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Abstract—Knowing where a mobile user will be next can

deliver a tremendous increase in network performance under Basestation
high load, as this knowledge enables pro-active load balancing.

To derive this information, sequences of traversed cells are fed Ideal network cell

into pattern detection algorithms. After the training phase the N

learned model predicts each user’s next cell. Even for complex
scenarios, the prediction accuracy can exceed 90%. Predictions
are used to rearrange mobile connections in a simulated high-
load scenario centered around an event at a soccer stadium.
To prevent call drops for mobile users targeting the stadium, )
apropriate resources in the predicted next cell are reserved. The MT (U

results exceed 20% in improvements for throughput and call @ BS1
drop rates, enabling the network to bear a much higher load

before stalling.

KeywordsHandoff Optimization; Mobility Prediction; Load

Balancing ) ) ]
Fig. 1. Available features during user movements

|. THE PROBLEM OF USERS CHANGING CELLS

Seamless handoff from basestation to basestation is esseqlli]al . .
: S e knowledge of the predicted next cell users are moving
for preserving mobility in cellular networks. Here we pro-

. L L . into is used to balance the load in the mobile network and
vide an additional indicator for handoff, which complements ; . . o .
L o . enhance the user’s quality of experience. The scenario is built
existing decision algorithms and can be used to manage :
. : asing network coverage measurements, the underlying road
overall mobile network load. The major advantage of this . . ' )
. A . and railway network, typical network traffic, and finally, the
approach is the early availability of the handoff indicator .
N numbers of visitors for each means of transport. The results
being in the range of several seconds compared to short—terﬁn . L . . )
: . show the potential for gaining benefits by actively rearranging
measurements of signal strength and quality. ) :
. . i .copnecuons with knowledge about expected handoffs.
The idea is, that moving users are bound to the geographica
topology, ie., strge.t a_nd rail ngtworks, and therefore are.forced Il. SPACE-DOMAIN PREDICTION OF NEXT CELLS
to partial deterministic behavior. Each movement provides a . o _ .
trail of traversed cells, which deliver a coverage fingerprint Space-domain prediction of cells estimateiserea mobile
mining algorithms to learn the historical sequences of cellg® new association. In this section, the complete process from
lead to a prediction of the most likely next cell each time Building mobility traces up to prediction of expected next cells
user enters a new cell. with pattern detection algorithms is examined.
This document consists of two main parts: In Sectigrthe bil ion .
overall achievable next-cell prediction accuracy is calculatéy Mobility trace generation for pattern recognition
for a sample geographical topology. The scenario demon-Every mobile cellular network needs a component, which is
strates, how the artificial intelligence algorithm performs fanformed about the current location of the user based on the
varying road and railway networks, depending on the availakdssociated cell. Where this information is available depends
input data for training the algorithm. The way the mobile datan the type of network, e.g., mobile switching centers and
is handled, the privacy of the user’s is respected and it lication registers for mobile networks or remote authentica-
unnecessary to trace complete profiles on a per-user basistion servers for wireless local area networks (WLAN). The
In Sectionlll, the same methods are applied to a high loddhown location is typically rather coarse and one reason why

scenario: Mobile users moving to and from a soccer stadiusmartphones deploy GPS receivers for location based services.
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Here we rely on the most common denominator indepef6] for WLAN or in [ 8] with a prediction accuracy up to 93%.
dent of the specific network type, the basestation identifidtevertheless, learning individual movement patterns comes
In addition, the durationt each user is connected to eaclat the price of impacting privacy. The training data used for
basestation can be easily derived from the sequence of agke-predictions in these scenarios has every user identification
ciation/deassociation events. Further parameters may includmoved, resulting in pattern detectimuependent of specific
position or distance to the basestation (see Figyrdut are user behaviar Of course, approaches like this can only work
proved not to be mandatory for a good next cell prediction case the geographical topology restricts the users in their
accuracy. An example sequence generated by a mobile usevement (e.g., on highways or in trains), so that meaningful
consisting of information tupleBS-ID, Residence Timmay patterns are generated.
look like BS1, 20s, BS2, 35s, BS4, 32s,The length of these  Beside the spatial prediction, predicting the time of the
sequences is limited by the overall call duration, as mobileandoff to the next cell is also necessary to reserve resources
nodes in many networks can only be tracked during actipgomptly. This timing can be integrated into the prediction
connections or otherwise in large location areas bundlimgodel itself as demonstrated i6]] This approach is reason-
several cells. Very long sequences of traversed cells may ocabte if different points of time lead to different user behavior
for example when driving on vacation and the kids playin(e.g., weekend/weekdays, morning/evening). For short term
mobile online games during the trip on the backseat of tlhanges, e.g., during traffic jam, incorporating time into the
car. As very long sequences in most cases do not provis®del increases the complexity of the training process. Our
more information, all generated sequences are limited in lengtievious work in B] presented an approach to deal with short
and split into shorter sequences. The optimal upper boundtefm behavioral changes. For the work presented here we are
length is also part of the analysis and results for sequerinéependent of absolute timirand simply use cell residence
lengths between 3 and 6 cells are compared. time as a learning attribute.

The set of all generated traces are used as training data for . .
the pattern detection algorithm. The goal is to correctly predit PYnamic user-agent based mobility models

the last basestation in each sequence. The feasibility of next-cell predictions strongly correlates
. o with constraints moving users have to face due to the geo-
B. Related research in cellular predictions graphical topology, network coverage and most important the

Predicting the next cell for moving mobile users has beategree of determinism in the movements itself.
in focus of mobile positioning research for several years. For this work several mobility models are combined to
Macroscopic mobility prediction as discussed here sets tmelude different behavior. Essentially, these modelsRath
focus on the cellular level, which is useful in network loadrollower, Gravity and Random Walkmodels. The path fol-
balancing. lower model can closely resemble commuting behavior: Fol-
In [3], a fundamental approach has been described fowing a preset path, staying at the target area for a certain
macromobility predictions: A variant of the ZIP-compressioamount of time and following a similar path back to the origin.
algorithm called LeZi is used to build a tree per user froniihis mobility model presents the highest level of determinism
the cell sequences. This algorithm delivers a good predictionthe traces, introducing uncertainty only in variance of speed
accuracy for complete sequences, i.e., without missing valu@sresidence times at target areas.
or changes in the cell sizes due to radio effects, and differentThe gravity model assigns for different areas a so-called
variants are still popular today (se€]) due to its simplicity gravity value. This parameter sets a level of attractiveness to

and low consumption of computing resources. the areas, defining the probability for selecting this area as the
The work on algorithms for mobility prediction can betarget for movements.

classified into several categories as defined4jp Pomain- Finally, the random walk model provides no determinism,

specific, user dependent and usage of time. but is still useful to generate a certain amountatkground

In our previous work in I}, we demonstrated that thenoisefor the pattern recognition algorithm. Nevertheless, the
selection of the specific algorithm used for predicting theandom movement of course is still constrained by the road
position is of secondary importance. While of course sonmetwork, leading partly to the same traces as the other mobility
algorithms may deliver higher accuracy compared to otherapdel, e.g., on highways without a chance to leave at will.
in most cases the question whether the mobility sequend@andom mobility is valuable to generate traces for areas,
contain learnable patterns of movements at all is more criticalhere the road density is high compared to the diameter of
Typically, general purpose data mining algorithms as theetwork cells, for example for GSM cells covering dense urban
Support Vector Machine used in this publication are able tyeas.
extract a minimum of patterns in the data if existent. Therefore All mobile users are modelled #&gentswithout a fixed mo-
we only investigatedomain-independent algorithmsithout bility model. This enables user traveling by car and switching
the need for mobile network specific parameters and keep toewalking at the destination.
pattern detection algorithm replaceable Figure 2 presents an exemplary scenario combining the

The feasibility of predictions per user profile has beeroad network, mobile network coverage and mobile user
demonstrated in several recent publications B, [[12], in agents for simulation. The focus is put on situations where
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BaNY Basestation (Example) ~ Section East task for pattern detection, several algorithms are available for

o fo% Rail Station /| € 76 this classification task. The more expressive the algorithm

is, the better it can be adapted to complex traces, but the

\ more difficult it is to find the optimal set of parameters for
the algorithms. In parallel, the input data has to be selected
carefully: What is the optimal maximum length for mobility
sequences? Which features beside the basestation identifier
enhance the pattern detection process?

For the results presented here the well-kno®aopport
Vector Machine (SVMMmachine learner has been used for
the prediction process, se@]] SVMs try to separate the

data samples by optimal hyperplanes and new examples are
@ classified depending on which side of the hyperplane they are
positioned. The hyperplane’s location is defined by the so-
called support vectors, which consist of a selected subset of
all provided examples. The plane is considered optimal, if
it minimizes the number of samples on the wrong side and
maximizes the distance to the support vectors.

As a simple plane can not always capture the nature of
data distributions, kernel functions allow to transform the input
Fig. 2. Simulation scenario with different mobility models data into a modified space. A popular kernel is for example the

polynomial kernel with the degree as a parameter. Selection of

bil K i ive hiah load: Hiah kernel and parameters like degree has to be done consistently
mobile networks may easily receive high load: Highways ang, every example set.

espgcia!ly railways. Here a large amount of potential mobile 15 ayiend the SVYM'’s ability to predict more than two possi-
gppllcatlon users switch cells nearly' simultaneously and sthé classes (due to only comparing the side of the hyperplane
in a cell only for a short amount of time. In contrast, the ragf the example in question), the problem of multiple classes,

network disables freedom of movement, forcing the users 1Q ecessary for predicting the next cell, can be covered by
certain sequences of cell transitions. The next section dellv%lamise predictions between each class.

results for the predictability of these sequences.

The geographical topology consists of several different ar-
eas: In the center one large area like an urban center, enabling & 7
random movements. This area is adjacent to the four areas to
each side, introducing noisy patterns to the more regular streets_
and rails in these outer areas. Each of the four areas provide§\
a different combination of possible user mobility: Rails only
in the north, rails parallel to a simple street network in the % .
south, to an area to the east and parallel to a highway in the I I
west. Each line of rails also incorporates stations, where the® g ——
simulated train stops for several seconds.

All mentioned mobility models are integrated into the °
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scenario. For the gravity model the attractiveness distributions BS-ID only BS-ID+Duration

[SVM/Maximum Sequence Length]

of user typesA — C is given. The topology is covered by
overlapping cells, most of them are not show in FigQrkor
sake of simplicity. The western area as an exception shoWssiy e 3 presents the prediction accuracy as relation of
some cells, as this part of the scenario is especially difficylyect to all predictions. Four different maximum sequence
for pattern recognition. Highway and railway users generaj&, s 3.6 have been evaluated as well as using only the
identical sequences of traversed cells except for two tiny ceff§sestation identifier (on the left side) and identifier in com-
!nd|V|duaI to_each path. A correct predlctlo_n for the_se celiSination with cell residence time (right side of the figure).
is qnly p055|ble in case the pattern detection algorithm C&le SVM can handle a combination of nominal data (BS-Id)
distinguish users on the parallel tracks. and continuous data (time) without changing the algorithm.
All results are generated using a ten-fold stratified cross-
validation, delivering a 90% confidence interval in the range
The generated sequences are used to train pattern deteatioft1.65.

algorithms and predict the next cell (the target class) for The reference prediction (horizontal line) is calculated using
new sequences. As classification of examples is a well-knowrMarkovian O(1)-predictor. This simple classifier uses only

Fig. 3. Cell prediction accuracy for different features

D. Predicting next cells with pattern detection
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the currently associated basestation as input and predicts the [1l. BALANCING HIGH-LOAD SCENARIOS

next which occurred most frequently in the training examples. This section applies the next cell predictions of the former
The O(1)-predictor therefore delivers an estimation of thection to balance network load in the mobile network itself.
learning complexity, with more neighboring basestations afghe early knowledge about users entering a new cell delivers
a uniform transition probability resulting in a lower accuracyy convenient time frame for reservation of resources.

The results in Figur8 show for the id-only case an accuracy ) o .
of around 65%, which is 20% higher compared to the O(l’fl' Scenario description: Soccer stadium
predictor, but still not sufficient for reliable enhancements of The scenario used for evaluating the effect of predictions
handoff and network management. For longer sequences ofisased on the same principles as the scenario presented
to six cells the accuracy even slightly decreases. Effects likgfore and incorporates a real geographical topology, network
this appear in cases, where the added data masks the valuadkerage measurements and user movement profiles.
bits of information provided by the rest of the features (here
the higher information value of the latest basestation compared
to previous ones. , ‘H”

A great boost in prediction accuracy can be seen for the = ﬂ p—
second evaluation, BS-Id with residence times. Users traveling E,F' > A =
by car provide different patterns compared to users traveling -y’

by rail. Using the duration in each cell these users become = '.,g :
separable, increasing the prediction accuracy up to 94%. Here Target
the predictions even benefit from longer sequences, as the \. |
likelihood of identifying a user's means of travel increases |
with more durations available. v -~ |\
Predicted cell
SwW W3 w1 NW  W2b W2a| Real (@ Train stop s l n
081 0.00 000 000 0.00 000 SW P by \
0.02 0.79 0.01 0.00 0.00 0.00 w3 hd | n —
000 000 093 001 002 001 W1 I3 Crpark i
0.00 0.04 0.02 0.94 0.00 0.00| NwW 1§ Highway . ‘e b ’
0.01 0.00 0.00 0.01 0.56 0.56 W2b S Traffic measurement point RN - . /
0.01 0.00 0.00 0.01 0.42 043] W2a Fig. 4. Topology for mobility simulation of the stadium scenario
TABLE |
CONFUSION MATRIX, WEST SIDE OF SCENARIO Figure4 illustrates the scenario: The central point of interest

is the soccer stadium in Dortmund, a German city with more
than 500,000 residents. During an event at the stadium more

than 60,000 people are arriving and leaving the stadium;
Predicted cell 20,000 people unrelated to the event are expected to move

SW_ W3 W1 NW_ W2b W2a Real in the region. Data provided by the local Department for

099 001 000 0.00 0.00 0.00 SW . . -
000 099 001 000 000 00d W3 Traffic, the regional transport and the stadium operator enables

0.00 000 099 000 000 000 W1 detailed modelling of the movement behaviors. The floating
0.00 0.00 0.00 1.00 0.00 0.00f NW car data is measured using sensors in the streets and have
0.00 0.00 0.00 0.00 100 0.00| W2b been provided for several days, with and without events at the
000 000 0.00 000 000 1.00| W2a stadium to calculate the difference in paths and car density.
TABLE I The distribution of visitors arriving by train, car and foot

CONFUSION MATRIX, WEST SIDE, INCLUDING RESIDENCE TIME determine the parameterization of the simulated agents, which

are again able to switch mobility models. Visitors arriving by
car change to a walk model after arriving at the parking sites
Tablesl andll enable a detailed comparison of this effeattc.

per basestation for the western part of the scenario. Cells withFor later evaluation two main paths have been selected: At
Ids W2a and W2b are the small cells distinct for highwaythe northern top the urban high wa4 crosses the scenario
and railway. Tablel presents an overall good accuracy fofrom east to west. Secondly, a railway track from north-west
most cells with the exception of these two cells (56% arnd south-east provides one main access route to the stadium.
43%). Including the duration needed to cross the cells into theTogether with user movements, the traversed basestations
training data increases the accuracy for all cells and enableed to be captured. To gain a realistic view of the cover-
perfect predictions of W2a and W2b. The duration enablege, the basestations in range have been measured. Figure
to distinguish users without any further information like GPS displays results of measurements by car and foot. Each
positions, knowing in advance which of the cells will be nexmeasurement has been associated with GPS positions and
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k] To examine the effects for different load situations, the

1 simulation has been scaled for different percentages up to

h‘ - the full load simulating all 80,000 mobile users. Please be

aware, that a scaling factor of O includes still one user for
each mobility model.

As to expect, for a small load scale, the handoff is equal
to or nearly 100%, as no cell is completely filled with
connections. The success rate starts to decline with increasing
load. Figure6 displays the success rate for two paths, Bl
and railway, and for two modes: With and without using the
predictions. The success rate declines faster for users arriving
by train, as these users travel faster and in higher numbers,
increasing the probability for arriving at resource depleted
cells.

Reserving resources can not completely avoid this effect, but
significantly improve the success rate. The decline is slowed
shows the associated primary UMTS-HSPA basestation. afd the improvement of handoff success can go up by 28%
most positions an active set of 4 was available, showing a hiffif the fully loaded scenario.
overlap of adjacent cells. This is a necessary precondition

\ f Stadium %] - -'»;i :

! ;\\‘- Rallway /

Fig. 5. Coverage measurements for stadium scenario

enable rearrangement of connections into neighbor cells. 37, | & ooy xommxomxe e
Interestingly, the measurements highlight a classical hand & R e i
parameter, the handover margin. The position of handover §§ 1 =t ° Ouo o xomn XX X
shifted due to this margin depending on the direction of trave § _ XX ° 0 L x-% :
as can be seen for the B1 at the north of the figure. “i’d 1 ees T e )
D e X x //x//
B. Mobile network management %C’ h=0.025 /X/X/X
© X
This section concentrates on applying the next-cell predi gg T om0 /X/X/ e o fred o
tions for different dynamic network management techniqut 2 o = New connections
like reserving radio resources for expected users or rearrang g° . ‘ ‘ ‘ Handoff QoS
existing connections to maximize data throughput. ° 00 01 02 03 04 05

% of guard channels (relativ to max #connections)

Fig. 7. Handoff success rate based on call holding time

o
S H ®——x

R Qoo g 8 0 o
"x\o "’o..__o
S, e
2 | P T \54 maxsi= 0-28 Whether a reservation based on the prediction can be
mprovement . .
g . oix successfully executed, depends on the holding time of connec-
2 S tions. Mobile operators report an ever increasing utilization,
g starting with one minute mean call duration for voice calls
% S d o = 0,24 and two minutes for video calls in pre-iPhone times. Figtre
g presents the handoff-success rate based on mean holding times
T S 7 o Blwihoutprediction and a pre-reserved guard channel. Most network operators
prediction . . ) . .
. . Ralls without prediction prioritize active over new connections and set a fixed amount
2 4 ol alls with prediction . .. . .
° x x x x \ of cell capacity for users arriving in the cell, decreasing the
00 02 o4 06 08 1o amount of capacity for new connections accordingly.
Simulation scaling (1.0 = full load) Users targeting a fully loaded cell get a reservation in case
Fig. 6. Handoff success rate based on scenario load for a prediction (Handoff QoS), when an existing connection

is closed or the guard channels are not completely used.

Figure6 presents the enhancements for handoff success rdtke success rate therefore depends on ratio of the mean cell
According to data provided by the German mobile network opransient timeh, of the moving users and the mean holding
erators, the aggregated data traffic exceeds 1,000 Erlang vdigee i of the resident users in the target céll= ’“ .
calls equivalent during the event in and in direct neighborhoodFigure 7 presents the results for a fixéd and vary|ngh2
to the stadium. In case a user with an active connection gefsn = 20 users resident to the cell. For large ratibs>
into a cell without free resources, the connection has to Be nearly all handoffs can be handled perfectly without the
dropped. When a user successfully enters a new cell, the neged for fixed guard channels. For increased holding times and
cell is predicted and the resources for this user are blockedsmaller ratios: = 0.025, the probability of ending connections
the expected cell. in the target cell drops and the success rate is below 40%.
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This can be compensated with the classical guard channélser’s privacy is preserved as no individual patterns need
Nevertheless, using the predictions for channel reservationtoabe learned. The only time where the user’s id can be
smaller fixed guard channel is needed to achieve the same edsociated with the sequence of basestations is when preparing

of successful handoffs. for predicting the next cell. In the future, further methods to
make users anonymous like proposed 19][may enable to
e Y provide the data to external location based service providers
g | e B without breaching privacy.
"= Rails QoS The final step, before the methods proposed here are con-

sidered ready for production use, relates to the selection of
subsets of cells for model training. As an example, for the
region of Dortmund for the combined network types from
GSM to 3G, including sectorization, more than 500 cell ids
. w\{ can be measured. For the whole country this will result in an
e amount of cells too large for most data mining algorithms.
) Future research concentrates on distributed data mining for
[ w ‘ ‘ w \ automatically generated clusters of cells.
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