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ABSTRACT
Given the increase of publications, search for relevant papers be-

comes tedious. In particular, search across disciplines or schools of

thinking is not supported. This is mainly due to the retrieval with

keyword queries: technical terms differ in different sciences or at

different times. Relevant articles might better be identified by their

mathematical problem descriptions. Just looking at the equations

in a paper already gives a hint to whether the paper is relevant.

Hence, we propose a new approach for retrieval of mathematical

expressions based on machine learning. We design an unsupervised

representation learning task that combines embedding learning

with self-supervised learning. Using graph convolutional neural

networks we embed mathematical expression into low-dimensional

vector spaces that allow efficient nearest neighbor queries. To train

our models, we collect a huge dataset with over 29 million mathe-

matical expressions from over 900,000 publications published on

arXiv.org. The math is converted into an XML format, which we

view as graph data. Our empirical evaluations involving a new

dataset of manually annotated search queries show the benefits of

using embedding models for mathematical retrieval.

CCS CONCEPTS
• Information systems → Mathematics retrieval; • Comput-
ing methodologies → Neural networks; Unsupervised learn-
ing.
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1 INTRODUCTION
Machine learning has contributed to many success stories of search

engines. Unfortunately, the search is most often based on words or

text. Technical terms in different disciplines, however, may have
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different meanings or the same meaning may be referred to by dif-

ferent terms. For instance, various usages of the Bayes’ law occur in

different scientific fields and can be found under different titles. For

instance in astrophysics, it is known as information field theory[8].
Without knowing physics and even if the name Bayeswere not men-

tioned, it is easily recognized by the formula P(d |s) = P(d, s)/P(s)
in the paper. Another example is Ising’s paper in a physics jour-

nal from 1925 under the title Ferromagnetismus. Today, the Ising
model is also popular in machine learning, but is referred to first as

Hopfield network and later as Boltzmann machine. This illustrates
the aspect of time: words for particular topics change over time.

The language of Ising’s paper is German, the paper introducing

Jensen’s inequality in 1906 is written in French. Again, the inequal-

ity f ((a+b)/2) ≤ f (a)/2+ f (b)/2 can be easily understood, anyhow.

We conclude that the most compact and comprehensive way to

transport the main ideas of scientific manuscripts in disciplines like

computer science or physics are the equations used. Thus it should

also be the way we formulate our search queries when searching

for scientific manuscripts. In order to judge the relevance of mathe-

matical expressions for a search query, a system has to generalize

between different notations and match the parts of equations, that

describe the same concepts, even if they appear in a different form.

A human reader resorts to domain knowledge acquired over years

of training in his field to judge the relevance. We wonder how ma-

chine learning models with access to vast amounts of mathematical

content can help automatize this process.

In this work, we propose to use graph convolutional neural net-

works to learn a representation of mathematical expressions that

captures semantic relatedness. To this end, we design two unsu-

pervised learning tasks, one classic embedding learning task based

on contextual similarity and one self-supervised learning task in-

spired by masked-language models. We curate a dataset of over

28.9 million equations from over 900,000 papers from arXiv.org and

represent the equations as graphs with one-hot encoded features.

Then we train our models on this large collection of equations. We

compile an evaluation dataset with annotated search queries from

several different disciplines and showcase the usefulness of our ap-

proach for deploying a search engine for mathematical expressions.

The rest of this paper is structured as follows: We begin by

reviewing relatedwork onmath search and on ourmachine learning

approaches. In Section 3 we describe the dataset of papers and

equations sourced from arXiv.org for our study and present our

pre-processing choices. Then we present the graph convolutional

neural network we use for embedding equations and describe our

two unsupervised learning tasks in Section 4. We begin a statistical

analysis of our problem in Section 5 before presenting an extensive

empirical validation in Section 6.

https://doi.org/10.1145/3394486.3403056
https://doi.org/10.1145/3394486.3403056
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2 MATH SEARCH AND KDD
Mining and indexing mathematical expressions in document col-

lections is a challenging task, mostly tackled in the information

retrieval community [11, 30]. We outline how the problem of math

search is treated with the tools from knowledge discovery and data

mining and present related work on the machine learning methods

we chose for our approach.

Representation. The first question we have to consider is how

to represent mathematical expression. Choices can be divided into

two categories: those for visually representing and those for seman-

tically representing math. The former category is focused on the

layout of an expression. The most prominent choices are LaTex, a

Turing-complete language used in the publications on arXiv.org, as

well as Presentation MathML
1
, an XML dialect for displaying math

on the web that we chose in this work. The latter category includes

Content MathML and OpenMath, two similar XML dialects that

focus on semantic rather than layout, but also domain-specific lan-

guages for symbolic math solvers like Mathematica, that also allow

to manipulate and transform formulas. To the best of our knowl-

edge, no large, public collection of semantic math expressions exists

and, unfortunately, converting math from a display-representation,

where data is available in large quantities, to a semantic represen-

tation which seems more appropriate for searching, is a non-trivial

task. Available solutions either use rules and heuristics, e.g. the

converter ml2om that translates LaTeX to OpenMath[21], or also

apply machine learning [26]. We chose to apply machine learning

methods directly on the Presentation MathML representation. The

bottom line of the representation question is that math is expressed

in trees, either XML or other parse trees. Our previous work [20]

may be the notable exception to this: We chose to represent equa-

tions as fixed-size bitmaps. While one could argue that this is an

unsuitable choice, the multitude of machine-learning or computer-

vision approaches that successfully transform images of typeset [4]

or hand-written [1, 15] math back to tree-based representations sug-

gests that bitmap representations preserve all required information

of tree-based approaches.

Similarity Measure. The second question is how we compute

similarity between formulas. Zanibbi et al. distinguish text-based,

tree-based and spectral approaches [28]. Text-based approaches

transform tree-structured math into a sequence, for instance by

pre-order traversal, and then estimate the similarity using meth-

ods for sequences like cosine similarities of bags-of-words or the

length of the largest common substring. Tree-based approaches

focus on matching trees or subtrees. Typically computing similar-

ities involves solving dynamic-programming problems. Spectral

approaches work on paths or partial subtrees in the trees. An ex-

ample is approach0[30], that indexes root-leaf paths of operator

trees. From matches of the root-leaf paths, they compute the largest

common subexpression to score the similarity of two equations.

To convert math from LaTeX to the semantic representation of

operator trees, the authors use ca. 100 handwritten grammar rules.

A new trend is to use machine learning to learn a similarity

measure. A machine learning model maps an equation to a dense,

low-dimensional vector. The similarity between these so-called

1
https://www.w3.org/TR/MathML3/

embeddings can be computed via their inner product, which en-

ables fast indexing using a variety of index structures, including

faiss and annoy, designed for efficiently handling millions of these

dense, low-dimensional vectors. Mansouri et al. [16] propose to

embed equations using fastText, a method originally designed for

computing word embeddings, while in our previous work [20] we

compute embeddings with a similar embedding learning task and

convolutional neural networks (see Section 4.2).

Graph Convolutional Neural Networks. In this work we propose

an embeddingmodel based on graph convolutional neural networks.

Like classic convolutional neural networks for image processing,

they compute feature maps based on local neighborhoods. While in

CNNs, we have features associated with each pixel in the pixel grid

and neighborhoods are defined by this grid, in graph CNNs we have

features associated with each node of the graph and neighborhoods

are defined by the edges in the graph. We define graph structures

x = (X ,E) as a tuple of node-features X and edges E. Let |x | denote

the number of nodes in x . We assume that X ∈ R |x |×d where Xi
are the features of the i-th node. A graph CNNmaps an input graph

to an output with transformed feature vectors in a d ′-dimensional

output space but with identical edge structure. It is defined by

composing different layers. Borrowing the notation of Morris et al.

[19], an abstract graph network layer is defined by its output x ′i for
the i-th node

x ′i = ψ
(
xi ,□j ∈NE (i) ϕ

(
xi ,x j , ei j

) )
where ϕ,ψ are (sub-)differentiable operators such as linear transfor-

mations or multi-layer perceptrons, □ denotes a sub-differentiable,

permutation invariant function like sum, mean or max and NE (i)
denotes the set of all neighboring nodes of i in the graph with

edges E. We optionally use information about the edges in the

form of vectorial edge-features ei j . As long as all layers in a graph

neural network are (sub-)differentiable operations, we can train

the network via backpropagation. Efficient software libraries for

training models with GPU-support are available, e.g. we use torch-

geometric [9]. Graph CNNs have been applied in many contexts,

for instance for classifying molecules[7] or classification and seg-

mentation of point-clouds[27]. In this work we apply them to learn

similarities between mathematical expressions, where we view an

XML-representation as graph-structured data.

Self-Supervised Learning. We further draw influence from a re-

cently proposed class of representation learning tasks called self-

supervised learning. Self-supervised learning tasks are unsuper-

vised learning tasks, where parts of the inputs are used to construct

proxy tasks. The representations learned in these proxy-tasks can

then be used in downstream tasks. For instance, we can rotate im-

ages and train a model to predict the rotation angle, as proposed by

Gidaris et al.[10]. Using massive amounts of unlabeled data readily

available, we can fit models that solve a task like this.

We are particularly interested in masking tasks, where parts

of the input are hidden from a model and the model’s task is to

predict the hidden parts. This was made popular by the BERTmodel

for pretraining natural language representations [5] and has since

then been adopted to other inputs, for instance as pretraining for

image classification with convolutional neural networks[22]. We

https://www.w3.org/TR/MathML3/
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Figure 1: Number of Papers per Subject Areas in our Sample

construct a masking task for mathematical expressions and use

graph convolutional neural networks to predict the masked parts.

3 THE DATA
We outline how we gather data from arxiv.org and transform them

to graph structured data for our graph convolutional neural net-

work.

3.1 Dataset
We are working on data obtained from arxiv.org, a service where

scientists can upload their manuscripts or pre-prints without re-

viewing process. We have downloaded all the LaTeX sources of

publications up to April 2019 from the official bulk data repos-

itories
2
. This way we have obtained 934,287 papers. As we can

see in Figure 1, the large majority of these papers are from disci-

plines where mathematical expressions are an important part of

publications. The most prominent subject areas are astrophysics,

condensed-matter physics, computer science, mathematics, and

high energy physics.

From all publications, we extract mathematical expressions by

using regular expressions for themost commonmath-environments

like ’equation’, ’align’, etc. We do not use inline math snippets

but focus on expressions that stand on their own, as they tend to

describe more important concepts. Furthermore we extract user-

defined commands andmacros. Using the library Katex
3
we compile

the raw LaTeX-equations to the XML-based MathML format. Out of

all papers downloaded, 760,041 papers contain at least one equation

that we were able to convert to MathML. In total we have a dataset

of 28,973,591 MathML equations. Furthermore we have used regular

expressions to find arXiv-ids in the bibliographies of the paper to

build a citation graph. In total, 540,892 papers have an outgoing

edge, with a total number of edges of 4,553,297. Since we only detect

those references that use an arXiv-id, for instance in an url, our

citation graph is only a subgraph of the true citation graph.

To ensure reproducibility we provide the scripts used for process-

ing the public arXiv data dump, extracting the mathematical expres-

sions and converting them to MathML as well as collecting meta-

data and citations at https://github.com/Whadup/arxiv_library. We

also share our citation graph, which might be interesting in other

applications.

2
https://arxiv.org/help/bulk_data_s3

3
http://katex.org
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Figure 2: The 50 most frequent characters in math environ-
ments.

3.2 Data-Representation
In order to feed the MathML to a graph convolutional neural net-

work, we have to convert it to a graph with vectorial node features.

The MathML standard defines around 30 different XML-tags like

<mi> for math identifiers or <mo> for math operators. Some of these

tags use attributes, for instance to change font or spacing. Leaf

nodes contain text like numbers, parenthesis or letters (greek, latin,

etc...). We view the XML-structure as a tree and use its nodes and

edges and derive features based on tags, attributes and text. For each

node we use one-hot encoded feature vectors of dimensionality 256.

The first 32 features are used to encode the type of the XML-tag.

The next 32 features are used to encode optional attributes, most

commonly changes of the font to bold or calligraphy fonts. The

remaining 192 dimensions are used to encode the most frequent

characters used in leaf-nodes. In Figure 2 we see that the most

frequent characters are opening and closing parenthesis, followed

by a variety of numbers, latin or greek letters and mathematical

operators. For both attribute and character features, we introduce

special unknown symbols for all rare attributes/characters. In addi-

tion to the one-hot encoded features, we store the position of the

node with respect to the parent node.

4 LEARNING TO FIND RELATED EQUATIONS
In this section we will introduce the graph convolutional neural

network used for computing embeddings and present two unsuper-

vised learning tasks used for training the network.

4.1 Graph-Convolutional Model for Equations
We define a graph convolutional neural network for the task of

embedding mathematical expressions into a low-dimensional vec-

tor space. The raw MathML is converted to graphs with vectorial

features as described in Section 3.2. We propose to use a special

first layer that combines the one-hot encoded information at a node

with the decimal position attribute. Following Vaswani et al.[25],

we encode the position of the i-th node pi ∈ N using positional

embeddings. We use fixed sinusoid embeddings[25] denoted by

E(pj ), but to still allow the model to control the influence of the

positional embeddings, we introduce a learnable scaling coefficient

α initialized to 1.

x
(1)

i = max

©­«®0,
∑

j ∈N(i)∪i

W (1)x j + αE(pj ) + b
(1)ª®¬

https://github.com/Whadup/arxiv_library
https://arxiv.org/help/bulk_data_s3
http://katex.org


The first layer is followed by 3 fully-connected graph convolution

layers of width 512, where the l-th layer is defined by

x
(l )
i = max

©­«®0,
∑

j ∈N(i)∪i

W (l )x
(l−1)

j + b(l )
ª®¬

which linearly transforms all nodes using aweightmatrixW (l )
, adds

a bias term b(l ), aggregates by computing the sum over all neighbor-

hoods and applies the ReLU activation component-wise. All graph

convolution layers output feature maps with 512 dimensions. We

apply batch-normalization before the first and third graph convo-

lution layer. For the remainder of this paper, let ϕ(x) ∈ R |x |×512

denote the output of the last graph convolution layer given the in-

put x . To obtain a single embedding for an input graph, we compute

the mean of all node features. This mean is transformed in another

linear layer to reduce the dimensionality to 64. For the remainder

of this paper, let
¯ϕ(x) ∈ R64

denote this embedding of x .
When scoring similarities between embeddings with margin

losses, we need to control the norm of the embeddings, other-

wise the notion of adherence to a margin becomes meaningless.

Among others, Ding et al. [6] propose to normalize all embed-

dings to unit length. We propose a softer normalization inspired by

batch normalization[13] that also allows to obtain embeddings with

norms smaller than 1. For every training batch of graphs, we com-

pute the mean of the norm as well as its standard deviation. Then

we inversely scale each embedding by the mean plus the standard

deviation. This way, most embeddings have norm smaller than 1.

We keep a running average of the means and standard deviations.

At inference time, we use these running averages for scaling.

4.2 Representation Learning Tasks
We propose to train our embeddings using two self-supervised

learning tasks simultaneously by adding their respective losses.

Contextual Similarity. For learning relations between equations,

we rely on the established contextual similarity task that was first

made popular by word embeddings [18] and has hence been used in

many representation learning approaches, including our approach

[20] for learning similarities between equations. The main idea is

that objects that frequently appear in shared contexts are related.

We define the context of mathematical expressions as the paper

containing the equation and conjecture that two equations are

related if they appear in the same paper, as originally proposed in

[20]. We extend this approach and further define two equations

as related if one paper references the other using a citation graph.

This way we hope to connect equations that describe the same

context but use different notation. In addition, we discriminate

between sampling expressions from the same paper and from the

same section. We hope that within sections, equations are more

related to each other. For obtaining positive examples of related

equations, we

(1) sample a paper uniformly at random and select an expression

from this paper uniformly at random.

(2) randomly select whether we sample from the same section,

same paper or along a citation,

(3) sample a positive example using that method. When we

cannot find a positive example using that method, we jump

back to (1).

For learning similarities we also require negative examples. To

obtain these, we sample a paper uniformly at random and select

an expression from this paper uniformly at random. The random

process that generates these weak labels for similarity learning

introduces a lot of noise, as many equations we claim are related

are unrelated and some of the pairs we say are unrelated are related.

We leave the investigation of more advanced sampling schemes to

future work.

Using the sampled equations x with positive x+ and negative

partners x−, we apply similarity learning. We have to choose a

suitable loss function and investigate two different losses: Triplet

and Histogram. The triplet loss [2] we have previously used [20],

contrasts the similarity between a positive pair of examples and a

negative pair of examples and demands that the similar pair has a

higher similarity by a user-defined margin ∆, usually set to 1.

ℓt (x ,x
+,x−) = max(0,∆ − ⟨ ¯ϕ(x), ¯ϕ(x+)⟩ + ⟨ ¯ϕ(x), ¯ϕ(x−)⟩) (1)

In this paper, we propose to use the histogram loss as proposed

by Ustinova and Lempitsky[23]. It does not work on a triplet of

equations, but on a mini-batch of size m positive pairs X+ and

a batch of negative pairs X−
with respect to anchor examples X .

We collect all similarities between positive pairs in a vector s+ =
(⟨ ¯ϕ(xi ), ¯ϕ(x+i )⟩)i=1, ...,m and of all negative pairs in s−. We divide

the interval [−1, 1] into R − 1 equally-sized bins with boundaries

−1 = t1, t2, ..., tR = 1 and width ∆ = 2/(R−1) and build histograms

for the positive similarities and the negative similarities. Now we

demand that the positive histogram leans more toward the +1

similarity than the negative histogram. We formalize this intuition

as

ℓh (s
+, s−) =

1

m2

R∑
r=1

r∑
r ′=1

( m∑
i=1

δr [s
−
i ]

) ( m∑
i=1

δr ′[s
+
i ]

)
(2)

where instead of hard assignments, we use the triangular kernel

δr [s] =


(s − tr−1)/∆ if s ∈ [tr−1, tr ]

(tr−1 − s)/∆ if s ∈ [tr , tr+1]

0 otherwise

to put similarities into bins. This way we obtain a differentiable

loss function. We hope that histogram loss is more robust with

regard to the massive noise in our labels as each positive example

is contrasted with all negative examples.

Masking Task. We propose to extend the contextual similarity

task by another tasks and optimize the sum of both tasks for training

our embedding models. The main idea of our second task is, that the

symbols in mathematical expressions do not appear independent

from each other, but have strong dependencies. Thus if we hide

a fraction of the symbols in an equation, we should be able to

approximately reconstruct the hidden symbols from the remaining

symbols. This task is reminiscent of masked language modeling

tasks made popular by BERT [5] for natural language processing.

In order to successfully solve this task, a model has to learn about



min

1

n

n∑
i=1

ℓ(⟨w, i ⟩,yi )

P( =?) =
©­­«
w : 0.81

β : 0.04

...

ª®®¬ P( =?) =
©­­«
x : 0.73

y : 0.02

...

ª®®¬
Figure 3: Example of theMasking Taskwith Fictional Values

the frequencies of symbols and their dependencies from the data,

as is illustrated in Figure 3.

More formally, we proceed as follows: For each input graph

x with features X , we randomly set the feature vector of 15% of

the nodes to all zero obtaining the graph x■. Then we compute

ϕ(x■) ∈ R
|x |×512

. Now for each masked node, we want to solve

three separate classification tasks: Given ϕi (x■), predict the right
XML-tag, predict the right XML-attributes (or no-attribute if no at-

tributes where used) and predict the right character (or no-character

if no character was used). We solve these tasks using a single lin-

ear layer of dimensionality 32,32+1 and 192+1 respectively with

soft-max activation and compute the cross-entropy loss ℓ on all

tasks:

ℓtag,i = ℓ(softmax(W (taд)ϕi (x■) + b
(taд),Xi,1:32)

ℓattr,i = ℓ(softmax(W (attr )ϕi (x■) + b
(attr ),Xi,33:64)

ℓ
char,i = ℓ(softmax(W (char )ϕi (x■) + b

(char ),Xi,65:256)

The overall loss of the masking task is defined as the mean of all

three classification losses ℓ
mask,i =

1

3
(ℓtag,i + ℓattr,i + ℓchar,i ). The

loss is only evaluated for the masked tokens and we compute the

mean over all masked tokens to obtain a loss value for x■.
Adding this task to the contextual similarity task has the addi-

tional advantage that we now learn a representation that not only

captures context information, but also preserves information about

the raw input symbols.

4.3 Data-Augmentation
Data augmentation eases the generalization of machine learning

models and is particularly popular for image classification tasks

where we can augment images by randomly rotating, scaling, pad-

ding, etc. For mathematical expressions, we propose the following

random data augmentation: Since we know that a renaming of

symbols in equations rarely changes the semantic, we propose to

randomly permute the character features of all nodes that corre-

spond to a math identifier, encoded in <mi> tags according to the

MathML standard. For each equation we process, we sample a num-

ber of flips from a Poisson distribution with expected value 32.

Then starting with the identity permutation that does not change

the order of our 192 features, we construct a permutation with the

desired number of flips by incrementally exchanging two random

characters.

4.4 Hyperparameter Choices
We train all our models for 20 epochs with Adam optimization,

batch size of 128, an initial learning rate of 0.0001 that we decrease

linearly. We use R = 64 bins for the histogram loss and margin

δ = 1 for the triplet loss.

5 STATISTICAL ANALYSIS
Before we present empirical results on our embedding approach,

we want to discuss their statistical significance using concentration

inequalities. We begin by discussing the assumptions we use for

our discussion that go beyond the usual iid. assumptions. Then we

talk about testing of embedding models on hold-out data.

5.1 Assumptions
In usual classification settings [24], as well as metric learning set-

tings [3, 17], we assume that we have access to independent and

identically distributed training data. In our case of embedding learn-

ing for mathematical expressions, we would require to a sample of

independent equations, or to be more precise, independent pairs of

equations with (weak) similarity labels. However, this assumption

surely does not hold, as two equations that appear in the same

paper do not appear independently from each other. An example

illustrates this: Let X1 and X2 denote two equations. If it is re-

vealed to you that X1 shows Heisenberg’s uncertainty principle

X1 =
{
σxσp ≥ ℏ/2

}
, and that X2 appears in the same paper, the

probability of X2 being related to quantum mechanics increases.

This illustrates that P(X2 = x2 | X1 = x1) , P(X2 = x2) and thus

X1 and X2 are not independent. For the purpose of our analysis, we

assume that

(A1) we have an iid. sample of N papers where the i-th paper

contains ni equations

(A1) the number of equations is n =
∑N
i=1

ni
(A3) equations in the i-th paper are independent of equations in

all other papers.

Surely papers do not appear independently of one another, but this

we will ignore in our statistical analysis.

5.2 Confidence Intervals for Hold-Out Data
Now we carry out our statistical analysis for measuring scores on

hold-out data where the model
¯ϕ is fixed and independent of the

hold-out data. In the common iid setting, we can apply concen-

tration inequalities like Hoeffding’s inequality to bound the gap

between performance evaluations like accuracy or loss measured

on a finite hold-out sample and the true expected value.

Since we do not have iid. data, we have to use a refined approach.

We useU -statistics[12] s to analyze our models. In our case, they

are defined as expectations over functions of triples of equations

V (x1,x2,x3) called kernel.

s = E
x1,x2,x3

V (x1,x2,x3).

For instance we can define the ranking score, i.e. the fraction of

triplets where the positive pair has a higher similarity than the

negative pair. For convenience, we define P(x) as the set of possi-
ble positive examples for an expression x . Then we can write the



ranking score as

V
ranking

(x1,x2,x3) =
[
1(x2 ∈ P(x1) ∧ x3 < P(x1)) ·

1(⟨ ¯ϕ(x1), ¯ϕ(x2)⟩ > ⟨ ¯ϕ(x1), ¯ϕ(x3)⟩)

] (3)

The histogram loss can also be expressed as aU -statistic:

V
hist

(x1,x2,x3) =
[
1(x2 ∈ P(x1) ∧ x3 < P(x1)) · (4)

R∑
r=1

r∑
r ′=1

δr ′(⟨ ¯ϕ(x1), ¯ϕ(x2)⟩)δr (⟨ ¯ϕ(x1), ¯ϕ(x3)⟩)

]
Note that whenever (x1,x2,x3) is not a triple with a positive and a

negative example, the triple contributes zero to the expectations.

To simplify the analysis, we first consider so-called complete U -

statistics, i.e. we estimate the true score using all possible triplets

from a finite set of n expressions {xi | i = 1, ...,n}

ŝ =

(
n

3

)−1 ∑
i, j,k

V (xi ,x j ,xk ). (5)

Now the goal is to bound the difference between s and ŝ in high

probability.

Theorem 5.1. If V (x1,x2,x3) ∈ [0, 1], then for δ ∈ (0, 1) with
probability at least 1 − δ we have

s ≤ ŝ + 3

√
ln(1/δ )

2N

Proof. We proof this using Janson’s concentration inequality

for sums of partly dependent variables [14]. In Equation (5), we

compute a sum over triplets, where the triplets are constructed

from dependent samples. Thus the summands have dependencies.

We construct a dependency graph, where each node corresponds to

a triplet and two nodes have an edge if they are dependent. In our

case two triplets are connected if one of the equations in the first

triplet is from the same paper as any equation in the second triplet.

In order to apply [14], Theorem 2.1, we have to bound the chromatic

number χ∗ of this dependency graph. To this end, we consider an

arbitrary node v in the graph with equations from paper i , j and
k . Its degree is bounded by the number of equations in the papers

deg(v) ≤ (ni + nj + nk )
(n−1

2

)
, hence

χ∗ ≤ 3

(
n − 1

2

)
max

i
ni . (6)

Then for t > 0 we have

P(s − ŝ ≥ t)
[14]

≤ exp

(
−2t2

(n
3

)
χ∗

)
(7)

(6)

≤ exp

(
−2t2n

9 maxi ni

)
≤ exp

(
−2t2N

9

)
(8)

Solving for t yields the desired confidence interval. □

For incomplete U -statistics, where we estimate the score by a

subset of triplets D sampled independently with replacement[3] as

ŝ⊂ =
1

|B |
·

∑
(xi ,x j ,xk )∈D

V (xi ,x j ,xk ),

Table 1: Ablation Study

Influence Factor

Ranking

Hold-Out

Ranking

Eval

Accuracy

Eval

Full Model 76.5 (±0.0) 57.7 (±0.0) 60.6 (±0.0)

No Histogram Loss 72.5 (−4.0) 49.6 (−8.1) 30.9 (−29.7)

No Masking 75.2 (−1.3) 54.3 (−3.4) 50.0 (−10.6)

No Augmentation 75.3 (−1.2) 53.6 (−4.1) 50.0 (−10.6)

Bitmap CNN original[20] 76.2 (−0.3) 71.9 (+14.2) 68.3 (+7.7)

Bitmap CNN retrained 70.0 (−6.5) 50.0 (−7.7) 52.9 (−7.7)

the bound (6) no longer holds. But we can compute an empirical

bound χ̂ using any greedy graph coloring algorithm. Then Janson’s

concentration inequality implies that with probability at least 1 − δ

s ≤ ŝ⊂ +

√
ln(1/δ )χ̂

2|D |
. (9)

6 EXPERIMENTAL RESULTS
In this section we perform an experimental evaluation of our em-

bedding model. In particular, we focus on the use-case of a search

engine for mathematical expressions. We begin by investigating

the effects of the individual components of our model on a small,

closed subset of the data. Then we investigate the effectiveness of

our method on all 29,9 million equations.

6.1 Analysis on the Machine-Learning-Subset
We begin our analysis only on arXiv publications where the primary

subject classification is machine learning (cs.LG). This is a natural
choice, as we have some expertise to judge the quality of our results,

a task which we are in no way equipped for across all subject fields.

Of these 9,936 publications, we sample two subsets, train and test

of size 7,949 and 1,987 respectively with a total number of equations

of 237,335 and 54,767 respectively. In Section 5 we have seen that

scores evaluated on hold-out data converge to true empirical scores

in O(1/
√
N ) where N is the number of papers in the test set. In this

regard, our test set is appropriately sized. We use the train-set for

building our embedding models and use the test-set to investigate

generalization properties.

For training, we sample 1 million triplets (x ,x+,x−). Of these
triples, 45.9% have a positive pair from the same section, 42.2% from

the same paper and 13.9% along an edge in the citation graph. We

sample 100k triplets for testing with similarly distributed positive

examples.

We perform an ablation study on our proposed embedding model

and compare it to prior work. This section investigates the influence

of our design choices. We decided (a) to use the Histogram loss

instead of the triplet loss, (b) to also add an masking task, (c) to

data augmentation.

We measure Ranking score, i.e. the fraction of all triples in the

training data where same-class pairs of equations have higher simi-

larities than across-class pairs. As we see in Table 1, our evaluations

indicate that all of our design choices contribute favorably to the

overall performance on hold-out data, as deactivating any compo-

nent decreases the score. We note that the biggest gain is achieved



Table 2: Eval Scores

Dataset

Ranking

Eval

Accuracy

Eval

1mio ML-Subset Triplets 57.7 60.6

5mio Full ArXiv Triplets 76.2 80.9

20mio Full ArXiv Triplets 75.3 84.0
Bitmap CNN original[20] 71.9 68.3

by switching form triplet-loss to histogram-loss. We believe that

this is due to the massive noise in our labels.

We also compare with the our previous model [20] and see that

we beat this baseline by a small margin. However this comparison

is not entirely fair, as their model was trained on a larger dataset of

around 25k papers, probably including some of the papers in our

test set. We use their code to re-train on our subset of equations

and yield a substantial margin of 6.5 percentage points.

We also use our previous evaluation data [20]. It consists of 103

equations labeled into 13 categories related to machine learning

including k-means, LSTMs, empirical risk minimization, etc. Since

only bitmaps are available, we transcribe the equations manually.

There are three issues with this evaluation set: First, it is too small to

produce significant numbers. Second, some equations in the dataset

appear in the training data. This is not only the case for our subset,

but also for the training data used in [20]. Third, many equations

within a category are obviously from the same paper, hence we

have seen some of the pairs in our training data. Nevertheless we

use the evaluation data. Indeed in our use-case of search engines,

the crawled equations will always be in the training data and only

the user queries will be unseen equations. In a way, we simulate

this with the eval data.

Following the original experimental protocol, we measure the

1-nearest-neighbor accuracy obtained in leave-one-out validation

(named Accuracy) as well as the above Ranking score. In Table 1,

we again see that our model is only surpassed by the pre-trained

model that uses a larger training dataset. This motivates the use of

a much larger dataset.

6.2 Large-Scale Experiments
For training on all the papers in our dataset, we sample two different

sets of training triplets, one with 5 million triplets and one with 20

million triplets. We train our models on a Nvidia GTX1080 GPU

with 8GB memory, which allows us to process mini-batches of 128

triplets or 384 equations. During training, we process around 1,300

triplets per second, not counting the time for reading data from

hard disk. In total, one of the 20 epochs of training on 20mio triplets

takes 6:30h on our system. We use annoy to construct an index

for approximate nearest neighbor retrieval. In total, our index uses

13GB of hard disk storage to manage all mathematical expressions

in our dataset.

Before we evaluate our models in a search engine study, we again

check the performance on the aforementioned evaluation data. The

results in Table 2 indicate the power of using large amounts of

training data, although it is unclear if using 20mio training triplets

is an advantage over using only 5mio. Our large-scale models beat

all the models trained on smaller amounts of data. Even though

the smaller models were trained on only machine-learning related

data, we obtain better scores on the machine learning evaluation

data by training on all disciplines.

Let us now inspect two example search queries. In Figures 4 and

5 we see two examples from the introduction, Bayes law and Ising

models, and their respective nearest neighbors under our model

trained on 5mio triplets. We see that we can find other definitions of

Bayes’ law as well as the related law of total probability. When we

perform a query for the Ising Model and look at the first 20 results,

we find papers where the model is called Boltzmann machine as

well as papers that refer to the Ising model. This illustrates the

power of querying for mathematical expressions instead of using

keywords.

6.3 Search Engine Study
Finally we want to study the usefulness of our embedding approach

for a search engine application more systematically. Traditionally,

validating search engines using measures like precision or recall,

requires relevance scores for each result for each evaluation query.

We see that this requires a lot of manual annotation work since we

have to manually identify each relevant equation for each query.

Unfortunately, we were not able to find available evaluation data.

The best fit is the NTCIR-12 task evaluation data[29] consisting of

37 annotated queries. However is not appropriate for our approach,

as most queries are a combination of math as well as keywords.

When we ignore the keywords, the remaining query become very

generic, for instance x + y, which makes it very unlikely that we

accurately find the articles labeled as relevant. In addition, the

overall focus of the NTCIR-12 task is recovery of exact matches,

whereas our focus is on retrieving related expressions.

Consequently, we curate and publish our own evaluation data.

To reduce the manual annotation labour, we want to apply a heuris-

tic for the relevance judgement. To this end, we have asked our

colleagues, many from disciplines other than computer science and

data science, to provide us with equations that we should query.

For each equation, they provide a set of keywords or key-phrases

that should appear in the section around the result. If one of the

keywords is present, we count the result as correct. This way we

can evaluate our search result without manually checking result

lists. If a keyword has more than 10 characters, we also count it, if

we find a substring that has a Levenshtein distance less than 2. In

Query: P(d | s) = P (d,s)
P (s)

1st Result: P(s | d) = P (d |s)P (s)
P (d )

4th Result: P(d) =
∫
P(d | s)P(s)ds

Figure 4: Example: Bayes’ law. We report the first result and
the first result that does not show Bayes’ law, but, in this
case, the related law of total probability. The first result is
from: R. H. Leike, T. A. Enßlin, Charting nearby dust clouds
using Gaia data only, 2019.



Query:

∑
i<j wi j si sj +

∑
i θi si

’Boltzmann’ Result: E = −
∑
i bi si −

∑
i<j wi jsisj .

’Ising’ Result: H = −
∑
i<j Ci j Ji jσiσj −

∑
i hiσi

Figure 5: Example: IsingModel.We find equations related to
both Ising Models and Boltzmann Machines. First result is
from: Weinstein, Learning the Einstein-Podolsky-Rosen cor-
relations on a Restricted Boltzmann Machine, 2017. Second
result is from: Ferrari et al., Finite size corrections to disor-
dered systems on Erdos-Renyi random graphs, 2013.

Table 3: Search Engine Performance

P@10 P@100 P@1000 uMAP

BoW 0.4567 0.3170 0.2083 106.17

5Mio 0.5038 0.3817 0.2984 165.04
20Mio 0.4547 0.3709 0.2897 156.51

total, we have 53 evaluation queries publicly available and editable

online
4
.

We inspect two different information retrieval metrics that do

not require to know the number of relevant documents in ad-

vance: Precision@k and unnormalized Mean Average Precision.

Precision@k is defined as the fraction of relevant documents within

the first k results. We report it for lists of 10, 100 and 1000 results

and compute its mean over our evaluation queries.

Unnormalized Mean Average Precision is derived of the standard

mean average precision metric. Since we do not now the number of

relevant documents in advance, we omit this term, limit the search

to a maximum of 1000 results and obtain the following definition

uMAP =

1000∑
k=1

P(k)∆k

where P(k) is Precision@k and ∆k specifies if the k-th result is

relevant. Again we compute the mean over all evaluation queries.

In comparison to Precision@k , uMAP considers the order of the

search results and rewards relevant results early in the result lists.

For reference, we include retrieval based on a bag-of-words rep-

resentation. To this end, we use our data representation as in Sec-

tion 3.2, but compute the sum over all nodes in the graph to obtain

a single 256-dimensional vector of the whole tree. We retrieve the

nearest neighbors using cosine similarity.

In Table 3, we see that our approach beats the bag-of-words mar-

gin, in particular for larger values of k . We see for Precision@10,

the performance between BoW and our embedding model is very

similar. This is because for many queries the top-10 results are

mostly near-perfect matches which are easily identified even with-

out machine learning. However when we look at more results, we

are able to find almost 50% more relevant equations.

Overall the precision values seem very low. This is in part due to

the experiment design where we rely on the annotated keywords.

A closer inspection reveals that the queries achieve very different

4
Crowd-sourced evaluation data can be accessed and edited here: https://www.overleaf.

com/8721648589nrjxgwmtzfvm.

Table 4: Sorted P@100 values per Query for 5Mio Triplets

P@100 Keywords

0.95 ’policy gradient’

0.93 ’convex’, ’strongly convex’

0.91 ’q-learning’, ’reinforcement learning’

0.89 ’chain complex’, ’sequence’

0.81 ’lipschitz’, ’continuous’

0.80 ’empirical risk’, ’training objective’, ’erm’

0.71 ’lstm’, ’recurrent neural network’

0.70 ’neural network’, ’hidden layer’, ...

0.67 ’eigenvalue’, ’eigenvector’,...

0.66 ’received signal strength indication’, ’rssi’, ...

.

.

.

0.08 ’jaccard similarity’, ’min-hashing’, ...

0.07 ’fredholm integral’, ’equation of the first kind’, ...

0.07 ’effective collection area’, ’effective area’

0.07 ’modified erlang’, ’erlang’

0.07 ’johnson-lindenstrauss’, ’embedding’

0.06 ’significance of detection’, ’lima’

0.06 ’log-odds alignment’, ’pairwise dynamic programming’, ...

0.05 ’proximal gradient’

0.04 ’handshaking lemma’, ’handshake lemma’

0.03 ’single photon spectrum’, ’multi-gaussian distribution’, ...

0.02 ’graphcnn’, ’geometric deep learning’, ...

0.01 ’crosstalk probability’

precision values. In Table. 4 we show the best and worst-performing

queries of our 5Mio training examples model. There are examples

that achieve more than 90% precision, but many queries have preci-

sion lower than 1%. We note that the results are better if keywords

are broader. Highly specific queries where the number of relevant

documents is low perform poorly. We hope that in the future our

collection of evaluation query grows further to allow more informa-

tive evaluations. In particular with more queries it may be helpful

to split the evaluation data into difficulty levels according to the

number of relevant documents.

6.4 Search Engine Demo
We have a small demonstrator of our search engine running at

https://heureka.azurewebsites.net/. Currently it allows searching

in all equations of the machine learning subset, but we are work-

ing toward hosting a variant with all our data. We hope that our

prototype will allow us to collect click-through data that can help

validating and improving our embedding models.

7 CONCLUSION AND OUTLOOK
Finding relevant literature even across disciplines is essential for

scientific investigations. The search results should entail stimulat-

ing, relevant papers. Very often, a look at the formula in a paper

gives a compact description of the problems and solutions discussed

in the paper. Hence, the goal is to offer related papers based on the

mathematical expressions. This task is different from mathematical

information retrieval, but it shares the problem of determining the

right representation of mathematical expressions.

https://www.overleaf.com/8721648589nrjxgwmtzfvm
https://www.overleaf.com/8721648589nrjxgwmtzfvm
https://heureka.azurewebsites.net/


In this paper, we have proposed and evaluated a new method

for searching mathematical expressions based on machine learn-

ing. The problem is framed as representation learning on graph-

structured data. A precise definition of this task with its assump-

tions is given. Using concentration inequalities for sums of partly

dependent variables allowed us to analyze the performance of our

embedding models with statistical assumptions that go beyond the

usual i.i.d. over-simplifications. Further work could extend this into

a PAC style analysis.

For the first time, we have applied unsupervised embedding

learning with graph convolutional neural networks to learn a rep-

resentation of math that allows efficient retrieval of semantically

related expressions. Unlike existing work, our approach does not

rely on hand-written rules, but learns embeddings purely data-

driven in a combination of two unsupervised tasks: On the one

hand, we train a contextual similarity tasks where labels are gener-

ated from the surrounding contexts of mathematical expressions,

on the other hand we train a self-supervised masking task where

labels are derived directly from the inputs. To illustrate our ideas,

we have curated a huge dataset with over 29 million mathemati-

cal expressions based on over 900,000 papers hosted on arXiv.org.

This allowed us to train graph convolutional neural networks with

millions of equations and to carefully examine the impact of our

design choices. We have shown the benefit of our search system

using a new dataset of annotated math queries.

As of now, our method uses uniform sampling for positive and

negative examples. In the future we want to explore more guided

variants of sampling. It is still unclear what the tradeoffs between

less noise in the labels and more bias in the sampling are.

Given the importance of the data samples and their labeling,

we have set up a crowd-sourced evaluation procedure. Currently,

there are more evaluation queries available than in the NTCIR

dataset. This data collection will be continued and extended to user

interactions with a running search engine.
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