
Learning Action-oriented Perceptual Features for

Robot Navigation

Katharina Morik

Anke Rieger

Univ. Dortmund, LS VIII

P.O.Box 500 500, D-4600 Dortmund 50 �

March 2, 1993

Abstract

Machine learning can o�er an increase in the
exibility and applica-

bility of robotics at several levels of control. In this paper, we charac-

terize two symbolic learning tasks in the �eld of robotics. We outline an

approach for learning features from sensory data and for using these fea-

tures to learn more complex ones. We illustrate our approach with �rst

experiments in the �eld of navigation.

1 Introduction

One of the major cost factors in robot applications is the impossibility of auto-
matically transferring the experience from one application to the next (similar)
one. The in
exibility of robot programs makes it a costly process to start a
new application. A lot of preparation is necessary before a robot can be utilized
successfully. This preparation is not yet well enough supported by systems.

The interaction between the robot and its user is oriented towards the robot's
needs. A user-friendly level of interaction has not yet been achieved. Teaching
a robot is done using manual guidance techniques or simply by programming
(preprogramming). Commanding the robot requires very precise orders. To
navigate the robot, the orders refer either to points on the environmental map,
or to points relative to the robot's position. Of course, particular objects can
be represented by their positions on the map. For this particular environment,
the user may use the names of these objects when inputting a navigational task.

�This work is partially funded by the European Community under the project B-Learn II
(P7274) and the Ministry for Sciences and Research of the German federal state Nordrhein-
Westfalen

1

If, for instance, it is known that a cupboard is in a particular area in a room,
an abstract command can be formulated: "move to cupboard". This command
can be mapped one-to-one into the move-command with the absolute position.
However, in a di�erent environment with a cupboard in another position, the
command "move to cupboard" cannot be interpreted. This would require the
recognition of cupboards in general, or, in other words, the general concept of
a cupboard.

One approach to ease robot applications is to integrate machine learning
techniques into robotics. There are three levels of control where learning abilities
can be put to good use:

1. the subsymbolic level of re
exes where the robot learns to enhance the
immediate reaction to sensory input

2. the symbolic level of concepts where the robot learns

� to recognize objects in di�erent environments

� to enhance a map of the environment

� which actions are appropriate for easing an object's recognition

3. the planning level where the robot learns to enhance a sequence of actions
because of experience with prior actions.

We assume a hierarchical robot architecture where several learning tech-
niques are applied at all levels [Knieriemen, 1991]. At all levels, perception-
oriented and action-oriented processing is related (see �gure 1). Regarding con-
cepts within this framework, the representation of relations between operational
concepts is at the highest level, the operational concepts themselves are at the
second level, and their execution, i.e. sensing and performing elementary oper-
ations, is at the lowest level. Operational concepts integrate perception-oriented
and action-oriented features. Moreover, the perceptual features are constructed
with respect to actions and the actions are described with respect to the percep-
tual features. The relations between operational concepts are used for planning
at a higher level. Concepts are related by sharing features and being discrimi-
nated by other features. Features may refer to perceptions or to actions. The
most typical situation is that some concepts share perceptual features and are
discriminated by an action which leads to other perceptual features. There are
some features which trigger the recognition of an object. Most often, these are
perceptual features. For instance, a particular sensor pattern indicates that the
sensed object could be a cupboard, a table, or a projection on a wall, e.g., a
column. Some of the objects can be discriminated by an action. For instance,
one can put something under a table but not under the projection on a wall
because columns are straight upright from top to bottom. There are actions
that distinguish objects. The result of the action needs to be veri�ed again

2

oriented towards

levels of
control

planning

navigation

path, motion
sensor control

reflexes

operational concepts

concept structure

perception action

sensors effectors

Figure 1: Levels of control

by sensor patterns (e.g., has the object been pushed under the table?). The
trigger-action-veri�cation cycle is used for planning on the highest level.

In this paper, we discuss the integration of learning into robotics only with
respect to the second level, the symbolic level of concepts. In particular, we
discuss the �rst step, the representation and learning of the action-oriented per-
ceptual features for operational concepts. In section 2 we describe two particular
learning tasks and present our view of features for operational concepts. In sec-
tion 3, we describe how the data, from which we learn, are gathered. Section 4
describes the experimental preprocessing of sensory data and the representation
of features and concepts. Section 5 gives an example of learning an operational
concept. The conclusion evaluates our approach and relates it with other work.

2 Two learning tasks

In arti�cial intelligence, concept learning refers to learning the description of
a target concept that covers the extension of that concept. The description
consists of features and is expressed by a formula which is true or false for a
particular object. If the formula is true for an object, the object is a member of
the concept, otherwise it is not a member. This view of concept learning needs
to be quali�ed if we want to integrate learning into robotics. Two questions
point to the weakness of the classical view of concepts for robotics applications

3

of learning.
The �rst question is "Where do the features come from?"

In most machine learning applications, the features are given. In robot ap-
plications, sensory data are given. This is what the robot perceives from the
environment. However, sensory data are too speci�c to apply to more than one
object perceived during one operation of the robot. Because of this, features
have to be calculated from the sensory data. This feature construction1 is a
di�cult task. Depending on the features, concept learning may become more or
less e�cient. Up to the present, there is no theory of representation that tells
us which features to construct. Usually, the application developer programs
the construction of a set of features. He then calls up a learning algorithm
which learns concept descriptions. The concept description uses some of the
constructed features. The application developer then evaluates the quality of
the learning result. If the evaluation is not good enough, the developer tries out
the next way of calculating features from the sensory data. The process con-
tinues until the evaluation produces a satisfactory result. This time-consuming
preprocessing of data should be supported by a system. We may view it as a
learning task in its own right.

Learning basic features Several ways of abstracting basic features from sen-
sory data are prepared and partially ordered. The �rst variant is selected
and concept learning is tried using the abstracted sensory data. The
learning result is evaluated. If the evaluation is not good enough, the next
variant of abstracting features from data is chosen, and concept learning is
called again. This loop goes on forever. If appropriate ways of calculating
features are available, the appropriate degree of granularity of the features
should be learned.

A similar idea was proposed by Wrobel as an answer to symbol grounding
problems [Wrobel, 1991] . In Wrobel's paper, however, learning features from
sensory data was modeled as a direct segmentation task of a stream of real-
valued sensory input. In contrast, we provide the algorithm with more complex
calculations such as, for the gradient of two values measured consecutively, or
for the di�erence of two angles. We do not aim at learning such functions. What
we do want to learn is the appropriate degree of granularity of the abstraction
result, and that means which function to choose.

The second question which points out de�ciencies of the classical view of
concepts is "How do we verify that a particular object is a member of a concept?"

Most often, if all features de�ning a concept are true for an object, it is
concluded that the object is a member of the concept. This means that a
concept is completely determined by its features. Think, for instance, of a
representation for the everyday concept "cup". The
at bottom, the concave

1Sometimes, the euphemistic term "feature extraction" is used. It is a misleading term, as
the features are not a subset of sensory data.

4

form, and the handle could be features of the concept "cup", but features alone
are not su�cient to de�ne a cup. A particular object could be described by
these three features without actually being a cup. DeJong and Mooney have
shown the example of a receptacle with a handle bridging over the opening of
the concave form [De Jong and Mooney, 1986]. You cannot drink from such a
receptacle. Therefore, it cannot be a cup. Of course, one can add a feature
stating that the handle must be on the side. In an in�nite number of ways,
however, a given receptacle can be such that it is impossible to drink from
it. All these ways cannot be excluded by features in the concept and object
descriptions. Presumably, for any list of features that a cup cannot have, we
could construct an additional exceptional feature which hinders drinking from
a receptacle. This is the frame problem [McCarthy and Hayes, 1969].

The frame problem indicates that observational features alone are not ad-
equate. What is most important about a cup is that one can drink from it.
Drinking is a verifying action for a cup. Even a baby cup which does not have
a
at bottom (but a ball �lled with heavy material so that it stands upright)
is a cup because one can use it for drinking. As many ways as there are to
disturb the functionality of a cup, there are to preserve its functionality even
if the features are not true. A concept description should not only consist of
perceptual features but also of a verifying action. If the action is successful for
a particular object, it belongs to the concept. If the action is not successful, it
does not belong to the concept. In this way, actions are integrated into concept
descriptions and into their application as recognition functions.

Similarly,Giordana has proposed to use executable features (executable pred-
icates) in concept descriptions [Giordana et al., 1990] . These features are true
for an object if a particular handling of this object is successful. For instance,
the feature "movable" for a concept can be veri�ed by moving that object. We
want to go one step further and propose that even the perceptual features should
be oriented towards action and action features should be oriented towards per-
ceptions.

The perceptual features describe patterns which are perceived while the
robot performs an action. Even features that seem to be purely observational
without any link to an action are, in fact, action-oriented. The perception of a

at bottom, for instance, is only possible when looking from a particular angle
with respect to the object. Looking straight down upon the receptacle does not
allow one to determine whether the bottom is
at or not. A perceptual fea-
ture (e.g,
at bottom) is constructed with reference to an action (e.g. looking
from the side). Action features, in turn, require perceptual features. Actions
are represented in terms of the following sensor patterns: what is sensed before
a particular action can be performed, what is sensed during successful perfor-
mance of the action, and what is sensed as the outcome of the action. Hence,
perception and action are closely interrelated at all levels of abstraction.

If we had a robot that could drink, there would be features constructed from
sensory data such as "full receptacle" and "empty receptacle". The operational

5

concept of a "drinking receptacle" would look roughly like this:
full receptacle(Obj, T1, T2, lifting) & at lips(Obj, T2, T3, slurping) & ...
& empty receptacle(Obj, Tn-1, Tn, lowering)
! drinking receptacle(T1, Tn, drinking)
Of course, this is an unrealistic example. We describe our experiments in

the navigation task in 5.

Learning more abstract features

Given basic features which describe sensory data which were measured
during a particular action (result of the �rst learning task), and

given the interval of time in which an object was measured by some sen-
sors,

learn higher-level action-oriented perceptual features.

Note, that the higher-level features need not be expressed by just one rule.
An inference chain may lead from the lowest feature to the highest one.

Before we describe in detail our experiments in learning action-oriented per-
ceptual features at several levels of abstraction, we want to introduce the navi-
gational task and the data that we have.

3 Data from a navigation scenario

Our learning tasks are embedded in enhancing the
exibility of autonomous
vehicle navigation. A hierarchical architecture of the navigation system is as-
sumed [Kaelbling, 1987]. Whereas reinforcement learning is applied to low-level
learning tasks such as obstacle avoidance [Millan and Torras, 1991] and learn-
ing macro-operators is applied to the planning level [Spandl and Pitschke, 1991]
we investigate learning operational concepts from sensory data. The data are
gathered by a vehicle while moving through a room. The vehicle, PRIAMOS,
has been developed at the University of Karlsruhe. The vehicle is able to turn
around 360 degrees at the same point and can move in every direction with
every orientation. The vehicle is equipped with 24 sonar sensors, all of which
are loccated at the same height all around the vehicle. The aim is to enable
the navigation system to perform high-level tasks such as "pass through the
door, turn left, move to the cupboard" in various environments. This requires
the learning of operational concepts such as "pass through door" from several
training traces. Each training trace consists of the following data for each point
of time and each sensor:

trace number, point of time, sensor number, measured distance, sen-
sor orientation, sensor position in the global coordinate system,

6

orientation of the robot, robot position in the global coordinate
system, object number and edge number of what is sensed by the
distance signal.

Currently, we have 28 traces, each with 27 time points. Therefore, there
are 18144 measurements from which we can learn. Most paths are movements
through a door with di�erent distances from the doorframes, and with or with-
out a cupboard at the wall close to the door. A room with its edge numbers is
shown in �gure 2. Most edges represent walls of the room. The edge numbers
of the cupboard (0 to 3) are printed in italics. In order to obtain examples for
learning, we have grouped together all measurements with the same orienta-
tion of the robot and all measurements which sensed the same edge. Particular
constellations of edges, such as two walls being linked by a right angle, are also
gathered. These constellations are called "concave" and "convex". For instance,
edges 7 and 6 in the room of �gure 2 form a concave constellation with respect
to the robot's position (hatched area). Edge 7 alone is just a "line", be it mea-
sured from parallel, straight towards the edge, straight away from the edge, or
diagonal position. Two parallel edges, e.g. edge 9 and 7 or 3 and 1, are named
"jump". The paths of the robot are indicated by the arrows.

From the traces, we have derived 23 examples for concave edges, 57 examples
for convex edges, 206 for jump, and 718 for line.

4 The representation

The representation formalism we use is the one of the system MOBAL2. It is
a restricted �rst order logic with explicit negation, only one conclusion, and all
arguments of the conclusion occurring in at least one premise. The representa-
tion formalism is capable of expressing higher-order constructs3. Among other
representation items, MOBAL o�ers:

Facts Facts are used to state relations, properties of objects, and concept mem-
bership. Facts are represented as function-free literals without variables.
A derived or input fact without explicit negation is interpreted as true.
Every fact which is to be interpreted as false must be explicitly negated.
An example for a fact is

s jump(7,5,11,26,diagonal),

where 7 is the trace number, 5 is the sensor number, 11 is the starting
point, 26 the end point of the time interval, and "diagonal" is the orien-
tation of the robot towards the sensed edge.

2MOBAL is developed at the German National Research Center for Computer Science.
3Formal properties of the formalism have been proved in [Wrobel, 1987]. A descrip-

tion of the system including detailed chapters about the representation formalism is
[Morik et al., 1993].

7

1

2
3

4

5

6

7

8
9

0

10

11

0
1

2
3

Figure 2: Room with traces and edge numbers

8

Rules We may view the rules in MOBAL as Horn clauses, here. If the premises
can be instantiated by positive facts, the conclusion is derived. An exam-
ple for a rule is the following

stable(Trace,SAlpha,S,T1,T2,Value1) &

incr peak(Trace,SAlpha,S,T2,T3,Value2) &

stable(Trace,SAlpha,S,T3,T4,Value2)

! s jump(Trace,S,T1,T4,parallel).

This rule expresses a sequence of sensor patterns. First, in the time in-
terval from T1 to T2, about the same gradient holds for any subsequent
measurements. From T2 to T3, there is a much higher gradient, and
the higher gradient is stable from T3 to T4. This sequence of features
concludes in a more abstract feature, namely s jump.

Rule schemata Rule schemata express the structure of rules to be learned.
They provide the user of MOBAL with an explicit control over the hy-
pothesis space for learning. A rule schema is a rule in which predicate
variables are used instead of actual predicates of the application domain.
A predicate variable can be instantiated by a predicate symbol of the
same arity. There is a substitution � for predicate variables. Let RS be a
rule schema, then RS� is an (partially) instantiated one. If all predicate
variables in RS are substituted by predicate symbols, RS� is a rule.

An example of a rule schema is the one which corresponds to our example
rule:

P1(Trace,SAlpha,S,T1,T2,Value1)& P2(Trace,SAlpha,S,T2,T3,Value2)&

P1(Trace,SAlpha,S,T3,T4,Value2)! P3(Trace,S,T1,T4,M).

According to Kietz and Wroble [Kietz and Wrobel, 1991], rule schemata
are ordered with respect to their generality such that the generality of fully
instantiated rule schemata is given by theta-subsumption [Plotkin, 1970].

Within the representation formalism, the representation language for our
application has to be declared. MOBAL supports the declaration of predicates
or acquires the declarations automatically. We have developed a hierarchy of
predicates. The lowest level is given by the "measure" predicate. It expresses a
sensor measurement as a logical fact in the following form:

measure(Tr, Ti, S, Dist, SAlpha, SX, SY, RAlpha, RX, RY, RZ, Oi, Ei)
where

Tr: trace number,

Ti: point of time, for instance, T1 and T2 are points of time,

S: sensor number,

9

Dist: measured distance,

SAlpha: sensor orientation,

SX,SY: sensor position in the global coordinate system,

RAlpha: orientation of the robot,

RX, RY, RZ: robot position in the global coordinate system,

Oi: object number, and

Ei: edge number of what is sensed by the distance signal.

The next higher level is given by the following predicates which express
sensor patterns:

no measurement, increasing, incr peak, decreasing, decr peak, sin-
gle peak, stable, straight to, straight away.

They all have the arguments, Tr, SAlpha, S, T1, T2, Grad, where Grad is
the calculated value of the chosen function for abstracting data and all other
abbreviations are as above. It need not be the gradient, but right now, the
function is the gradience. Several gradients are abstracted into one qualitative
predicate by a tolerance function. The �rst learning task, introduced in section
2, is about adjusting these functions to get the proper calculation of these sensor
patterns.

From these sensor patterns, our basic features, more abstract features are
learned. There is an inferential hierarchy of features. The basic features occur
in the premises of rules where the conclusion is a more abstract feature. These
more abstract features occur in premises of rules where the conclusion is an even
more abstract feature. This inferential hierarchy can be viewed as a hierarchy of
features, but it can as well be considered a hierarchy of simple concepts. Because
we do not use propositional logic, no principle distinction need be made between
features and concepts. The interesting point is that from the lowest inferential
level on sensor patterns are de�ned with respect to robot actions, and this
interrelation is continued at all inferential levels.
Predicates concluded from sensor patterns of one sensor are:

s jump, s line, s convex, s concave. The predicate arguments are
Tr, S, T1, T2, M

where M means one of the following movements (relative orientation):
diagonal, parallel, straight away, straight towards.
All other abbreviations are as above. These groupings were chosen to rep-

resent the next level of abstraction because on one hand they can be derived
from a geometric description of the map de�ned with respect to a global coor-
dinate system. On the other hand they can be perceived by the robot yielding
a description de�ned with respect to the robot's reference system. Thus they

10

support the transformation from robot reference system to the global one and
vice versa.

The relative orientation of the robot with respect to a group of edges is
de�ned identically for s line and s jump: If the direction of the robot's movement
is parallel to the edge(s) it is labeled parallel. If the angle between the robot's
direction of movement and the edge orientation is a right angle it is labeled
straight away or straight towards. All other cases are labeled diagonal. For
convex and concave corners, respectively, the relative orientation is considered
parallel if the robot orientation is parallel to one of the edges of the corner.
The relative orientation is called straight towards or straight away if the robot's
orientation is not parallel to each of the two edges and it moves towards or away
from the point, which both edges share. All other cases are labeled diagonal.

From these predicates one can conclude more general features for a group of
sensors:

sg jump, sg line, sg convex, sg concave
with the same arguments as their corresponding features for one sensor. In this
way it can be expressed that all sensors at one side of the robot perceive the
same sensor pattern.
From these features we can conclude simple operational concepts, such as

move through door(Tr, T1, T2, M).
As the meanings of the features or concepts are learned, the rules are described
in section 5.

5 Learning what it means to pass through a

doorway

Referring to �gure 2 we illustrate what happens when the robot goes through
a doorway 4. Consider the traces where the robot moves through the doorway
parallel to the doorframes. When approaching the door, the sensors at the front
right corner of the robot perceive the convex corner produced by edges 10 and
9. The sensors on the right side perceive the jump caused by edges 9 and 7.
Then the sensors on the right back corner perceive the convex corner caused
by the pair of edges 9 and 8. Correspondingly, the sensors on the front left
corner �rst perceive the convex corner caused by edges 2 and 3, and then the
concave corner produced by edges 5 and 6. Meanwhile, the sensors on the left
side perceive the jump caused by edges 3 and 1, and the jump caused by edges
1 and 5. The sensors at the front constantly measure the back wall of the room,

4In the following we use going through a door as synonym for going through a door way.
Only when talking with a native speaker of the American language we realized that the
German concept of "door" which has as a crucial point of its meaning that one can pass
through a door does not correspond to the American concept of a "door" which has as part
of its meaning that one cannot pass through it. We de�ne the German concept of a door in
this paper.

11

edge 6. This is what human inspectors of the sensory data realize. The issue
now is to have the system detect these relations by machine learning.

The learning module of the MOBAL system, RDT [Kietz and Wrobel, 1991],
is applied to solve this complex learning task. RDT is a model-based inductive
learning algorithm which learns instantiations of rule schemata. RDT learns
frommost general rules to more special rules. In contrast to learning algorithms
that learn most speci�c generalizations, RDT learns most general rules that obey
the user given evaluation criterion. In contrast to systems that stop after having
found a good rule, RDT learns as many most general rules as possible5.

In this application, RDT learns the following three types of rules:

� Rules for patterns for single sensors (see section 5.1)

� Rules for patterns for groups of sensors (see section 5.2)

� Rules for going through a door in terms of patterns for sensor groups (see
section 5.3)

For each type of rule, a set of rule schemata is prepared. With the sensor
data prepared as described in section 3, rules of all types are learned. We
illustrate the learning step by step in the next sections. Note, however, that
MOBAL is able to learn many rules and rules at di�erent inferential levels in
the same run.

5.1 Learning rules for single sensors

To illustrate the �rst type of rules, we consider how a single sensor perceives a
jump, i.e. two parallel edges at di�erent distances relative to the robot. The
following literals represent the features perceived in trace 19 by sensor 5 during
time interval [9,26]:
stable(19,180,5,9,10,-1), incr peak(19,180,5,10,11,85), stable(19,180,5,11,26,0).

Sensor 5 is located at the right side of the robot. Trace 19 is one of the traces
where the robot moves through the door parallel to the doorframes (see �gure
2). In the preprocessing step, we calculated the fact s jump(19,5,9,26,parallel).
This literal represents the fact that in trace 19, sensor 5 perceived a jump during
time interval [9,26], when moving parallel to the two edges. This fact was derived
using the knowledge about pairs of edges which produce an s jump. In addition
we used knowledge about edges which were measured by certain sensors during
certain time intervalls. For the cases where the robot moves diagonally through
the door, e.g. traces 7 and 8, we have the features

incr peak(7,213,5,11,12,86),increasing(7,213,5,12,26,29)
and

incr peak(8,326,5,11,12,86), increasing(8,326,5,12,26,29).

5Of course, RDT does not further specialize rules which have been accepted already.

12

s line s jump s convex s concave
parallel 200 103 44 16
diagonal 383 89 13 4

straight towards 75 6 0 1
straight away 60 8 0 2

total 718 206 57 23

Table 1: Number of examples for patterns for single sensors

The corresponding jump-predicates are s jump(7,5,11,26,diagonal) and
s jump(8,5,11,26,diagonal). The other sensors on the right side of the robot,
which are located behind sensor 5, perceive the same features at successive time
points.

Overall 206 examples for s jump are available for RDT. In addition, RDT is
given 30 rule schemata. Two of them are listed here for illustration:

P1(Trace, Orientation, Sensor, Time1, Time2, Grad1) &
P2(Trace, Orientation, Sensor, Time2, Time3, Grad2)
! Q(Trace, Sensor, Time1, Time3, parallel).

and
P1(Trace, Orientation, Sensor, Time1, Time2, Grad1) &
P2(Trace, Orientation, Sensor, Time2, Time3, Grad2) &
P1(Trace, Orientation, Sensor, Time3, Time4, Grad3) &
! Q(Trace, Sensor, Time1, Time4, diagonal).
In the rule schemata capital letters refer to variables (predicate variables and

argument variables), and "parallel" and "diagonal" refer to constants. The rule
schema can only be instantiated such that the last argument of the concluding
predicate has the constant as its last argument. In this way, the hypothesis
space for learning is further focused on our learning goal. 28 rules were learned
for s jump, for instance:

incr peak(Trace, Orientation, Sensor, Time1, Time2, Grad1) &
increasing(trace, Orientation, Sensor, Time2, Time3, Grad2)
! s jump(Trace, Sensor, Time1, Time3, diagonal).

and
stable(Trace, Orientation, Sensor, Time1, Time2, Grad1) &
incr peak(Trace, Orientation, Sensor, Time2, Time3, Grad2) &
stable(Trace, Orientation, Sensor, Time3, Time4, Grad3) &
! s jump(Trace, Sensor, Time1, Time4, parallel).
In tables 1 and 2 we have summarized the results of learning rules for patterns

for single sensors. Table 1 shows the number of examples for each grouping and
relative orientation of the robot towards the grouping. Table 2 shows the number
of learned rules for each grouping and relative orientation.

13

s line s jump s convex s concave
parallel 14 11 16 3
diagonal 25 15 5 3

straight towards 16 2 0 1
straight away 13 0 0 2

total 58 28 21 9

Table 2: Number of learned rules for patterns for single sensors

5.2 Learning rules for groups of sensors

In the next step, we tried to learn rules which de�ne patterns for groups of
sensors. The following ideas motivated our approach. The fact that a group
of sensors belonging to the same class (e.g. sensors on the right side of the
robot) perceived the same pattern yields more evidence than the fact that only
a single sensor perceived the same pattern. In addition we get the information
to which class a sensor belongs. In this way we get a representation independent
of particular sensor numbers.

In each of our example traces for moving through a door, all the sensors
on the right side of the robot perceive the jump caused by edges 9 and 8 at
successive time points. This is expressed by the three groups of literals:
s jump(7,5,11,26,diagonal),s jump(7,6,12,26,diagonal), s jump(7,7,13,26,diagonal)
and
s jump(8,5,11,26,diagonal), s jump(8,6,12,26,diagonal),s jump(8,7,13,26,diagonal)
and
s jump(19,5,9,26,parallel),s jump(19,6,10,26,parallel),s jump(19,7,11,26,parallel).
The fact that these sensors belong to the class "right side" is expressed with
the predicate

sclass(<trace>,<sensor>,<tmin>,<tmax>, <sensor class>),
where <tmin> and <tmax> denote the time interval for which the membership
is valid.
For trace 7 and sensors 5, 6, and 7 we have sclass(7,5,1,26,right side),
sclass(7,6,1,26,right side), and sclass(7,7,1,26,right side).
To express the fact that a time point is the direct successor of another time
point we use the predicate succ(<time>,<time>).

In this learning step, we use rule schemata which focus the search in the
hypothesis space of RDT on hypotheses which constrain the required number
of sensors of a speci�c class. These sensors have to perceive the same pattern.
We consider groups with one, two, and three sensors. Via the rule schemata,
we also put constraints on the time intervals during which the same pattern has
to be perceived by the sensors. The sensors in the grouping have to perceive
the same pattern in the same time interval or in time intervals with successive
starting or ending points. Examples for rule schemata are:

14

S Pattern(Trace,Sensor,Start,End,Movement) &
sclass(Trace,Sensor,Time1,Time2,Class) &
Const Class(Class) & Const Move(Movement) &
Time1 � Start & End � Time2
! SG Pattern(Trace,Class,Start,End,Movement).

and
S Pattern(Trace,Sensor1,Start,End,Movement) &
S Pattern(Trace,Sensor2,Start,End,Movement) &
sclass(Trace,Sensor,T1,T2,Class) & sclass(Trace,Sensor,T1,T2,Class) &
Const Class(Class) & Const Move(Movement) &
T1 � Start & End � T2 & Sensor1 6= Sensor2
! SG Pattern(Trace,Class,Start,End,Movement).

and
S Pattern(Trace,Sensor1,Start1,End1,Movement) & succ(Start1,Start2) &
S Pattern(Trace,Sensor2,Start2,End2,Movement) & succ(Start2,Start3) &
S Pattern(Trace,Sensor3,Start3,End3,Movement) &
sclass(Trace,Sensor1,T1,T2,Class) & sclass(Trace,Sensor2,T1,T2,Class) &
sclass(Trace,Sensor3,T1,T2,Class) &
Const Class(Class) & Const Move(Movement) & T1 � Start & End � T2
! SG Pattern(Trace,Class,Start1,End3,Movement).
The question is why we have included rule schemata for sensor "groups" that

have one sensor. In this way we have found that convex and concave corners are
almost always perceived by a single sensor positioned at a corner of the robot.
In this case the rules determine the class of the sensor. An example for a learned
rule for a group with one sensor is

s concave(Trace,Sensor,Start,End,Movement) &
sclass(Trace,Sensor,T1,T2,Class) &
corner back left(Class) & diagonal(Movement) &
T1 � Start1 & End � T2
! sg concave(Trace,Class,Start,End,Movement).
This rule tells us, that a sensor on the back left corner of the robot perceives

a concave corner when the robot moves diagonally along this concave corner.
The following rules show more examples for those rules that have been learned:

s line(Trace,Sensor1,Start,End,Movement) &
s line(Trace,Sensor2,Start,End,Movement) &
sclass(Trace,Sensor,T1,T2,Class) & sclass(Trace,Sensor,T1,T2,Class) &
front middle(Class) & straight towards(Movement) &
T1 � Start & End � T2 & Sensor1 6= Sensor2
! sg line(Trace,Class,Start,End,Movement).

and
s jump(Trace,Sensor1,Start1,End1,Movement) & succ(Start1,Start2) &
s jump(Trace,Sensor2,Start2,End2,Movement) & succ(Start2,Start3) &
s jump(Trace,Sensor3,Start3,End3,Movement) &
sclass(Trace,Sensor1,T1,T2,Class) & sclass(Trace,Sensor2,T1,T2,Class) &

15

sclass(Trace,Sensor3,T1,T2,Class) &
right side(Class) & parallel(Movement) & T1 � Start1 & End3 � T2
! sg jump(Trace,Class,Start1,End3,Movement).
The former rule tells us that the sensors on the front of the robot perceive

a line during the same time interval, when the robot moves straight towards an
edge. The latter rule tells us that if the robot moves parallel along a jump on
its right side, three sensor on the right side perceive the jump in time intervals
whose starting points follow each other.

These kind of rules enable the robot to focus its attention on speci�c sensors
in order to detect a certain grouping and to gather evidence for it.

5.3 Learning the meaning of moving through a doorway

In the last step, we learn rules for going through a door by using patterns for
sensor groups. In the beginning of this section we described which groupings
of edges (jumps, concave and convex corners, lines) the robot perceives while
moving parallelly through a doorway. The question to be asked is which subset
of these features is su�cient to discriminate between going through a doorway
on one hand, and on the other hand, passing by a door, or moving towards a
corner of the room, etc.

We have used rule schemata which re
ected the symmetry of the doorframes,
which could be detected by classes of sensors opposite to each other. By this
we mean the classes "left side" and "right side", for example. The sensors in
these classes perceive the jump caused by edges 9 and 7 on the right side and
the jump caused by edges 3 and 1 (3 and 5), respectively. An example for a rule
schema is

SG Pattern(Trace,right side,T1,T2,Movement) &
SG Pattern(Trace,left side,T1,T2,Movement) &
Const Move(Movement) & 1 � T1 & T2 � 27
! Q(Trace,T1,T2,Movement).
In this case, the constants "right side" and "left side" focus RDT's search

on rules associated with these sensor classes.
Depending on the orientation of the robot, with respect to the doorframes,

the time intervals for the left and right side are either the same or have a short
time delay. This is re
ected in the learned rules for moving parallelly through
a door versus moving diagonally through a door. The learned rules for moving
parallelly through a door are:

sg jump(Trace,right side,T1,T2,Movement) &
sg jump(Trace,left side,T1,T2,Movement) &
parallel(Movement) & 1 � T1 & T2 � 27
! move through door(Trace,T1,T2,Movement).

and
sg jump(Trace,right side,T1,T2,Movement) &
sg jump(Trace,left side,T3,T4,Movement) &

16

Number of examples Number of learned rules
parallel 6 2
diagonal 4 2

total 10 4

Table 3: Number of examples and rules for moving through a doorway

parallel(Movement) & succ(T1,T3) & Start � T1 & T2 � End
! move through door(Trace,Start,End,Movement).

The rules for moving diagonally through a door are the following
sg jump(Trace,right side,T1,T2,Movement) &
sg jump(Trace,left side,T3,T4,Movement) &
diagonal(Movement) & succ3(T1,T3) & Start � T1 & T4 � End
! move through door(Trace,Start,End,Movement).

and
sg jump(Trace,right side,T1,T2,Movement) &
sg jump(Trace,left side,T3,T4,Movement) &
diagonal(Movement) & succ3(T3,T1) & Start � T1 & T4 � End
! move through door(Trace,Start,End,Movement),
where succ3(<t1>,<t2>) expresses the fact that the time di�erence between

t1 and the following time point t2 is 3. The results of this learning step are
summarized in table 3

6 Conclusion

In this paper we have described one step towards automatically construct-
ing higher and hence more user-friendly notions for human-robot interaction.
In contrast to previous approaches to learning in robotics, such as Explana-
tion Based Learning [Segre, 1988], [Zercher, 1992], or subsymbolic techniques
[Millan and Torras, 1991], we apply inductive logic programming to robot nav-
igation. Bratko and his colleagues apply inductive logic programming to de-
scriptions of real-world processes, too [Bratko et al., 1992]. Our aim of auto-
matically building up higher and more qualitative levels of describing events is
similar to their qualitative modeling of physical systems in very general ways
only. Whereas they have used about ten examples and a �xed background
knowledge in order to learn one clause that describes a physical system, we
constructed many times more examples based on real sensory data in order to
learn a hierarchy of action-oriented features. Each learned feature is represented
by several clauses. Our application of RDT di�ers from the heuristic relational
learner FOIL [Quinlan, 1990] in that RDT is capable of learning many rules in
one run. FOIL selects the best covering and discriminating rule. In our naviga-
tion application, however, we want as many rules as possible that could match

17

a new situation. The training phase in which we know the sensed edges should
yield rules that can be used in the performance phase, where this knowledge is
not available.

Our main results are:

� identi�cation of learning tasks in a framework for learning in navigation;

� representation of action-oriented perceptual features at several levels of
abstraction;

� learning action-oriented perceptual features at di�erent levels of abstrac-
tion.

Further work is needed concerning the two learning tasks identi�ed in this
paper. We chose one way of constructing the basic features (stable, increasing,
etc.) from the sensory data. These features are used in the �rst learning step
(cf. 5.1). This learning step resulted in two rules for deriving the same sensor
pattern, one rule being a more detailed version of the other one:

stable(Trace, Orientation, Sensor, Time1, Time2, Grad1) &
incr peak(Trace, Orientation, Sensor, Time2, Time3, Grad2) &
stable(Trace, Orientation, Sensor, Time3, Time4, Grad3) &
! s jump(Trace, Sensor, Time1, Time4, parallel).

and
stable(Trace, Orientation, Sensor, Time1, Time2, Grad1) &
incr peak(Trace, Orientation, Sensor, Time2, Time3, Grad2) &
incr peak(Trace, Orientation, Sensor, Time3, Time4, Grad3) &
incr peak(Trace, Orientation, Sensor, Time4, Time5, Grad4) &
stable(Trace, Orientation, Sensor, Time5, Time6, Grad5) &
! s jump(Trace, Sensor, Time1, Time6, parallel).

The �rst learning task should adjust the tolerance function for gradience such
that the gradients Grad2, Grad3, Grad4 are considered to be the same and
incr peak no longer appears three times. Some ambiguities in the data can be
handled in this way.

Concerning the second learning task, a complete and systematic exploration
of action-oriented perceptual features can be undertaken now that we have
shown the feasibility of our approach.

An interesting research issue is to de�ne perception-oriented action features
corresponding to our action-oriented perceptual features. Both types of features
will then be integrated into operational concepts. The structure of concepts then
require further investigation. Look for instance, at the following four rules for
the concepts c1 or c2:

r1) p1(X,Y1) & p2(Y1,Y2) & p3(Y2,Y3) ! c1(X,Y1,Y3)
and

r2) p1(X,Y1) & p2(Y1,Y2) ! c1(X,Y1,Y2)
and

18

r3) p1(X,Y1) & p4(Y1,Y2) & p3(Y2,Y3) ! c1(X,Y1,Y3)
and

r4) p1(X,Y1) & p2(Y1,Y2) & p3(Y2,Y3) ! c2(X,Y1,Y3)
where the third rule represents the case of a missing feature, i.e. p4 expresses
no measurement. The premises of r2 subsume those of r1. Should the subset
relation between premise sets indicate a subset relation between concepts? Or,
should the rule with more premises result in a more evidence for the concept
membership of X to c1? Or should each premise be interpreted as referring to a
point in time where r1 covers the whole time interval, and r2 refers to a part of
the interval? Another interpretation of partial information is associated with r3.
There, the sensors failed to measure feature p2. In addition to the problems with
partial information, we have to deal with con
icting information. The disjoint
concepts c1 and c2 are derived from the same premises. This may indicate
that a distinguishing feature is missing. If, however, there is no discriminating
feature, and it cannot even be constructed during the course of our �rst learning
task, then a probablistic approach may help to decide what to do. The formal
analysis of such problems is the subject of current ongoing investigation.

References

[Bratko et al., 1992] Bratko, I., Muggleton, S., and Varsek, A. (1992). Learning
qualitative models of dynamic systems. In Muggleton, S., editor, Inductive
Logic Programming, chapter 22, pages 437 { 452. Academic Press.

[De Jong and Mooney, 1986] De Jong, G. and Mooney, R. (1986). Explanation-
based-learning: A alternative view. Machine Learning, 2(1):145{176.

[Giordana et al., 1990] Giordana, A., Roverso, D., and Saitta, L. (1990). Ab-
straction - a framework for learning. In Procs. AAAI-Workshop on Automatic

Generation of Approximations and Abstractions.

[Kaelbling, 1987] Kaelbling, L. (1987). An architecture for intelligent reactive
systems. Technical report, CSLI, Stanford, Ca.

[Kietz and Wrobel, 1991] Kietz, J.-U. and Wrobel, S. (1991). Controlling the
complexity of learning in logic through syntactic and task-oriented models.
In Muggleton, S., editor, Inductive Logic Programming, chapter 16, pages 335
{ 360. Academic Press, London. Also available as Arbeitspapiere der GMD
No. 503, 1991.

[Knieriemen, 1991] Knieriemen, T. (1991). Autonome Mobile Roboter - Sen-

sordateninterpretation und Weltmodellierung zur Navigation in unbekannter

Umgebung. BI Wissenschaftsverlag, Mannheim.

19

[McCarthy and Hayes, 1969] McCarthy, J. and Hayes, P. (1969). Some philo-
sophical problems from the standpoint of arti�cial intelligence. In Michie, D.
and Meltzer, B., editors, Machine Intelligence, volume 4. Edinburgh Univer-
sity Press.

[Millan and Torras, 1991] Millan, J. and Torras, C. (1991). Learning to avoid
obstacles through reinforcement. In Birnbaum, L., editor, Machine Learn-

ing - Procs. of the 8th International Workshop, pages 298 { 302. Morgan
Kaufmann.

[Morik et al., 1993] Morik, K., Wrobel, S., Kietz, J.-U., and Emde, W. (1993).
Knowledge Acquisition and Machine Learning - Theory, Methods, and Appli-

cations. Academic Press, London. to appear.

[Plotkin, 1970] Plotkin, G. D. (1970). A note on inductive generalization. In
Meltzer, B. and Michie, D., editors, Machine Intelligence, chapter 8, pages
153{163. American Elsevier.

[Quinlan, 1990] Quinlan, J. (1990). Learning logical de�nitions from relations.
Machine Learning, 5(3):239 { 266.

[Segre, 1988] Segre, A. (1988). Machine Learning of Robot Assembly Plans.
Kluwer, Boston.

[Spandl and Pitschke, 1991] Spandl, H. and Pitschke, K. (1991). Lernen von
Makro-Trajektorien f�ur einen autonomen Roboter. KI, pages 12 { 16.

[Wrobel, 1987] Wrobel, S. (1987). Higher-order concepts in a tractable knowl-
edge representation. In Morik, K., editor, GWAI-87 11th German Workshop

on Arti�cial Intelligence, pages 129 { 138, Berlin, New York, Tokyo. Springer
Verlag.

[Wrobel, 1991] Wrobel, S. (1991). Towards a model of grounded concept forma-
tion. In Proc. 12th International Joint Conference on Arti�cial Intelligence,
pages 712 { 719, Los Altos, CA. Morgan Kaufman.

[Zercher, 1992] Zercher, K. (1992). Wissensintensives Lernen f�ur zeitkritische

technische Diagnoseaufgaben. in�x, Sankt Augustin.

20

