P
∑

k=1

∑

dk∈Dk

αdk

|Pk|
∑

i=1

dki yixi = 0

∇bL = −
P
∑

k=1

∑

dk∈Dk

αdk

|Pk|
∑

i=1

dki yi = 0

∇ηkL =
c

m
− βk −

∑

dk∈Dk

αdk = 0

0 ≤ αdk ⊥ ηk −
|Pk|
∑

i=1

dki
{

1− yi(w
Txi + b)

}

≥ 0, ∀dk ∈ Dk, k = 1, 2, . . . , P,

0 ≤ βk ⊥ ηk ≥ 0 k = 1, 2, . . . , P .

Substituting the primal variables in L using the above equalities leads to the dual formulation,

min
α

1

2

P
∑

k=1

P
∑

,=1

∑

dk∈Dk

∑

d!∈D!

αdkαd!

|Pk|
∑

i=1

|P!|
∑

j=1

dki d
,
jyiyj〈xi, xj〉 −

P
∑

k=1

|Pk|
∑

dk∈Dk

αdk

s.t.
P
∑

k=1

∑

dk∈Dk

αdk

|Pk|
∑

i=1

dki yi = 0, (5.18)

∑

dk∈Dk

αdk ≤ c

m
, k = 1, 2, . . . , P,

αdk ≥ 0, k = 1, 2, . . . , P .

The minimization is over the vector α ∈ R
∑P

k=1 |Dk| that is defined by

α := (αd1,1 , αd1,2 , . . . , αd1,|D1| , αd2,1 , . . . , αd2,|D2| , . . . , αdP,1 , . . . , αdP,|DP |)T

where we enumerate the elements of Dk by dk,1, dk,2, . . . , dk,|Dk|. This formulation is very similar

to the dual of the single-cut relaxed problem (5.10). In Algorithm 8, we present our cutting-

plane algorithm that generates multiple cuts per iteration and performs the modified safeguarding

mechanism discussed in Section 5.2.3.1.
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Algorithm 8Multiple Cutting-Plane Algorithm (MCPA)

1: Input:

• Real numbers ε > 0 and λ0 ∈ (0, 1].

• The partitions P1,P2, . . . ,PP of the training example indices {1, 2, . . . ,m}.

2: Initialize: Dk ← ∅, k = 1, 2, . . . , P ; w0
b = 0; b0b = 0.

3: for t = 1, 2, . . . do

4: Solve the relaxed problem (5.17) characterized by D, obtaining ηt1, . . . , ηtP , wt, and bt.

5: Compute the best so far solution (wt
b, btb) by





wt
b

btb



 = (1− k∗)





wt−1
b

bt−1
b



+ k∗





wt

bt



 , where

k∗ = argmin
k≥0

φ
(

(1− k)wt−1
b + kwt, (1− k)bt−1

b + kbt
)

.

6: Determine the safeguard parameter λt =











λ0 if λt−1 = 0 and k∗ = 0,

0 otherwise.
7: Compute the cut generation point





wt
c

btc



 = (1− λt)





wt
b

btb



+ λt





wt

bt



 ,

8: For k = 1, 2, . . . , P , generate uk ∈ {0, 1}|Pk| by

uk
i =











1 if 1− yi
(

(wt
c)

Txi + btc
)

> 0

0 otherwise
, ∀i ∈ Pk. (5.19)

9: If φ(wt
b, b

t
b)− φD1,...,DP

(wt, bt, ηt1, . . . , η
t
P ) ≤ ε|φ(wt

b, b
t
b)|, stop the algorithm.

10: Otherwise, update Dk ← Dk ∪ {uk} for k = 1, 2, . . . , P .

11: end for
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5.3 Experiments

We benchmark the performance of our multiple-cut generation algorithm in Algorithm 8, com-

paring it to the single-cut algorithm OCAS in Algorithm 7. We call our implementation as MCPA,

which is based on the open-source OCAS code1. We also implement the kernel cache and the

shrinking heuristic in Section 5.2.3.2.

For training SVMs, we use three binary classification data sets summarized in Table 5.1 from

the UCI machine learning repository (Frank and Asuncion, 2010). We classify: the digits 0-4 from

5-9 with MNIST; the texts with with ‘ccat’ category from others with CCAT; and the forest of type 1

from others with COVTYPE data set. For more details, we refer to Section 3.4. The table also shows

the tuning parameters c/m determined by using separate validation sets.

For all experiment, we set the stopping threshold ε to 10−2 and the size of kernel cache to

512MB. For shrinking, we ignore the cuts that have been inactive for five consecutive iterations,

testing them for reactivation in every 50 iterations.

Table 5.1 Benchmark Data Sets.

Name m (train) valid/test set size dimension n (density) c/m

MNIST 58100 5950/5950 784 (19.1%) 1.0

CCAT 78127 11575/11575 47237 (1.6%) 0.01

COVTYPE 464809 57102/57101 54 (21.7%) 3.0

5.3.1 Comparison of the Safeguarding Mechanisms

We first test our modified safeguarding mechanism discussed in Section 5.2.3.1. For the bench-

mark data sets, we compared the total number of iterations and training time between MCPA with

P = 1 and OCAS. (OCAS uses the original safeguarding heuristic.) The results in Table 5.2
1Available at http://cmp.felk.cvut.cz/~xfrancv/ocas/html/
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Table 5.2 Comparison of safeguarding mechanisms. The total number of iterations and training
time in seconds (in parentheses) of MCPA with P = 1 and OCAS are shown for three benchmark

data sets.

Data set

No. iterations (cputime:sec)

OCAS
MCPA MCPA

(no shrinking) (with shrinking)

MNIST 150 (8.50) 105 (5.35) 109 (5.54)

CCAT 8 (0.43) 7 (0.37) 7 (0.38)

COVTYPE 83 (7.48) 64 (5.43) 66 (5.65)

indicate that the modified heuristic in MCPA is beneficial for reducing the total number of iter-

ations and training time. With shrinking, MCPA spent little more iterations than MCPA without

shrinking, but the numbers were still smaller than those of the OCAS algorithm.

5.3.2 The Effect of Multiple Cut Generation

To investigate the effect of generating multiple cuts, we varied the number of partitions P in the

range of [1, 100], measuring the number of iterations and total cputime until convergence. We note

that when P = 1, MCPA becomes almost identical to OCAS, except for the modified safeguarding,

kernel caching, and shrinking mechanisms. For the experiment we used three variants of MCPA:

MCPA with both kernel caching and shrinking, MCPA with caching but no shrinking, and MCPA

without any of the two features.

The results are reported in Figure 5.1. We can observe that the number of iterations decreases as

we generate more cuts per iteration. However, the total cputime does not always decrease with the

increment of P . The reason is that the size of relaxed problems grows faster as we add more cuts

in each iteration. The best runtime of MCPA was acquired with small number of partitions overall.

We expected that the runtime with larger P values would be reduced further by more aggressive

shrinking. To check the claim, we tried shrinking with ignoring cuts if they were inactive for two

iterations, testing them for revival in every tenth iteration. The result is shown in Figure 5.2. We
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Figure 5.1 The total runtime (left) and the number of iterations (right) of MCPA, varying the
number of partitions P , for the benchmark data sets MNIST, CCAT, and COVTYPE. Three variants of

MCPA are presented in the plots: MCPA with both kernel caching and shrinking, MCPA with
caching but no shrinking, and MCPA without any of the two features.
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can observe that our algorithm performs better with multiple cuts for MNIST and COVTYPE. For

CCAT it seemed to be hard to reduce the size of subproblems effectively with shrinking, since the

algorithm terminated with very few iterations.

5.4 Conclusion

In this chapter we presented cutting-plane formulations for SVMs and a multiple-cut generation

algorithm with improved features. When we change the number of cuts to be added in iterations,

there happens a trade-off between the total number of iterations and the size of subproblems, where

the latter can be reduced by shrinking mechanisms.

We expect that multiple-cut approaches will be more useful on platforms such as graphical

processing units (GPUs), that have many but simple computation units with relatively small mem-

ory. The cut-generation task for each partition is simple to parallelize and depends on a subset of

training data which would fit into the memory of GPUs. More research on subproblem solvers and

shrinking mechanisms would be necessary, however.
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Figure 5.2 The total runtime (left) and the number of iterations (right) of MCPA with aggressive
shrinking, varying the number of partitions P for the benchmark data sets MNIST, CCAT, and

COVTYPE. We also show the results from OCAS for comparison, where OCAS always uses P = 1
(the values are duplicated for other P values).
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APPENDIX
Details for Chapter 2

A.1 Strong Minimizer Property

In this section we show that Theorem 2.5 is true, based on the results from manifold analysis.

Our proof is similar to the proof of Wright (2010, Theorem 2.5) but simpler. We first state an

elementary result on manifold characterization, which is proved in Vaisman (1984, Sections 1.4-

1.5) and Wright (2010, Appendix A.).

Lemma A.1 Let the manifold M ⊂ Rn containing z̄ be characterized by a Cp (p ≥ 2) function

H : Rn → Rk. Then there is ȳ ∈ Rn−k and a Cp function G mapping some neighborhood of ȳ to

Rn such that G(y) ∈ M for all y near ȳ. Moreover, G(y)− z̄ = Y (y − ȳ) + O(‖y − ȳ‖2), where

Y ∈ Rn×(n−k) is an orthonormal matrix whose columns span the tangent space to M at z̄.

The next result from Wright (2010) shows how perturbations from a point at which the objective

function is partly smooth can be decomposed according to the manifold characterization above.

Lemma A.2 Let the manifold M ⊂ Rn be characterized in a neighborhood of z̄ ∈ M by Cp

mappings H : Rn → Rk and G : Rn−k → Rn and the point ȳ described in Lemma A.1. Then for

all z near z̄, there are unique vectors y ∈ Rn−k and v ∈ Rk with ‖(yT − ȳT , vT )‖ = O(‖z − z̄‖)

such that z = G(y) +∇H(z̄)v.

We also make use of a result from Wright (2010, Lemma A.1).

Lemma A.3 Consider a function ϕ : Rn → R, a point z̄ ∈ Rn, and a manifold M containing z̄

such that ϕ is partly smooth at z̄ with respect to M. If the nondegeneracy condition 0 ∈ ri ∂ϕ(z̄)
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holds, then there exists ε > 0 such that

sup
g∈∂ϕ(z̄)

〈g, d〉 ≥ ε‖d‖, ∀d ∈ NM(z̄).

Now we assume that the following conditions of Theorem 2.5 hold:

(i) φ is partly smooth at w∗ relative to the optimal manifold M.

(ii) w∗ is a strong local minimizer of φ|M with the modulus cM > 0 and radius rM > 0, and

(iii) the nondegeneracy condition (2.11) holds at w∗.

For the minimizer w∗ of (2.1) and the optimal manifold M containing w∗, we consider the map-

pings H and G, the matrix Y , and the point ȳ = y∗ ∈ Rn−k satisfying Lemma A.1 and Lemma A.2,

associated with z̄ = w∗ ∈ Rn. From Lemma A.2, for all w satisfying ‖w − w∗‖ ≤ r̄ ≤ rM with

small enough r̄ > 0, we can find unique vectors y ∈ Rn−k and v ∈ Rk with ‖(yT − ȳT , vT )‖ =

O(‖w − w∗‖) such that w = G(y) +∇H(w∗)v. Therefore we have

φ(w)− φ(w∗) = [φ(G(y) +∇H(w∗)v)− φ(G(y))]− [φ(G(y))− φ(w∗)] . (A.1)

From the assumption (ii) above, the strong local minimizer property relative to M, for the second

bracketed term we have

φ(G(y))− φ(w∗) = φ|M(G(y))− φ|M(w∗) ≥ cM‖G(y)− w∗‖2 (A.2)

for all y near y∗.

Now we consider the first bracketed term of (A.1). From Lemma A.3, we have ε > 0 such that

supg∈∂φ(w∗)〈g, d〉 ≥ ε‖d‖ for all d ∈ NM(w∗). From the sub-continuity property (iv) from Defi-

nition 2.4, we can choose a neighborhood of w∗ sufficiently small that for all g ∈ ∂φ(w∗), there

exists ĝ ∈ ∂φ(G(y)) such that ‖ĝ − g‖ ≤ ε/2. These facts, with the convexity of φ, lead to for all

y near y∗ and v that

φ(G(y) +∇H(w∗)v)− φ(G(y)) ≥ sup
ĝ∈φ(G(y))

〈ĝ,∇H(w∗)v〉

≥ sup
g∈∂φ(w∗)

〈g,∇H(w∗)v〉 − (ε/2)‖∇H(w∗)v‖

≥ ε‖∇H(w∗)v‖ − (ε/2)‖∇H(w∗)v‖.
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Together with (A.1) and (A.2), we have

φ(w)− φ(w∗) ≥ (ε/2)‖∇H(w∗)v‖+ cM‖G(y)− w∗‖2.

By further reducing r̄ if necessary, we can choose the neighborhood of w∗ small enough to ensure

that ‖∇H(w∗)v‖ ≤ 1, and therefore

φ(w)− φ(w∗) ≥ (ε/2)‖∇H(w∗)v‖2 + cM‖G(y)− w∗‖2

≥ min(ε/2, cM)
[

‖∇H(w∗)v‖2 + ‖G(y)− w∗‖2
]

≥ 1

2
min(ε/2, cM) [‖∇H(w∗)v‖+ ‖G(y)− w∗‖]2

≥ 1

2
min(ε/2, cM)‖w − w∗‖2,

showing that w∗ indeed is the strong local minimizer of φ, without the restriction to the manifold

M, with the modulus c := min(ε/2, cM) and the radius r̄.

A.2 Properties of the RDA Algorithm

In this section we provides the analyses for the results discussed in Section 2.3, regarding the

iterates generated by the RDA algorithm under our assumptions.

A.2.1 Expected Error Bounds of the Iterates

First we prove Theorem 2.9, which provides the bounds of the expected errors in the iterates

generated by the RDA algorithm. For the general convex case, with βt = γ
√
t, we consider the
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expected regret up to time t with respect to w∗, and obtain

ERt(w
∗) = E

[

t
∑

j=1

(F (wj; ξj) + Ψ(wj))−
t
∑

j=1

(F (w∗; ξj) + Ψ(w
∗))

]

=
t
∑

j=1

E
[

E
{

(F (wj; ξj) + Ψ(wj)− F (w∗; ξj)− Ψ(w∗)) | ξ[j−1]

}]

=
t
∑

j=1

E [f(wj) + Ψ(wj)− f(w∗)− Ψ(w∗)]

=
t
∑

j=1

E [φ(wj)− φ(w∗)] . (A.3)

Noting that I(‖wj−w∗‖≤r̄) + I(‖wj−w∗|>r̄) = 1, we can split the right-hand side into two sums and

obtain

ERt(w
∗) =

t
∑

j=1

E
[

I(‖wj−w∗‖≤r̄){φ(wj)− φ(w∗)}
]

+
t
∑

j=1

E
[

I(‖wj−w∗‖>r̄){φ(wj)− φ(w∗)}
]

. (A.4)

Note that both terms on the right-hand side of (A.4) are nonnegative. For the first term, we have

by using the regret bound (2.20) and the strong local minimizer property (2.13) that
(

γD2 +
G2

γ

)

t1/2 ≥ ERt(w
∗)

≥
t
∑

j=1

E
[

I(‖wj−w∗‖≤r̄){φ(wj)− φ(w∗)}
]

≥ c
t
∑

j=1

E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

,
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proving the first inequality (2.22a). For the second inequality, we have from (A.4), the regret bound

(2.20), and Corollary 2.6 that
(

γD2 +
G2

γ

)

t1/2 ≥ ERt(w
∗)

≥
t
∑

j=1

E
[

I(‖wj−w∗‖>r̄){φ(wj)− φ(w∗)}
]

≥ cr̄
t
∑

j=1

E
[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

,

thus proving (2.22b).

For the strongly convex objective with βt = σ(1+ ln t), we apply the other regret bound (2.21)

to (A.3), resulting in
(

σD2 +
G2

2σ

)

(1 + ln t) ≥ ERt(w
∗)

≥
t
∑

j=1

E{φ(wj)− φ(w∗)}

≥ min(c, σ/2)
t
∑

j=1

E‖wj − w∗‖2,

where for the last inequality we use the fact that w∗ is a (global) strong minimizer with the modulus

min(c, σ/2), as shown in Corollary 2.7. This proves (2.23).

For the general convex cases, the following result combines the two inequalities (2.22a) and

(2.22b) into one which will be more handy in later discussion.

Corollary A.4 Under the assumptions of Theorem 2.9 with general convex objective and βt =

γ
√
t, we have

1

t

t
∑

j=1

E‖wj − w∗‖ ≤ µt−1/4 (A.5)

for the constant µ defined in (2.24a):

µ :=
1√
c

(

γD2 +
G2

γ

)1/2
[

1 +
1

r̄
√
c

(

γD2 +
G2

γ

)1/2
]

.
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Moreover, for strongly convex objective with βt = σ(1 + ln t), we have

1

t

t
∑

j=1

E‖wj − w∗‖ ≤ µ′
(

1 + ln t

t

)1/2

(A.6)

for the constant µ′ defined in (2.24b):

µ′ :=
1

√

min(c, σ/2)

(

σD2 +
G2

2σ

)1/2

.

Proof We start with the general convex case. From the Cauchy-Schwartz inequality ‖z‖1 ≤
√
m‖z‖2 for a vector z ∈ Rm and Jensen’s inequality, we have

1

t

t
∑

j=1

E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖
]

≤
√
t

t

[

t
∑

j=1

{

E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖
]

}2
]1/2

≤
[

1

t

t
∑

j=1

E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖2
]

]1/2

≤ 1√
c

(

γD2 +
G2

γ

)1/2

t−1/4

where the last inequality is from (2.22a). Together with (2.22b), this leads to

1

t

t
∑

j=1

E‖wj − w∗‖

=
1

t

t
∑

j=1

E
[

I(‖wj−w∗‖≤r̄)‖wj − w∗‖
]

+
1

t

t
∑

j=1

E
[

I(‖wj−w∗‖>r̄)‖wj − w∗‖
]

≤ 1√
c

(

γD2 +
G2

γ

)1/2

t−1/4 +
1

r̄c

(

γD2 +
G2

γ

)

t−1/2

≤ µt−1/4,

for µ defined in (2.24a).

For the strongly convex case, again using Cauchy-Schwarz and Jensen’s inequalities we have

1

t

t
∑

j=1

E‖wj − w∗‖ ≤
[

1

t

t
∑

j=1

{E‖wj − w∗‖}2
]1/2

≤
[

1

t

t
∑

j=1

E‖wj − w∗‖2
]1/2

.
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Applying the bound in (2.23) to the last line leads to (A.6).

A.2.2 Properties of the Dual Average

Theorem 2.11 is one of our key results in Chapter 2 which reveals important properties of the

dual average; in this section we show how the result is acquired, basing the expected error bounds

in the iterates discussed above. For the general convex case, we have

(i) ‖Eḡt −∇f(w∗)‖ ≤ Lµt−1/4

(ii) trΣt ≤ 4G (G+ 4Lµ) t−1/4.

And for the strongly convex case, we have:

(i’) ‖Eḡt −∇f(w∗)‖ ≤ Lµ′ (1+ln t
t

)1/2

(ii’) trΣt ≤ 4G(G+ 4Lµ′)
(

1+ln t
t

)1/2

where the constants µ and µ′ are defined as follows,

µ =
1√
c

(

γD2 +
G2

γ

)1/2
[

1 +
1

r̄
√
c

(

γD2 +
G2

γ

)1/2
]

,

µ′ =
1

√

min(c, σ/2)

(

σD2 +
G2

2σ

)1/2

.

We first examine (i), noting that wj = wj(ξ[j−1]) is independent of the future random variables

ξj, ξj+1, . . . , ξt. Then

E[ḡt] =
1

t

t
∑

j=1

E[∇F (wj; ξj)]

=
1

t

t
∑

j=1

E
[

Ej[∇F (wj; ξj) | ξ[j−1]]
]

=
1

t

t
∑

j=1

E∇f(wj) by (2.8)

= ∇f(w∗) +
1

t

t
∑

j=1

Evj, where vj := ∇f(wj)−∇f(w∗).
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From Lemma 2.2, we have ‖vj‖ ≤ L‖wj − w∗‖ for j = 1, 2, . . . , t, so that

‖E[ḡt]−∇f(w∗)‖ =

∥

∥

∥

∥

∥

1

t

t
∑

j=1

Evj

∥

∥

∥

∥

∥

≤ 1

t

t
∑

j=1

‖Evj‖

≤ 1

t

t
∑

j=1

E‖vj‖ by Lemma 2.1

≤ L

t

t
∑

j=1

E‖wj − w∗‖

≤ Lµt−1/4 by (A.5), (A.7)

proving (i). For the corresponding strongly convex case (i’), instead of (A.7) we use

‖E[ḡt]−∇f(w∗)‖ =

∥

∥

∥

∥

∥

1

t

t
∑

j=1

Evj

∥

∥

∥

∥

∥

≤ 1

t

t
∑

j=1

E‖vj‖ by Lemma 2.1

≤ L

t

t
∑

j=1

E‖wj − w∗‖

≤ Lµ′
(

1 + ln t

t

)1/2

by (A.6). (A.8)
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Next, for (ii), we observe that

ḡt − Eḡt

=
1

t

t
∑

j=1

(∇F (wj; ξj)− E∇F (wj; ξj))

=
1

t

t
∑

j=1

(

∇F (wj; ξj)− E
[

E[∇F (wj; ξj) | ξ[j−1]]
])

=
1

t

t
∑

j=1

(∇F (wj; ξj)− E∇f(wj))

=
1

t

t
∑

j=1

(

{∇F (w∗; ξj)−∇f(w∗)}

+ {∇F (wj; ξj)−∇F (w∗; ξj)} − E{∇f(wj)−∇f(w∗)}
)

=
1

t

t
∑

j=1

(ϕj + ϑj)

where we have defined

ϕj := ∇F (w∗; ξj)−∇f(w∗),

ϑj := ∇F (wj; ξj)−∇F (w∗; ξj)− E{∇f(wj)−∇f(w∗)}.

We now derive bounds on ϕj and ϑj . Note first that ϕj = ϕj(ξj) and wj = wj(ξ[j]). By unbiased-

ness, the assumption (2.16), the triangle inequality, and Lemma 2.1, we have

Eϕj = E[∇F (w∗; ξj)−∇f(w∗)] = 0, (A.9)

‖ϕj‖ ≤ ‖∇F (w∗; ξj)‖+ ‖∇f(w∗)‖

= ‖∇F (w∗; ξj)‖+ ‖E∇F (w∗; ξj)‖

≤ ‖∇F (w∗; ξj)‖+ E‖∇F (w∗; ξj)‖ ≤ 2G. (A.10)

For ϑj , we have from (2.9) and Lemma 2.2, and the triangle inequality and Lemma 2.1, that

‖ϑj‖ ≤ ‖∇F (wj; ξj)−∇F (w∗; ξj)‖+ ‖E(∇f(wj)−∇f(w∗))‖

≤ ‖∇F (wj; ξj)−∇F (w∗; ξj)‖+ E‖∇f(wj)−∇f(w∗)‖

≤ L (‖wj − w∗‖+ E‖wj − w∗‖) . (A.11)
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On the other hand, using (2.16) we have (with unbiasedness (2.8) and Lemma 2.1),

‖ϑj‖ ≤ ‖∇F (wj; ξj)‖+ ‖∇F (w∗; ξj)‖+ ‖E∇f(wj)‖+ ‖∇f(w∗)‖

≤ ‖∇F (wj; ξj)‖+ ‖∇F (w∗; ξj)‖+ ‖E∇F (wj; ξj)‖+ ‖Ej∇F (w∗; ξj)‖

≤ ‖∇F (wj; ξj)‖+ ‖∇F (w∗; ξj)‖+ E‖∇F (wj; ξj)‖+ E‖∇F (w∗; ξj)‖

≤ 4G (A.12)

Focusing on the trace of Σt, we have

t2(trΣt) = t2
n
∑

,=1

Σt
,,

= E

t
∑

j=1

n
∑

,=1

[ϕj]
2
, +

n
∑

,=1

∑

j -=k

E([ϕj ],[ϕk],)

+ E
∑

j,k

(

n
∑

,=1

[ϕj],[ϑk], +
n
∑

,=1

[ϑj],[ϕk], +
n
∑

,=1

[ϑj],[ϑk],

)

. (A.13)

Each term of (A.13) can be bounded as follows, using (A.9), (A.10), (A.11) and (A.12) as required:

(a)
n
∑

,=1

[ϕj ]
2
, = ‖ϕj‖2 ≤ 4G2,

(b) E([ϕj ],[ϕk],) = [E(ϕjϕk)], = [Eϕj],[Eϕk], = 0, for j 6= k,

(c)
n
∑

,=1

[ϕj ],[ϑk], ≤ ‖ϕj‖‖ϑk‖ ≤ 2GL (‖wk − w∗‖+ E‖wk − w∗‖) ,

n
∑

,=1

[ϑj],[ϕk], ≤ ‖ϑj‖‖ϕk‖ ≤ 2GL (‖wj − w∗‖+ E‖wj − w∗‖) ,

(d)
n
∑

,=1

[ϑj],[ϑk], ≤ ‖ϑj‖‖ϑk‖ ≤ 4GL (‖wj − w∗‖+ E‖wj − w∗‖) .

Bound (a) uses (A.10). (b) uses (A.9) and independence of ξj and ξk, for j 6= k. (c) uses the

Cauchy-Schwartz inequality, (A.10), and (A.11). (d) uses Cauchy-Schwartz, (A.11) and (A.12).

Combining these results with (A.13) results in

t2(trΣt) ≤ 4G2t+ 8GLtE
t
∑

j=1

(‖wj − w∗‖+ E‖wj − w∗‖) . (A.14)
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The second term can be bounded as follows:

tE
t
∑

j=1

(‖wj − w∗‖+ E‖wj − w∗‖)

= t
t
∑

j=1

E (‖wj − w∗‖+ E‖wj − w∗‖)

= 2t2
{

1

t

t
∑

j=1

E‖wj − w∗‖
}

≤ 2t2µt−1/4,

where the final inequality follows from (A.5). Applying this bound to (A.14), we obtain

trΣt ≤ 4G2t−1 + 16GLµt−1/4 ≤ 4G[G+ 4Lµ]t−1/4,

which implies (ii). For the corresponding strongly convex case (ii’), we use instead of (A.11),

‖ϑj‖ ≤ ‖∇F (wj; ξj)−∇F (w∗; ξj)‖+ ‖E(∇f(wj)−∇f(w∗))‖

≤ ‖∇F (wj; ξj)−∇F (w∗; ξj)‖+ E‖∇f(wj)−∇f(w∗)‖

≤ L (‖wj − w∗‖+ E‖wj − w∗‖) . (A.15)

Then instead of (c) and (d) above, we have the following:

(c’)
n
∑

,=1

[ϕj],[ϑk], ≤ ‖ϕj‖‖ϑk‖ ≤ 2GL (‖wk − w∗‖+ E‖wk − w∗‖) ,

n
∑

,=1

[ϑj],[ϕk], ≤ ‖ϑj‖‖ϕk‖ ≤ 2GL (‖wj − w∗‖+ E‖wj − w∗‖) ,

(d’)
n
∑

,=1

[ϑj],[ϑk], ≤ ‖ϑj‖‖ϑk‖ ≤ 4GL (‖wj − w∗‖+ E‖wj − w∗‖) .

Combining (a), (b), (c’) and (d’) with (A.13) results in

t2(trΣt) ≤ 4G2t+ 8GLtE
t
∑

j=1

(‖wj − w∗‖+ E‖wj − w∗‖) (A.16)



123

for which the second term can be bounded as follows:

tE
t
∑

j=1

(‖wj − w∗‖+ E‖wj − w∗‖)

≤ 2t2µ′
(

1 + ln t

t

)1/2

,

due to (A.6). Applying this bound to (A.16) we obtain

trΣt ≤ 4G2t−1 + 16GLµ′
(

1 + ln t

t

)1/2

≤ 4G(G+ 4Lµ′)

(

1 + ln t

t

)1/2

,

which implies (ii’).

A.3 The regret bound of SGD with variable stepsizes

In this section we discuss the regret bounds of the SGD algorithm with a variable stepsize

scheme. As in Section 2.1.2, when we consider the regularizer Ψ(w) := δW(w) + ψ(w) with the

indicator function δW for a compact convex set W , the SGD algorithm consists of the iterations

wt+1 = ΠW (wt − αt(gt + ht)) , t = 1, 2, . . .

where gt ∈ ∂F (wt; ξt) and ht ∈ ∂ψ(wt). For SGD we assume that ‖ht‖ ≤ H for some constant

H for all t = 1, 2, . . . , in addition to the assumption of RDA that ‖gt‖ ≤ G.

In the variable stepsize scheme (Nemirovski et al., 2009) for general convex objectives, we

choose the stepsizes for some θ > 0,

αt =
D

G

θ√
t
.

With this, we present a regret bound of the SGD algorithm, extending Theorem 1 in Zinkevich

(2003). We include the details for completeness.

Theorem A.5 Suppose that the iterates w1, w2, . . . are generated by the SGD algorithm with vari-

able stepsizes αt = (D/G)(θ/
√
t), where maxwt∈W ‖wt − w1‖ ≤ D, maxgt∈∂F (wt;ξt) ≤ G and

maxht∈∂ψ(wt) ‖ht‖ ≤ H . Then the regret of SGD algorithm up to the iteration t with respect to w∗

can bounded as

Rt(w
∗) ≤ D

(

2G

θ
+

(G+H)2

G
θ

)√
t.
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Proof Let φj(w) := F (w; ξj) + Ψ(w). From the convexity of φj , we have for all ϕj ∈ ∂φj(wj)

φj(wj)− φj(w∗) ≤ 〈ϕj, wj − w∗〉, j = 1, 2, . . . , t.

And we can choose ϕj = gj + hj . Summing up both sizes for j = 1, 2, . . . , t leads to

Rt(w
∗) =

t
∑

j=1

{φj(wj)− φj(w∗)} ≤
t
∑

j=1

〈ϕj, wj − w∗〉. (A.17)

Let vj+1 = wj − αj(gj + hj) and wj+1 = ΠW(vj+1). Then

‖wt+1 − w∗‖2 ≤ ‖vj+1 − w∗‖2 (contraction due to projection)

= ‖(wj − w∗)− αjϕj‖2

= ‖wj − w∗‖2 − 2αj〈ϕj, wj − w∗〉+ α2
j‖ϕj‖2.

Rearranging the terms, we have

〈ϕj, wj − w∗〉 ≤ 1

2αj

(

‖wj − w∗‖2 − ‖wt+1 − w∗‖2
)

+
αj

2
‖ϕj‖2.

With (A.17), maxw,w′∈W ‖w − w′‖ ≤ 2D, and ‖ϕj‖ ≤ G+H , this implies

Rt(w
∗) ≤

t
∑

j=1

[

1

2αj

(

‖wj − w∗‖2 − ‖wt+1 − w∗‖2
)

+
αj

2
(G+H)2

]

≤ 1

2α1
‖w1 − w∗‖2 + 1

2

t
∑

j=2

(

1

αj
− 1

αj−1

)

‖wj − w∗‖2 + (G+H)2

2

t
∑

j=1

αj

≤ (2D)2
{

1

2α1
+

1

2

t
∑

j=2

(

1

αj
− 1

αj−1

)

}

+
(G+H)2

2

t
∑

j=1

αj

≤ 2D2

αt
+

(G+H)2

2

t
∑

j=1

αj

For αj =
D
G

θ√
j
, we have

Rt(w
∗) ≤ 2DG

√
t

θ
+D

(G+H)2

2G
θ

t
∑

j=1

1√
j

≤ D

(

2G

θ
+

(G+H)2

G
θ

)√
t
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where the last inequality uses the fact that
∑t

j=1
1√
j
≤ 1 +

∫ t

1 t
−1/2dt ≤ 2

√
t.

Note that this bound is with respect to w∗, not to the minimizer of the second term in the definition

of the regret (2.3) as in Zinkevich (2003).

By choosing the optimal θ∗ =
√
2G/(G+H) to minimize the expression involving θ, we can

simplify the bound as

Rt(w
∗) ≤ 2

√
2D(G+H)

√
t.

For !1-regularization (φ(w) = λ‖w‖1), we have H = λ, which is often much smaller than G. If it

is the case, the regret bound of SGD can be further simplified to 2
√
2DG

√
t.
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