Method Trees: Building Bloc ks for Self-Organizab le
Representations of Value Series

How to Evolve Representations for Classifying Audio Data

Ingo Mierswa
Artificial Intelligence Unit
Department of Computer Science
University of Dortmund

mierswa@|s8.cs.uni-dortmund.de

ABSTRACT

In this paper we introduce a framework for automatic fea-
ture extraction from very large series. The extracted fea-
tures build a new representation which is better suitable
for a given learning task. The development of appropriate
feature extraction methods is a tedious effort, particularly
because every new classification task requires tailoring the
feature set anew. Therefore, the simple building blocks de-
fined in our framework can be combined to complex feature
extraction methods. We employ a genetic programming ap-
proach guided by the performance of the learning classifier
using the new representation. Our approach to evolve rep-
resentations from series data requires a balance between the
completeness of the methods on one side and the tractabil-
ity of searching for appropriate methods on the other side.
In this paper, some theoretical considerations illustrate the
trade-off. After the feature extraction, a second process
learns a classifier from the transformed data. The practi-
cal use of the methods is shown by two types of experiments
in the domain of music data classification: classification of
genres and classification according to user preferences.

Categories and Subject Descriptors: 1.2 [Computing
Methodologies]: Artificial Intelligence

General Terms: Algorithms

Keywords: Evolving representations, analysis of audio data,
feature extraction, time series transformations

1. INTRODUCTION

Since music is stored in digital form and distributed via
the Internet, there is a need for the management and re-
trieval of audio data. Information retrieval has started sev-
eral efforts to automatic indexing [14] and retrieval (e.g.,
querying by humming [5]). Machine learning has shown its
benefits for text classification and ranked document retrieval

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republishto poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

GECCO' 05, June25-29,2005,WashingtonDC, USA.

Copyright 2005ACM 1-59593-097-3/05/0006.$5.00.

Katharina Morik
Artificial Intelligence Unit
Department of Computer Science
University of Dortmund

morik@Is8.cs.uni-dortmund.de

with respect to user preferences [8, 9]. It is straightforward
to expect a similar benefit for the classification and person-
alized retrieval of music records. However, before machine
learning techniques can be employed the music data must
be given in a representation from which a classification can
be learned.

Current approaches to time series indexing and similarity
measures rely on a more or less fixed time scale [12, 11].
Audio files, however, differ considerably in length. More
general, time series similarity is determined with respect
to some (flexible and generalized) shape of curves [10, 21].
However, the shape of the audio curve does not express the
crucial aspect for classifying genres or preferences. The i-th
value of a favorite song has no correspondence to the i-th
value of another favorite, even if relaxed to the (i & n)-th
value. The decisive features for classification have to be ex-
tracted from the original data to build a new and more suit-
able representation. Hence, feature extraction from audio
data has become a hot topic recently [6, 15, 19, 22]. Sev-
eral specialized extraction methods have shown their perfor-
mance on some task and data set. However, different clas-
sification tasks ask for different feature sets. It is not very
likely that a feature set delivering excellent performance on
the separation of classical and popular music works well for
techno and hip hop music, too. Classifying music according
to user preferences even aggravates the problem.

This paper will focus on self-organizable building blocks
to build suitable representations which ease classification
learning. We illustrate some operators and how they are
combined to become extraction methods in section 2. The
repository of elementary extraction operators allows us to
handle feature extraction as a sequence of data transfor-
mations which delivers a feature set in the end. We con-
struct a representation for each given task and data set,
anew. Hence, the evolutionary construction of method trees
is equivalent to an evolutionary construction of a learning
representation. Section 3 describes the genetic programming
approach to automatically combine the basic feature extrac-
tion methods. It also discuss how it is assured that only
valid combinations are constructed. The search within the
universe of methods is guided by a fitness function. Here,
we embed a classification learner: the better the learning
result using the transformed data, the higher the fitness of
the representation (i.e., the extraction method).

Applying a method tree to the given audio data deliv-

automatic feature extraction
(GP)

1
classifier learning 1
1
learned 1
feature 1 learned
extraction :
1

method

fitness

evaluation classifier

Figure 1: The overall process of automatic feature
construction for classification.

ers a transformed data set, i.e., the examples rewritten by
the corresponding feature set. This becomes the input to
a second learning step, namely classifier learning. Figure 1
shows the overall process with the two learning steps, one
using genetic programming, the other using the support vec-
tor machine mySVM [17] for classifier learning. Please note
that the learning scheme used in the second learning step
is also part of the feature extraction training. In contrast
to the second learning step the embedded learning scheme
works on an excerpt of the examples to estimate the accu-
racy and provide a fitness value (fitness evaluation). Further
details are explained in section 3. The approach is tested on
the learning tasks of genre classification and user preferences
(section 4).

2. ELEMENTARY BUILDING BLOCKS

Audio data are time series, where the y-axis is the current
amplitude corresponding to a loudspeaker’s membrane and
the x-axis corresponds to the time. They are univariate,
finite, and equidistant. We may generalize the type of series
which we want to investigate to value series. Each element
x; of the series consists of two components. The first is the
index component, which indicates a position on a straight
line (e. g., time). The second component is a m-dimensional
vector of values which is an element of the value space.

DEFINITION 1. A VALUE SERIES is a mapping v : IN —
R XIC™ where we write xn instead of x(n) and (Ti)ic{1,...,n}
for a series of length n.

This general definition covers time series as well as their
transformations. All the methods under consideration here
refer to value series. They are not only applicable to audio
data, but to value series in general. All that is required is
the definition of a scalar product for the space.

We structure the set of elementary operators as follows:

Transformations map the data from the given vector space
into another space or to another place in the same
space.

Generalized windowing is required by many methods for
feature extraction. We separate the windowing from
the functionals applicable to values within the win-
dows.

Functionals calculate a single value for a value series.

Organizing a repository of elementary feature extraction
methods allows us to see the feature extraction for a cer-
tain learning task as a sequence of methods. The known
methods are fixed sequences of such elementary extraction
methods. Here, we give an overview of some of the building

blocks, so that we later on can flexibly construct sequences
with techniques derived from genetic programming. Details
are omitted !. Only the new notion of general windowing,
which leads to method trees, is presented in more detail.

2.1 Transformations

Basis transformations map the data from the given vector
space into another space. Audio data — like all univariate
time series — are originally elements of the vector space IR2.
The basis B of a vector space V is a set of vectors which can
represent all vectors in V' by their linear combination. The
only required operation on vector spaces as the domain of
transformations is the scalar product. Since the most com-
mon basis transformation performed on audio data is the
transformation into the infinite space of harmonic oscilla-
tions we assume Hilbert spaces.

DEFINITION 2. Let H be a wector space with an inner
product (f,g). H is called HILBERT SPACE if the norm de-

fined by | f| = (f, f)é turns H into a complete metric space,
i. e. any Cauchy sequence of elements of the space converges
to an element in the space.

The assumption of Hilbert spaces is no constraint, because
all finite-dimensional spaces with a scalar product (such as
Euclidean space with ordinary scalar product) are Hilbert
spaces. However, we use Hilbert spaces with an infinite
number of dimensions to introduce the concept of Fourier
transformations. Therefore, we need an infinite-dimensional
Hilbert space of functions.

2.1.1 Frequency space

The goal of Fourier analysis is to write the given series
(@i)ieq1,...n} as a (possibly infinite) sum of multiples of the
base functions, which are e**® for all frequencies v. A Fast
Fourier Transformation [2] efficiently maps the given time
space into a frequency space containing a defined number of
frequencies. The frequency space is a special case of a func-
tion space. Therefore, the transformation uses the infinite
number of complex valued dimensions of a Hilbert space.
Complex numbers are necessary because Fourier transfor-
mations actually deliver two values: the intensity of occur-
ring frequencies and the phase shifts.

2.1.2 Correlation space

The frequency space expresses a sort of correlation be-
tween values in terms of frequencies. For some features
it would be more appropriate to express the correlation in
terms of time dependencies. Therefore, the transformation
into another space is used.

DEFINITION 3. The calculation of correlations of values
between two points in time, i and i + k, produce the CORRE-
LATION SPACE, where for each lag k their correlation coeffi-
cient in [—1, +1] is indicated.

Transforming audio data into the correlation space eases the
recognition of the speed of the music, measured in beats per
minute. Assuming 7" is the number of beats per measure
and SR the sampling rate. If we shift the original time
series by shift = 1T - SR - 60/X for several values of X

'For details and the comprehensive set of meth-
ods see the YALE system [4] which is available at
http://yale.cs.uni-dortmund.de.

0.124

0.116

mean difference

0112

0.108 L L L L L L L
90 100 110 120 130 140 150 160 170

speed (bpm)

Figure 2: Autocorrelation differences for a phase
shift depending on speeds ranging from 90 to 170
beats per minute.

we can determine the correlation between the original and
the shifted time series. Maximal correlation corresponds
to minimal difference between the shifted and the original
series. Figure 2 shows the differences of original values with
the shifted ones. Clearly, the difference at 97 beats per
minute is minimal.

2.1.3 Reconstruction of state space

Nonlinear dynamic systems can be described with the aid
of non-linear differential equations. The number of variables
which must be known to completely describe the behavior of
such a system corresponds to the dimension of this system.
These variables are called state variables.

DEFINITION 4. The basis of the STATE SPACE of a dy-
namic system is given by the STATE VARIABLES of the sys-
tem, i. e. the variables which must be known to describe the
system. The elements of a state space represent the values
of the state variables at the examined (time) points.

The state space emphasizes some characteristics which can
hardly be seen in the original space. Since the state vari-
ables are often unknown, a topologically equivalent space is
constructed [18]. This is known as reconstruction of state
space:

DEFINITION 5. The components of the vectors within the
PHASE SPACE are parts of the original series:

Pi = (i, Titd, Titad, - Tit(m—1)d)

where d is the delay, and m the dimension of the phase space.
The set

is the phase space representation of the series (Ti)ieq{1,...,n}-

Within the phase space, several features can be extracted,
e.g., the angles between vectors. Small variances of angles
indicate smooth changes of the state variables, large vari-
ances harsh changes. This is a dominant feature when sepa-
rating classic from the more percussive pop music as shown
in Figure 3.

2.1.4 Filters

Filters transform elements of a series to another location
within the same space. Moving average and exponential
smoothing, for instance, are filters. Many known trans-
formations are subsumed by weighting functions. We con-
sider the window functions Bartlett, Hanning, Hamming,

Blackman-Harris, linear and exponential functions as partic-
ular instances of a function fy,(7) which weights the position
within the window.

DEFINITION 6. Given a value series (Ti)eqy,...,n}, 6 filter
yi = fw(i) - @; is @ WEIGHT FILTER. The weighting function
fw only depends on the position i.

Other filters are the frequency passes, filtering the extremes,
the Bark-filter, and the ERB filter, which are all often used
when analyzing music data.

2.2 Generalized windowing

Many known operators on times series involve windowing.
We give a general definition of windowing operators which
leads to a tree structure of the used methods. Separating
the notion of windows over the index dimension from the
functionals applied to the values within the window segment
allows to construct many operators of the kind.

DEFINITION 7. Given the series (Z:)icq1,...,n}» @ transfor-
mation is called WINDOWING, if it shifts a window of width
w over (;vi)ie{l,___,n} using a step size s and evaluates in each
window the functional F':

Y = F((T)ie{Gost1,....j-s+w})-
All y; together form again a series (Y;);cqo,..., | (n—w)/s]}-

DEFINITION 8. A windowing which performs an arbitrary
number of transformations in addition to the functional F
15 called GENERAL WINDOWING.

The functional F' summarizes values within a window and
thus prevents general windowing from enlarging the data
set. Since the size of audio data is already rather large, it
is necessary to consider carefully the number of data points
which is handled more than once.

DEFINITION 9. The OVERLAP of a general windowing with
step size s and width w is defined as g = w/s.

Only for windowings with overlap g = 1 the functional can
be omitted. Such a windowing performs transformations for
each window and is called piecewise filtering. The runtime
effects of the overlap size for transformations used within
general windowing are investigated in [16].

2.3 Functionals

Transformations convert a series into another series. In
contrast, functionals calculate single values from a series.
The group of functionals includes all kinds of statistics like
different averages, variance and standard deviation. They
refer to the value dimension. We may also consider the
index dimension, for instance, the point with the largest
value or highest amplitude. Often used functionals are those
indicating peaks:

DEFINITION 10 (k-PEAKS FUNCTIONAL). k-peaks func-
tional delivers for a series (x:)icq1,...n} the position (index
dimension), the height, and the width of the k largest peaks.

It is an instance of finding extremes (minimum, maxi-
mum). Similarly, the gradient of a regression line can be
formulated. For audio data, the spectral flatness measure or
the spectral crest factor can be expressed as an arithmetic
combination of simple functionals [7]. The mel-frequency

0.6

(a) pop music

-0.1

-0.15
“0.15 -0.1 -0.05 o 0.05 0.1 0.15

(b) classic

Figure 3: Phase space representation of a popular song (left) and a classical piece (right).

t Root
Windowing |

¢ N
mel-scaled| | .
filtering]

. -
nv. FFT H value k ‘

‘Hamming ‘ FFT ‘

Figure 4: Constructing the cepstral method from
elementary extraction operators.

cepstral coefficients can be constructed as a general window-
ing, where the frequency spectrum of the window is calcu-
lated, its logarithm is determined and a psychoacoustic fil-
tering is performed, and the inverse Fourier transformation
is applied to the result. Figure 4 shows how the methods for
feature extraction are put together to compute the cepstral
coefficients. From these coefficients additional features can
be extracted. It is easy to see how variants of this series can
be generated, e. g., replacing the frequency spectrum and its
logarithm by the gradient of a regression line.

3. EVOLUTIONARY CONSTRUCTION OF
METHOD TREES

The elementary methods described above are combined in
order to construct more complex features for classification
tasks. Figure 4 already showed how elementary methods
can be used for the reconstruction of known complex feature
extraction methods. There are many more complex feature
extraction methods which can be built using the framework
described above. Genetic programming is applied in order
to look for the best combination of methods [13]. The result
is a complex method tree build from elementary building
blocks. Its use for the classifier learning will be shown in
section 4.

In order to structure the huge search space, we may sepa-
rate functionals, chains of method applications, and general
windowing, where a chain of method applications is applied
to each window.

DEFINITION 11. A CHAIN consists of an arbitrary number
of transformations and a functional at the end.

Incorporating windowings into chains leads to the concept
of method trees:

DEFINITION 12. A METHOD TREE is a general windowing

‘ ExpSmo H Filter }%‘ Window. }%‘ Avg/Var ‘%

= axdx

Figure 5: A method tree for feature extraction built
of elementary methods. Solid arrows show the data
flow, dashed lines define the tree structure.

whose children build a chain. If the chain entails a window-
ing, this becomes the root of a new, embedded method tree.

The methods which are performed on each window can be
seen as children of the windowing operator. Together they
output a value series. The tree structure emerges from the
nesting of windowing operators. The restriction that chains
are concluded by a functional implies a level-wise structure
of all possible method trees. The lowest level 1 entails only
functionals. These are chains of length 1. The next level,
2, covers chains with a concluding functional. Levels 3 and
above entail windowing. Method trees are constructed ac-
cording to their levels. The level-wise growing means small
changes to a current method tree. On the one hand, this
reduces the probability of missing the optimal method tree.
On the other hand, it may slow down the search, if the fit-
ness of the lower levels does not distinguish between good
and bad method trees.

Another example of a method tree is shown in Figure
5, where the root identifies the element within the search
space. Its four children are exponential smoothing, a fil-
tering, another method tree (Fourier transformation with
peaks applied to windows), and the average of the peaks.
This last child returns the desired features. Such method
trees are represented by XML expressions. The YALE sys-
tem [4] executes such trees and takes care of the syntactic
well-formedness.

Before the genetic programming approach is technically
described, Figure 6 presents the process of automatically
extracting features for a given classification task and data
set. The picture details on the first box of Figure 1 above
which shows the overall process. The search space within
which the best method tree is to be found is called the uni-
verse of method trees. A population is a set of method
trees. The navigation within the universe of method trees

—_—

L
— N
v |:l;| method tree

% universe
population (

excerpt of \ learned feature
M T L
T method tree

! ! [
—> e

1
1
1
1
1
1
:

Figure 6: Automatic feature extraction using ge-
netic programming.

is a cycle of selecting a population, applying the method
trees to the raw data, evaluating the fitness of the popula-
tion, and enhancing the fittest method trees further to build
a new population. The operations of genetic programming
are mutation and crossover. By random, mutations insert a
new method, delete a method, or replace a method by one
of the same class, i.e. by a functional or transformation. It
will be assured that all method trees remain valid after mu-
tation, e.g. that the end functional of a windowing is not
removed. Crossover replaces a sub-tree from one method
tree by a sub-tree from another method tree, respecting the
well-formedness conditions. This means that the roots of
the sub-trees must be of the same type of methods.

The optimization cycle corresponds to the standard pro-
cess of genetic algorithms. What differs from the standard
is that the fitness evaluation is not merely a function but the
result of running a learning algorithm. Since method trees
serve classification in the end, the quality of classification is
the ultimate criterion of fitness. Individuals which provide
better classification results when used as features for the
classification task at hand should have a greater probability
to survive into the next generation. To evaluate the fitness
of each method tree in a population the following steps are
performed:

1. Each individual method tree is applied to an excerpt
of the raw data.

2. This method application returns a transformed data
set, which is used by classifier learning.

3. A k-fold cross validation is executed to estimate the
performances of the learning scheme in combination
with the feature sets provided by the method trees.

4. The mean accuracy, recall, and /or precision of the re-
sult becomes the fitness value of the applied feature
construction method trees.

5. The fitness values of the method trees are used to build
the next population with one of the selection schemes
described above.

3.1 Some propertiesof the search space

Automatically constructing methods for feature extrac-
tion which deliver well suited feature sets for classifier learn-
ing is a demanding task. How fast can we expect a good
result to be found? This general question can be split into
three more specific ones. First, the size of the search space

is important. Second, the complexity of processing one in-
dividual in the search space helps to bound the overall com-
plexity of search. Third, the convergence to an optimum
determines the speed of the genetic programming. The last
issue is not yet solved. Even simple evolutionary algorithms
demand complicated proofs [3]. Here, we answer the first
and second question.

3.1.1 Szeof the search space

If all mathematical operations were allowed within method
trees, the search space would become infinite, hence only a
fixed set of transformations and functionals are allowed. Let
To be the number of transformations and F' the number of
functionals, n the length of the input series. The number of
possible methods at level 1 becomes F. At level 2, transfor-
mations could be applied once in any order. The two levels
can be summarized. For chains of length k, there exist the
following number of different chains:

O T
KOZF'ICZZO(TOEIC)! @)

The higher levels are produced by windowing. Within the
windows, a chain of transformations is executed, if no nested
windowing is allowed. Hence, there exist as many windowing
operations as there are chains (equation 1). Adding the
number of windowed transformation chains Ko to the other
transformations 7y returns the number of method trees at
level 3:

To
Tp!
Th=To+Ko=T1To+ F - e 2
1 o+ Lo o+ kZ:O(TO*k)! (2)

For nested structures, the recursive structure can be illus-
trated by equation 3:

Ty=To+ K =1Tp+F §T1 Tt (3)
2: 0 l: 0 .
_ |
2o (T — k)]

The depth of nested windowing is restricted by the length of
the series: after n—1 levels of embedded windowing, there is
no data of a series with n points left for further windowings.
Hence the overall size of the search space of all method trees
is upper bounded by:

Thn—1

Tr_1!
SearchSpace| < F' - —_— 4
SearchSpacel S Fr Y (@

Each element in the search space delivers as many features
as are determined by the concluding functional. If genetic
programming has to construct more features, it can either
be applied several times, or transformations can be applied
more than once.

3.1.2 Processing a method tree

Until now we have ignored that the window size of embed-
ded windowings must become smaller for increased depth of
embedding. Regarding the embedded windowing operators
leads to the notion of dynamic windowing.

DEFINITION 13. Let (¢:)icq1,... ,n} be the original value se-
ries of lengthn and d € {2,...n/2}. Windowing with overlap
g, width w = n/d and step size s = n/gd is called DYNAMIC
WINDOWING.

The maximal depth of a method tree can now be determined.

LEMMA 1. Given a value series (T:);c{1,...,n} of lengthn,
a method tree using dynamic windowing cannot exceed the
depth of loggzn — 1.

Proof: Dynamic windowing splits the series into windows
of width n/d. The width depends on the length of
the series as well as on parameter d. For embedded
windowing, only n/d values are available. Windows on
this smaller series have a window width of n/d?. Only
log,; n—1 repetitions are possible. The last embedding
of windowing with width

n __n_ _ nd 4

dlogg n—1 dlogan n
d

does not allow any further windowing, because then
only one value would remain for a window.

The number of windows with overlap g on a series of
length n is n/s — g + 1. Combining the maximal depth of
a method tree with the number of windows and their com-
putation efforts estimates the worst runtime complexity of
a method tree.

THEOREM 2. Let CM(n) be the complexity of applying
an internal method of at most quadratic time complexity to
a series of length n. Using dynamic windowing, no method
tree requires a runtime which is exponential in the length of
the series (2:)icq1,... n}-

Proof: The number of windows times the effort per window
determines the overall effort. Using n/s — g+ 1 this is
for a first level:

(5-g+1)-0m(5) = a-1+1)-0M ()

Embedding a further windowing delivers at level ¢ the
following effort estimation:

(9(d—1)+1)"-CM (3)

di
Using Lemma 1 for the bound of i results in the total
effort:
_ loggn—1 n
(9(d—1)+ 1= (1)
= (g(d—1)+ 18" oM (—"T'Ld)
= (9(d—1)+ D)=t CM(d) (5)

For the worst case of CM (d) = d?, equation 5 becomes:

(g(d—1)+)5

d? e ——a
= — = .plega-n+1d
g(d—1)+1
d2
. ploga(g(d—1)+1)
gld—1)+1

As is easily seen, the runtime is not exponential in the
length of the series, but is limited by the overlap and
the parameter d and is therefore pseudo-polynomial.

Dynamic windowing avoids a particular case with expo-
nential effort, which otherwise could easily be constructed.
If, for instance, the series was divided into two windows at

raw transformed
training set I training set

. l

1

. 1

. 1

. 1

' learned feature extraction ! learned
I method tree : classifier
: feature selection| 1

. 1

. 1

. 1

| :

1

classifier learning: optimized d
mySVM € training set

Figure 7: Classifier learning step using the best
method tree found by the genetic programming ap-
proach.

each level with a fixed step size but dynamic window width,
the effort would be 2° -O(37) at the i-th level. After n —1
splits, no further embedding of windowing is possible, since
only two values are left. Hence, the overall effort would be
2™. This exponential construction, however, does not obey
dynamic windowing with fixed overlap and dynamic width.

Hence, it cannot happen in our scenario.

4. EVALUATING THE REPRESENTATIONS
DERIVED FROM METHOD TREES

Automatic feature construction aims at good results of a
second learning step which uses the features, namely clas-
sifier learning. Remember Figure 1 from the introduction,
where genetic programming were presented to deliver the in-
put to classifier learning. Now, Figure 7 details the second
box of the overall picture.

Feature construction is already guided by the classification
task in that cross-validated learning determines the fitness
of method trees (individuals of genetic programming). Now,
also feature selection is performed by a simple evolutionary
method, namely the (1+1)EA [1]. Again, the classification
task decides upon the fitness. The feature set is built using
a subset of the training data. The selected method trees are
then applied to all the training data. The support vector
machine mySVM is applied to this new representation and
learns a classifier.

4.1 Classifying genres

Since results are published for the genre classification task,
we have applied our approach to this task, too. Note, how-
ever, that no published benchmark data sets exist. Hence,
the comparison can only show that feature construction and
selection leads to similar performance as achieved by other
approaches. For the classification of genres, three data sets
have been built.

e Classic/pop: 100 pieces for each class were available
in Ogg Vorbis format.

e Techno/pop: 80 songs for each class from a large vari-
ety of artists were available in Ogg Vorbis format.

e Hiphop/pop: 120 songs for each class from few records
were available in MP3 format with a coding of 128
kbits/s.

The classification tasks are of increasing difficulty. Using
mySVM with a linear kernel, the performance was deter-
mined by a 10-fold cross validation and is shown in Table 1.
Concerning classic vs. pop, 93% accuracy, and concerning

Classic/pop Techno/pop Hiphop/pop User; User, Users Usery
Accuracy 100% 93.12% 82.50% Accuracy 95.19% 92.14% 90.56% 84.55%
Precision 100% 94.80% 85.27% Precision 92.70% 98.33% 90.83% 85.87%
Recall 100% 93.22% 79.41% Recall 99.00% 84.67% 93.00% 83.74%
Error 0% 6.88% 17.50% Error 4.81% 7.86% 9.44% 15.45%

Table 1: Classification of genres with a linear SVM
using the task specific feature sets.

Classic/pop Techno/pop Hiphop/pop

Accuracy 96.50% 64.38% 72.08%
Precision 94.12% 60.38% 70.41%
Recall 95.31% 64.00% 67.65%
Error 3.50% 35.63% 27.92%

Table 2: Classification performance using the same
non-tailored standard feature set for all classification
tasks (linear SVM).

hiphop vs. pop, 66% accuracy have been published [19, 20].

41 features have been constructed for all genre classifica-
tion tasks. For the distinction between classic and pop, 21
features have been selected for mySVM by the evolutionary
approach. Most runs selected features referring to the phase
space (angle and variance). The use of features can also be
inspected by restricting a top-down induction of decision
trees to a few levels. For a one level stump, 93% accuracy
could be achieved by just using the RMS volume, i.e. the
root mean square average of the series.

For the separation of techno and pop, 18 features were
selected for mySVM, the most frequently selected ones being
the filtering of those positions in the index dimension where
the curve crosses the zero line. The decision tree starts with
a phase space feature, the average of angles. A one level
stump uses the starting value of the second frequency band,
giving a benchmark of 76% accuracy.

For the classification into hiphop and pop, 22 features
were selected with the mere volume being the most fre-
quently selected feature. The decision tree classifying hiphop
against pop is rather complex. It starts with the length of
the songs. Experiments with naive Bayes and k-NN did not
change the picture: an accuracy of about 75% can easily be
achieved, increasing the performance further demands bet-
ter features.

To demonstrate the effect of tailored feature sets for each
classification task we performed experiments with the same
feature set for all data sets. We used only features which
were used in at least 50% of all subsets produced by feature
selection for all data sets to simulate a reasonable standard
feature set. Table 2 shows the classification performance
for a linear SVM estimated with a 10-fold cross validation.
The performance is significantly lower than the performance
which can be achieved using the tailored feature sets (see
Table 1).

4.2 User preferences

Recommendations of songs to possible customers are cur-
rently based on the individual correlation of record sales.
This collaborative filtering approach ignores the content of
the music. A high correlation is only achieved within gen-
res, because the preferences traversing a type of music are

Table 3: Classification according to user preferences.

less frequent. The combination of favorite songs into a set
is a very individual and rare classification. It is not a gener-
alization of many instances. Therefore, the classification of
user preferences beyond genres is a challenging task, where
for each user the feature set has to be learned. Of course,
sometimes a user is interested only in pieces of a particular
genre. This does not decrease the difficulty of the classifi-
cation task. In contrast, if positive and negative examples
stem from the same genre, it is hard to construct distin-
guishing features. Genre characteristics might dominate the
user-specific features. As has been seen in the difficulty of
the data set for hiphop vs. pop, sampling from few records
also increases the difficulty of learning. Hence, four learning
tasks of increasing difficulty have been investigated.

Four users brought 50 to 80 pieces of their favorite mu-
sic ranging through diverse genres. They also selected the
same number of negative examples. User 1 selected positive
examples from rock music with a dominating electric guitar.
User 2 selected positive as well as negative examples from
jazz music. User 3 selected music from classic over Latin and
soul to rock and jazz. User 4 selected pieces from different
genres but only from few records. Using a 10-fold cross vali-
dation, mySVM was applied to the constructed and selected
features, one feature set per learning task (user). Table 3
shows the results.

The excellent learning result for a set of positive instances
which are all from a certain style of music corresponds to
our expectation (user 1). The expectation that learning per-
formance would decrease if positive and negative examples
are taken from the same genre is not supported (user 2).
Surprisingly well is the learning result for a broad variety
of genres among the favorites (user 3). This fact indicates
that for this user the constructed feature set supports the
building of preference clusters in feature space instead of
dominating genre clusters. In contrast to this result the
(negative) effect of sampling from few records can be seen
clearly (user 4). Applying the learned decision function to
a database of records allowed the users to assess the recom-
mendations. They were found very reasonable. No particu-
larly disliked music was recommended, but unknown plays
and those, which could have been selected as the top 50.

5. CONCLUSION

In this paper, operators for the analysis of large collections
of audio data have been presented in a unifying framework.
Some new operators have been developed, for instance those
in the phase space. The windowing has been generalized
which leads to method trees as new representation struc-
ture for series data. All known feature extraction methods
for audio data are covered, either directly as an operator,
or as the result of a method tree. Many different method
trees can be built from the building blocks of the framework.
The method trees are automatically generated for a certain
classification task by a genetic programming approach.

Of course, complexity has been an issue. The construction
of method trees is restricted to functionals at the first level,
chains concluded by a functional at the second level, and
to windowings embedding chains at higher levels. The com-
plexity of windowings including methods of a certain com-
plexity has been investigated. It was shown under which
circumstances windowing decreases runtime, compared to
processing the overall value series. Dynamic windowing with
reasonable parameters prevents the approach from becom-
ing infinite or exponential in the length of a series. The size
of the search space for method trees has been estimated and
gives a first idea to analyze the complex structures which
can be build using the described building blocks. Although
this is a first step, a rigorous analysis of the runtime of a
genetic programming algorithm building complex represen-
tations from simple building blocks is still missing.

6. REFERENCES

[1] T. Back, U. Hammel, and H.-P. Schwefel.
Evolutionary computation: Comments on the history
and current state. IEEE Transactions on Evolutionary
Computation, 1(1):3-17, 1997.

[2] J. W. Cooley and J. W. Tukey. An algorithm for the
machine computation of the complex Fourier series.
Mathematics of Computation, 19:297-301, April 1965.

[3] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Technical Report
Reihe CI 21/98, SFB 531, Universitdt Dortmund,
Germany, 1998.

[4] S. Fischer, R. Klinkenberg, I. Mierswa, and
O. Ritthoff. Yale: Yet Another Learning Environment
— Tutorial. Technical Report CI-136/02, Collaborative
Research Center 531, University of Dortmund,
Dortmund, Germany, Juni 2002. ISSN 1433-3325.

[5] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith.
Query by Humming: Musical Information Retrieval in
an Audio Database. In Proc. of ACM Multimedia,
pages 231-236, 1995.

[6] G. Guo and S. Z. Li. Content-Based Audio
Classification and Retrieval by Support Vector
Machines. IEEE Transaction on Neural Networks,
14(1):209 215, January 2003.

[7] N. S. Jayant and P. Noll. Digital Coding of
Waveforms: Principles and Applications to Speech and
Video. Prentice Hall, 1984.

[8] T. Joachims. Learning to Classify Text using Support
Vector Machines, volume 668 of Kluwer International
Series in Engineering and Computer Science. Kluwer,
2002.

[9] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of Knowledge
Discovery in Databases, 2002.

[10] T. Kahveci and A. K. Singh. An efficient index
structure for string databases. In Proceedings of the
27th VLDB, pages 352-360. Morgan Kaufmann, 2001.

[11] E. Keogh and M. Pazzani. An enhanced
representation of time series which allows fast
classification, clustering and relevance feedback. In
Procs. of the 4th Conference on Knowledge Discovery
in Databases, pages 239 241, 1998.

[12] E. Keogh and P. Smyth. An enhanced representation
of time series which allows fast classification,
clustering and relevance feedbaca probabilistic
approach to fast pattern matching in time series
databases. In Procs. of the 3rd Conference on
Knowledge Discovery in Databases, pages 24 — 30,
1997.

[13] J. Koza. Genetic Programming: On the programming
of Computers by Means of Natural Selection. MIT
Press, Cambridge, MA, 1992.

[14] F. Kurth and M. Clausen. Full-text indexing of
very-large audio data bases. In 110th Convention of
the Audio Engineering Society, 2001.

[15] Z. Liu, Y. Wang, and T. Chen. Audio Feature
Extraction and Analysis for Scene Segmentation and
Classification. Journal of VLSI Signal Processing
System, June 1998.

[16] I. Mierswa and K. Morik. Automatic feature
extraction for classifying audio data. Machine
Learning Journal, 58:127-149, 2005.

[17] S. Riiping. mySVM Manual. Universitidt Dortmund,
Lehrstuhl Informatik VIII, 2000. http://www-
ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

[18] F. Takens. Detecting strange attractors in turbulence.
In D. A. Rand and L. S. Young, editors, Dynamical
systems and turbulence, volume 898 of Lecture Notes
in Mathematics, pages 366 — 381. Springer, Berlin,
1980.

[19] G. Tzanetakis. Manipulation, Analysis and Retrieval
Systems for Audio Signals. PhD thesis, Computer
Science Department, Princeton University, June 2002.

[20] G. Tzanetakis, G. Essl, and P. Cook. Automatic
musical genre classification of audio signals. In In
Proceedings of the Int. Symposium on Music
Information Retrieval (ISMIR), pages 205-210, 2001.

[21] B. Yi, H. Jagadish, and C. Faloutsos. Efficient
retrieval of similar time series under time warping. In
Procs. 14th Conference on Data Engineering, pages
201 — 208, 1998.

[22] T. Zhang and C. Kuo. Content-based Classification
and Retrieval of Audio. In SPIE’s }3rd Annual
Meeting - Conference on Advanced Signal Processing
Algorithms, Architectures, and Implementations VIII,
San Diego, July 1998.

